Microsoft Research Blog

The Microsoft Research blog provides in-depth views and perspectives from our researchers, scientists and engineers, plus information about noteworthy events and conferences, scholarships, and fellowships designed for academic and scientific communities.

Data Visualization Reaches New Heights with Layerscape

February 16, 2012 | By Microsoft blog editor

In December, I blogged about the beta release of Layerscape, a free set of research tools from Microsoft that enable earth scientists to visualize and tell stories around large, complex data sets. The full release is now available to the public at Layerscape.

We’re calling Layerscape an “ecosystem” to emphasize its focus on earth science and to communicate that Layerscape’s research tools include a community-based content sharing website, powered by Windows Azure. I’m pretty excited about Layerscape because it offers researchers new ways of looking at lots and lots of data, both above and below the earth’s surface—but also because the community site provides a great venue for learning how people are actually using Layerscape. Our collaborators are starting to gain new insights into their data and make use of our communities to share and collaborate.

As a research program manager at Microsoft Research, I am fortunate to get to collaborate with scientists working out the enormous puzzle of how the Earth works as a system. Needless to say, it is complicated work to study this astonishing collection of interlocking components and their intricate interconnections. But Layerscape can help with this.

One of the important technical challenges for the environmental scientist is managing the flow and the visualization of research data. Layerscape harnesses your PC’s graphics processor to visualize large amounts of data—in space and in time. Layerscape could be used to render 3-D visualizations from such diverse data sets as historical surface temperature measurements, chlorophyll concentration, seismic activity, greenhouse gas diffusion, sea ice extent, wind patterns, ocean pH, insect biodiversity, aquifer storage, geothermal heat flux, antelope migratory patterns, or the transport of Saharan dust as it fuels plankton blooms across the surface of the Atlantic Ocean with nitrogen and iron. Layerscape can also create abstract visualizations where you do not necessarily need latitude and longitude—just coordinate axes.

In addition to rendering data in 3-D space and in time, Layerscape has what we call freedom of perspective and free narrative. You can place your virtual eye anywhere you like and connect a sequence of perspectives and automated transitions that emphasize what the data is doing and what story you want to communicate. Such storytelling is ideal for educational outreach, enabling you to share your results with the scientific community and the general public.

Layerscape consists of three parts. Part one is the WorldWide Telescope visualization engine, and part two is the website that supports communities of users and the content they (you!) generate. The third part is a tool for getting data into Layerscape. This tool is built on Microsoft Excel, so if your data is already in an Excel spreadsheet, you simply click a few buttons to send it to the visualization engine. The link from Excel is dynamic, meaning that as you change the data in Excel, your Layerscape rendering changes automatically.

Today, a number of scientists—from geologists to seismologists to oceanographers—are using Layerscape to study atmosphere circulation, validate climate models, and even unravel evolutionary patterns of seahorses, demonstrating the wide applicability of Layerscape. In recognition of today’s release of Layerscape, I’ll share some extended remarks from researchers who are already taking advantage of its unique capabilities.

Get Microsoft Silverlight

Looking at oceans of data

James Bellingham, PhD, is chief technologist at the Monterey Bay Aquarium Research InstituteJames Bellingham, PhD, is chief technologist at the Monterey Bay Aquarium Research Institute, a position that puts him at the nexus of technology and ocean sciences. The ocean environment is complex, which means that James and his colleagues deal with lots of different kinds of data. As James says, “Many times, you can’t understand your biological measurements without understanding the ocean chemistry or perhaps understanding the physical ocean, the temperature and currents. So the real challenge is to somehow bring all of these disparate data sets together in a way that you can see the relationships.” James points out that forging such connections requires some way to make the data visual. “You need to be able to manipulate it and look at it from different ways. And that’s why we have become so excited about Layerscape.”

Layerscape allows James and his colleagues to manipulate the data in ways that were previously impossible. Instead of simply plotting the data and printing out graphs, the researchers can interact with the data. “Sometimes,” James notes, “we’re really more interested in a story, and Layerscape helps us tell stories. We could put a dataset in it and we can play it like it’s a movie…not just play a static movie, but actually play with the data in an interactive way.”
James is also excited by the long-distance collaborations that Layerscape can facilitate. “The problems we’re dealing with here are so big that no one organization has all of the people who can understand it. In the past, we’ve gotten together once a year and tried to make sense of the data. Now, using [Layerscape’s] data environment as the collaboration framework, there’s the prospect of real-time collaboration with a person in another city.”

You built your house where???

Mark Abbott, dean of the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University Mark Abbott, PhD, dean and professor, College of Earth, Ocean, and Atmospheric Sciences at Oregon State University, is another ocean scientist working with Layerscape. Like James Bellingham, Mark is excited by Layerscape’s ability to handle diverse and complex data types as well the opportunities it presents for collaboration. As Mark observes, the complexity of ocean data sets, which are derived from countless tiny sensors, results in a fragmented view, rather like “looking at the ocean through soda straws and trying to piece that together to understand how the ocean is behaving as an integrated system.”

“Layerscape offers the opportunity to look at a whole range of variables and overlay them in space and, eventually, in time, so you can see how these ocean landscapes, as it were, change and respond to forces in the environment,” says Mark.

Mark believes that Layerscape will help us understand how people and the environment interact. “Are people building homes and roads in areas where natural hazards, say, tsunamis or earthquakes or coastal flooding, might make them more vulnerable to disaster?” Mark sees Layerscape as a unique way to visualize and communicate such data, thereby helping policymakers and ordinary citizens make informed decisions about how and where to build new infrastructure.

Mark points out the value of tools like Layerscape in one of his current projects, the Ocean Observatories Initiative, which, among other things, will employ high-definition video cameras to make real-time observations of deep sea vents. “We’re really excited about looking at these real-time data streams, these enormous data streams, and applying new tools to make it easier for scientists to do their research,” he notes.

Maps in 3-D, maps in time

Lee Allison, state geologist of Arizona and the director of the Arizona Geological SurveyFinally, back on dry land—really dry land—there’s Lee Allison, state geologist and director at the Arizona Geological Survey. His agency plays a critical role in public policy decisions, using science to help keep people and property safe, to promote economic resource utilizations, and to protect the environment.

It’s a job Lee clearly enjoys. “Everything about this job is exciting,” he says. “We’re exploring areas that have never been explored before. We’re doing new things with technology that have never been done before. It’s a chance to explore.”

He adds, “it’s that interplay of being able to go out into the field and look at the rocks, discover things that people have never seen before, bring it back into the office and translate it—to tell people what it means to daily life.”

Lee points out that the age of discovery is alive and well, especially underground. “The subsurface is an area that’s really never been fully explored. And that’s what we’re doing here.”

“Now, we’re mapping the geology in 3-D and through 4-D, through geologic time. We’re doing it by mapping the geology on the ground, but then using technology to go well beyond where we can travel as individuals.”

“And Layerscape is this incredible visualization tool that’s coming along that’s going to allow us to take all of these data that we bring together and view it in 3-D and be able to go in the subsurface and be able to fly around and look at it in ways that we’ve never been able to before. This whole concept of visualizing the data is revolutionizing the way not only we do our science, but the way we portray our science to the people who use that data. Not only the public, but to industry and government decision makers.”

From the ocean depths to the high desert, Layerscape is helping scientists visualize complex data, achieve new insights, collaborate with far-flung colleagues, and explain their work through narratives. Build your own virtual tours and discover the possibilities with Layerscape.

Rob Fatland, Research Program Manager, Microsoft Research Connections

Learn More