Page 13 of 15

Explicit Congestion Avoidance: Cooperative Mechanisms for Reducing Latency and Proportionally Sharing Bandwidth

Paul R. Barham

25th March 2001

Technical Report

MSR-TR-2001-100

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Explicit Congestion Avoidance:

Cooperative Mechanisms for Reducing Latency and Proportionally Sharing Bandwidth.

Paul R. Barham, Microsoft Research Ltd., Cambridge, UK.
Abstract—This paper presents the design and evaluation of a cooperative congestion avoidance system suitable for corporate Intranets or home networks. Explicit Congestion Avoidance (ECA) relies on host operating systems to introduce appropriate per-flow virtual bottlenecks, with the intention of keeping queuing out of the network. The network provides an indication of the aggregate demand for resources on each path, and a cooperative distributed algorithm adjusts these virtual bottlenecks in proportion to per-flow weights, so as to maintain network utilization at a level where queuing is rare. In addition, network bandwidth is shared in proportion to the weights of the competing flows and end-to-end latency is greatly reduced. Unmodified higher level protocols merely see a reduced capacity channel and adapt to the available bandwidth. For example, the packets which TCP would normally force into router queues to increase the RTT, are instead voluntarily queued inside the operating system. Experiments show that time sensitive media streams can be protected from contention, and that response times for short HTTP requests can be improved by a factor of 5.

I. Introduction

A large proportion of the traffic carried on contemporary networks is latency sensitive, and yet the protocol which is predominantly used to carry this traffic (TCP) is based on a control loop which aims to completely fill the queues inside the network. The majority of Internet traffic is HTTP over TCP, which is effectively synchronous remote procedure call (RPC) and therefore very sensitive to round-trip delays. Intranet traffic has an even greater proportion of latency-sensitive RPC traffic, e.g. remote file system (NFS or SMB) traffic, or client/server email, much of which was originally designed for LAN latencies. Although streaming media is becoming increasingly popular, much of this traffic is today carried over TCP, often relying on users to choose an almost constant bit rate (CBR) stream of an appropriate rate for their access bandwidth (e.g. 56K for a dial-up modem). The result is that all networks tend to run in a state where the end-to-end latency is much higher than strictly necessary, and interactive responsiveness is poor.
The design of protocols and mechanisms for the Internet has traditionally involved great care to ensure that all flows are treated equally (To do otherwise would require sensitive issues of billing to be addressed). In corporate and home environments, however, such issues can often be finessed. This enables use of techniques which rely on the cooperation of end-systems to share network bandwidth according to a global policy, and to maintain the aggregate load at or below a chosen operating point.
The dynamics of the current Internet are largely determined by the behaviour of TCP’s end-to-end congestion control mechanisms. These mechanisms are therefore the subject of intense scrutiny and any proposed changes face a good deal of inertia. This is unfortunate since TCP has many undesirable properties which are detrimental to the performance of smaller scale, centrally managed Intranets. Examples include:

· Round-trip time (RTT) estimation with no persistent state and an excessively high initial value (2 seconds).

· Steady state behaviour which requires queue lengths to increase until loss occurs.

· A “slow-start” mechanism which cripples responsiveness for short transfers.

· ‘Fair’ link sharing where achieved bandwidth is inversely proportional to the RTT.

The resistance to change is because the same protocol must seamlessly deal with both Intranet and Internet communications. TCP is the dominant protocol in both situations, but is used to carry different traffic types.

Explicit Congestion Avoidance (ECA) is a compromise solution which is intended to address some of the Intranet problems caused by TCP and other Internet focused protocols. Rather than discarding these stable and proven adaptation mechanisms, this paper advocates a simple software scheme where each flow’s bottleneck is deliberately moved into the source operating system, thereby reducing queuing and latency in the network itself. A distributed algorithm is used to adjust these artificial bottlenecks so as to proportionally share bandwidth according to a globally consistent policy. The scheme also facilitates the peaceful coexistence of heterogeneous protocols.

The remainder of the paper is structured as follows: Firstly, background ideas and proposed Internet solutions relevant to the design of ECA are discussed. Secondly, the overall design of ECA will be presented and justified. The subsequent sections describe evaluation both by simulation and by measurement of a prototype implementation on a 16 node testbed network.

II. Background and Related Work

A. Congestion Control in the Internet

1) TCP

TCP, in the congestion avoidance phase, controls it’s transmit rate by means of a congestion window. The congestion window determines the amount of data which may be in transit at any time. In the steady state, due to the “self-clocking” nature of TCP, a congestion window’s worth of data will be transmitted every round-trip time (RTT). As congestion increases, the resulting queuing delay in routers increases the observed RTT providing a form of back-pressure.

In the absence of loss, TCP will increase its congestion window by one packet each RTT until a maximum window size is reached. When a packet is lost, usually as a result of overflow in a router’s output queue, the congestion window is halved. As a congestion signaling mechanism, this leaves a lot to be desired:

· Only those flows whose packets are dropped are aware of the congestion – hence the necessity to back off by such a large factor.

· By the time the (often substantial) router buffers are filled up and packets start to get dropped, the network is seriously overloaded.

· The “normal” operating state of the network is to have substantial queuing delays in each router and therefore poor interactive response end-to-end [6].

It is widely claimed that this Additive Increase / Multiplicative Decrease (AIMD) behaviour is necessary to prevent congestion collapse, although the arbitrary choice of 0.5 as the multiplicative constant (originally for “performance reasons” [1]) is less justifiable. The net result is a delicate balance between achieved throughput, RTT and loss probability which has been modeled using the following formula [3]:

[image: image1.wmf](

)

2

8

3

3

2

32

1

.

3

.

p

p

p

T

p

T

s

R

RTO

RTT

+

+

=

 (1)

where:

· R
is the achieved rate,

· s
is the segment size,

· p
is the loss probability,

· TRTT
is the round-trip-time,

· TRTO
is the retransmit time-out (which can be approximated as 4*TRTT)

The formula implies that the steady state bandwidth achieved by a TCP connection is inversely proportional to the round-trip-time and, approximately proportional to one over the square root of the loss probability. Note that the capacity of the bottleneck link doesn’t appear in the equation implying that a factor of k increase in throughput must be balanced against either a factor of k decrease in RTT or a factor of k2 decrease in loss probability.

[image: image2.wmf]
Figure 1 RED Parameters

2) Random Early Detection (RED)

A proposed “optimization” of TCP’s loss-based congestion avoidance mechanism is to randomly discard some number of packets before the router’s queue overflows [10]. This is an attempt to manipulate the tradeoff between RTT and loss probability so as to reduce latency in the network.

In each router, packets are discarded with a probability computed from many parameters and variables, including the smoothed length of the forwarding queue, as shown in Figure 1. The result is that some TCP flows will begin to back off before congestion gets too bad.

Choosing suitable values for the RED parameters has been the subject of much experimental work, but it is generally considered to be difficult to balance utilization against responsiveness, and to find parameters which work well at both high and low loads [9].

3) Explicit Congestion Notification (ECN)

The ECN RFC [8] proposes that routers signal the onset of congestion by setting a single bit in Type-of-Service (TOS) field of the IP header. It is assumed, though not mandated, that the mechanism for setting the ECN bit will be something like RED. To aid incremental deployment, ECN aware traffic flows identify themselves by setting a further (ECT) bit in the IP header. Non-aware flows will have their packets discarded rather than having the ECN bit set.

Although ECN is an IP level mechanism, there is no defined back-channel at the IP level. The proposal states that a TCP sink should return these ECN bits to the source as a TCP option, and that the TCP source must react to the ECN signals as though it had observed packet loss, i.e. by halving the congestion window.

Additional mechanism is present to ensure that each TCP reacts only once per round-trip time and then provides a TCP-level Congestion Window Reduced (CWR) signal. It is intended that this will allow routers to detect TCP connections which claim to be ECN aware but which are not backing off correctly, though detecting this would add a great deal of complexity to routers.

In summary, the ECN RFC has a number of problems. Not least amongst these are that it currently only works for TCP and, just like normal TCP congestion avoidance, cannot be readily enforced.

4) The Congestion Manager

In their recent OSDI paper [19], Balakrishnan et. al. present the Congestion Manager architecture; an end-system infrastructure for sharing and persistence of RTT and congestion information between flows with common destinations. Up-calls are used to explicitly inform adaptive applications about changes in network conditions, and to make global policy decisions about which one(s) should degrade. No attempt is made to control network load however.

B. Fairness, “TCP Friendliness” and QoS

TCP fair link sharing is an efficient and stable mechanism for adapting to the observed bottleneck capacity and round-trip-time of the network. The majority of non-TCP protocols also have feedback mechanisms for adapting to prevailing network conditions – indeed it is arguable that any protocol which doesn’t is probably unusable in the Internet. When these protocols are used simultaneously, however, the lack of coordination leads to more aggressive protocols pushing other traffic out of the way [2].

Fair sharing of Internet links relies on all participants using standards compliant TCP implementations [4]. By using UDP, multiple TCP connections, or a modified TCP stack it is easily possible to gain a disproportionate share of the link. This is not a major problem since access links are the bottleneck for the majority of flows. It remains to be seen whether this will continue to be the case with the widespread deployment of broadband access technologies such as DSL and cable modems.

1) MulTCP

The link sharing behaviour of TCP is critically dependent on the parameters of its AIMD congestion avoidance algorithm. This is exploited by MulTCP [5] to make a single TCP connection respond in the same way as an aggregate comprised of n TCP connections. With no additional router support, this technique provides a form of weighted proportional sharing of bottleneck links. The effect is somewhat clouded in reality, since TCP’s bandwidth sharing is still dependent on the RTT of each flow. It does however serve as an example for those who wish to unfairly increase their TCP throughput.
2) Equation Based Congestion Control

Recently researchers have proposed that non-TCP flows could use the analytical model of TCP congestion avoidance behaviour to adjust their transmit rates based on observed network congestion [10]. Traffic sinks are responsible for measuring the loss probability and, together with the RTT this is plugged into equation 1 to obtain a transmit rate. The resulting protocol is known as TFRC (TCP-friendly rate control).

C. Quality of Service Mechanisms

The current economics of the Internet lead to a model where over-provisioning of the core is more cost-effective than traffic engineering, policing or network support for Quality of Service (QoS). In contrast, ISPs, who statistically multiplex traffic from a large number of customers often find themselves having to shape and police customer’s traffic to a Service Level Agreement (SLA), e.g. where customers pay for 512Kbps connectivity and the underlying cable modem technology is capable of 2Mbps.

The desire to provide multiple levels of service (presumably at different prices), together with the necessity of policing customer behaviour are used to argue for a network where packets are not all treated equally. Candidate technologies range from Differentiated Services (DiffServ) [16], with its fixed number of source-assigned traffic classes, to economic based replacements for IP, such as Congestion Pricing [12], which admit of arbitrary responses to congestion but charge according to the damage done to the network.

1) DiffServ

DiffServ uses the TOS field in the IP packet header to distinguish between several traffic classes (e.g. high priority, low latency, best-effort, etc.) which will be treated appropriately by DiffServ compliant routers, e.g. by using multiple forwarding queues. The intention is that the amount of each traffic class which a host may inject into the network will be policed by ISPs.

DiffServ and all other network QoS mechanisms are all about sharing bandwidth out unfairly. The intention is to enable users or flows to obtain a disproportionate percentage of the available resources. In all such schemes, there must be some incentive to prevent everybody from demanding ‘Best Quality’ service. This incentive is often linked to money.

D. Economic Replacements for Internet Congestion Control

1) Congestion Pricing

Several researchers [12]

 REF _Ref508100395 \r \h
 * MERGEFORMAT [14]

 REF _Ref509977338 \r \h
[15], have proposed economic models for congestion avoidance, where the ‘cost’ of the damage done to the network by congestion is explicitly charged to those flows responsible. Kelly proposes a scheme where a single ECN-style bit is used to probabilistically ‘mark’ all packets contributing to congestion. It is assumed that end-users are provided with an incentive to react in a manner which decreases the offered load (this incentive may be financial, or contractual).

One simple mechanism for reacting to the observed load on the network is to apply the following differential equation:

[image: image3.wmf]þ

ý

ü

î

í

ì

-

=

å

Î

R

r

r

t

t

x

t

x

dt

d

)

(

)

(

)

(

m

w

k

 (2)

where:

x(t)
is the transmit rate of the flow,

(
is a flow-specific ‘Willingness to Pay’ parameter,

(r(t)
are the ‘marking rates’ of each router on the path,

(
is a constant controlling the rate of convergence.

It is possible to prove mathematically that such a scheme is stable, and that if each individual user optimizes their own cost/utility function then the system as a whole eventually converges to a global optimum [13].

The minimalist single bit encoding of congestion has the elegant property that all integration of ‘error signals’ can be performed in the end-systems on timescales appropriate to the RTT of the connection (as opposed to routers averaging over some arbitrary time period). It also requires only minimal support from network infrastructure, allowing all of the ‘intelligence’ of congestion avoidance to be devolved to end-systems. There are several drawbacks, however:

· It is difficult to identify which packets are responsible for congestion, and most of the packets which contributed to a router’s queue building up to overflow have long since been forwarded on.
· As a packet passes through multiple congested routers, the price charged, i.e. number of marked packets, does not approximate the sum of the individual charges unless (i are all small.

· The theoretical information rate of a channel with a low mark probability is not very high, and hence it takes a long time to estimate the price.

· With network loads that can vary by several orders of magnitude over many timescales, it is difficult to dimension a network such that the marking probability will always be a reasonable value.

· For stability reasons, the convergence constant in equation 2 must be chosen carefully. A sensible value is dependent on the RTT.

2) Random Early Marking

In [18], Low proposes a scheme where routers, rather than end-systems maintain a notional price for each shared resource, adjusted based on observed load, and communicate this value to traffic sources. The ‘price’ is again encoded using probabilistic marking of packets, e.g. using the ECN bit. A non-linear function is used to deal with ‘inflation’, so that as P(mark)→1, price→∞. Once again, summing of the price across multiple routers is problematic. This work has many similarities to ECA, but advocates a single replacement congestion avoidance mechanism, rather than the ECA approach of working alongside existing protocols.

E. Other Explicit Congestion Notification Schemes

The idea of an explicit signal of congestion has been around for a long time. One of the earliest suggestions was “DECbit” [17] which used a sliding window average of eight single-bit congestion notifications to determine additive increase or multiplicative decrease of transmit rate. A decrease constant of 7/8 was found to work best.

Frame Relay has both forward (FECN) and backward (BECN) explicit congestion notification bits. FECN sets a bit in the packet which is observed by downstream nodes. A congested node can also set the BECN bit in a packet traveling in the opposite direction.

The ATM Available Bit Rate (ABR) service uses periodic RM (Resource Management) cells which combine a binary Explicit Forward Congestion Indication (EFCI) signal with an explicit rate mechanism where each switch on the path can reduce the desired transmit rate of the source. Virtual-source virtual-destination pairs are used to shorten control loops.

III. Explicit Congestion Avoidance

Explicit Congestion Avoidance is a compromise solution which seeks to retain the proven benefits of existing protocol adaptation mechanisms, yet at the same time run the network in a less congested state and enable proportional sharing of bandwidth. As the name implies, the aim is to avoid congestion by use of continuous feedback, rather than provide notification once congestion had occurred.
The bandwidth sharing mechanisms of Explicit Congestion Avoidance are based on a cooperative distributed algorithm, and as such, assume that all hosts connected to the network have an incentive to ‘play the game’. The technique is therefore best suited to the corporate intranet or home network where enforcement of the above property is more feasible and incremental deployment across multiple autonomous systems is not an insurmountable political/legal problem.

Given a suitable incentive or enforcement technique, however, there is no technical reason why ECA should not be applicable to the Internet as a whole.

A. Overview

With each flow (which may be anything from a single TCP connection to a large aggregate) is associated a weight wi. These weights are assumed to be taken as a measure of the relative importance of flows, and can be taken as analogous to the “willingness to pay” parameter used in Congestion Pricing. Exactly who assigns these values, or dictates global policy is not a matter for this paper, but one can imagine a number of possibilities varying from use of the Active Directory policies in Windows 2000, to a simple GUI or .Xresources equivalent in a home scenario.

The source operating system introduces an artificial bottleneck for the flow, e.g. using a token-bucket shaper with a sustained rate of ri. Routers on the path taken by the flow maintain and advertise a path load estimate L. End-systems are expected to voluntarily adjust the artificial bottleneck such that ri= wi / L. L is slowly adjusted up or down by routers such that the aggregate arrivals rate (ri is matched to the target utilization of the bottleneck link. Queuing theory predicts that, as utilization approaches 100%, queue lengths will normally tend to infinity. Setting the target utilization to, say, 90% can dramatically reduce the mean queue length.

1) Advertising the Load

Conceptually, all packets may carry two additional fields which will be referred to as LOAD and RLOAD. As outbound packets pass through routers, the aggregate demand for resources on its route is accumulated in the LOAD field. When a packet reaches its destination, this information is recorded and periodically returned to the source in the RLOAD field of any packet traveling in the opposite direction. This does not assume that the route has to be symmetric.

In many situations, the RLOAD message could easily be piggy-backed on the next IP packet going from the destination to the source (e.g. a TCP ACK segment), but it may also be conveyed in a separate packet if the flow has no back-channel.

Implementation options include:

· Additional fields in the IP header of every packet.

· IP options carried by a subset of packets.

· An additional ICMP opcode (similar to ATM RM cells)

There are obvious tradeoffs between header overheads and the need to generate additional packets.
2) Estimating the Load

In addition, routers need a simple feedback scheme to estimate the longer term aggregate demand for each shared resource. One simple possibility is to run a software virtual queue with service rate equal to the target utilization (e.g. 90% of the real line rate) and adjust a load estimate up or down based on whether this queue is full or empty.
As a packet containing a LOAD field passes through the network, it accumulates a total LOAD for all the routers on its path. At each router, incoming packets already contain a load estimate for the path so far, and this must be combined in some fashion with the load estimate for the current hop. The function used for combining these two values is determined by the desired fairness properties. Adding the two values will weight flows based on the total amount of congestion they contribute towards (which will tend to increase with the number of hops) whilst taking the maximum will share bandwidth proportionally between flows with a common bottleneck.

3) End-System Requirements – The WTP module

As mentioned in section III.A, hosts are expected to install a packet shaper for each flow. In the work presented here, a token bucket shaper is used. The sustained token rate of this shaper is adjusted according to the incoming load notification messages and the flow weight parameter, and the size of the token bucket is chosen to allow bursts of up to certain maximum size. The rationale behind these choices is to allow mechanisms such as TCP slow-start to rapidly find an operating point. This also benefits interactive response for short lived or bursty flows. This Weighted Token-bucket Pacing of transmissions is referred to in the rest of this paper as WTP.

ECA allows existing protocols use their own short-timescale congestion avoidance mechanisms, (e.g. TCP’s AIMD mechanism, or RTP for streaming media). The token rate for such flows may be directly set as ri= wi / L. In the rate case that a flows has no such adaptation mechanism, a simple and stable feedback scheme may be used, such as Equation 2.

B. Discussion
1) “High Priority” Traffic

An interesting side-effect of this cooperative scheme for reducing network load is that any unmanaged traffic flow, will push all other traffic out of the way. This property can be exploited to provide a high-priority traffic class for some flows, provided that their total peak rate is lower than the capacity of the network. If necessary, this can be arranged by the use of admission control.

2) TCP Slow Start and HTTP Responsiveness

The size of the WTP token bucket determines the maximum burst size which will be allowed into the network. This parameter may be set so as to allow small HTTP requests to proceed at a rate determined solely by TCP’s slow start mechanisms, e.g. enough for 16K bytes of data. HTTP response times are dominated by the log2(n) round-trips necessary for slow-start to open the congestion window. Since Explicit Congestion Avoidance helps to avoid queuing in the network, RTTs are very close to the propagation delay of the network and hence HTTP responsiveness is greatly improved. This is the major expected benefit of ECA, and results showing its effectiveness will be presented later in this paper.

C. Application to Non-Routed and LAN Environments

ECA is presented in this paper as a scheme for managing load in routed networks. In this environment, measuring the load on an arbitrary network route requires an in-band mechanism. This is not a requirement of ECA. In other work, ECA has successfully been deployed on shared-media and switched LANs, both wired and wireless. In these scenarios, one or more of the end-systems on the network are responsible for tracking and advertising the network load. The high-priority effect mentioned in the previous section have proved well suited to the distribution of high-bandwidth streaming media in home networking environments.

Interestingly, on networks such as 802.11 wireless Ethernet, the media access protocol performs poorly at very high utilizations. Using ECA to reduce the demand seen at the MAC level can substantially improve the overall performance of the network.

IV. Experimental Evaluation

Congestion avoidance mechanisms are required to work well in all network scenarios, so evaluation has necessarily taken two forms:
1. simulation using the ns2 simulator, and

2. the implementation of a measurement of a prototype.
The simulation is used to predict behaviour on network topologies and configurations which cannot easily be built in a lab environment, and the prototype is used to validate that simulation results bear some resemblance to reality after the necessary engineering and implementations choices have been taken.

A. Simulation

The ns2 network simulator was extended to support per-flow Explicit Congestion Avoidance. Adding a generic IP-level congestion avoidance mechanism to ns2 turned out to be surprisingly difficult since ns2 does not distinguish between the concepts of protocol layering and C++ subtyping/inheritance, with the result that there is no single code module responsible for IP functionality. As a compromise, an additional ecn() method was added to the Agent base class which all protocols must invoke upon packet receipt to allow in-band congestion information to be extracted.

A TCP object (or one of it’s many subtypes) behaves as the source end of a simplex TCP flow, and a TCPSink object behaves as the destination. Both are subtypes of the Agent class, but the receive paths share no common code.

1) Packet Header Design Decisions

Rather than pick a specific encoding format for ECA load messages, the ns2 implementation uses two additional fields in the header of each packet for LOAD and RLOAD. These fields both hold 32-bit floating point values so that the simulation does not need to be concerned with numeric precision, and so that the results show the behaviour of ECA with a perfect encoding of the load messages. The prototype implementation uses a more realistic 8-bit field in the IP TOS field, and an out-of band message in the reverse direction.

In all experimental work described in this paper, the LOAD field is used to indicate the aggregate demand for the most heavily loaded (bottleneck) resource – i.e. the maximum load of all routers on the path. This results in link sharing where flows which happen to pass through multiple congested hops are not excessively penalized
.

2) Routers

A new ns2 queue type was implemented which maintains a long-term load estimate and modifies the LOAD headers of all forwarded packets. The initial choice of load estimator was simplistic, but appeared to perform perfectly adequately in all experiments. The algorithm computes the arrival rate into the queue in 100ms time intervals, and compares this to the target utilization, arbitrarily chosen to be 90% of the outgoing link capacity. If the arrivals exceed this threshold value then L is multiplied by 1.05, otherwise L is multiplied by 0.99. This simple control loop is sufficient for experimental purposes since TCP is still using AIMD within the WTP enforced maximum rate. This asymmetric response was designed to react quickly to sudden increases in load and more gradually to decreases in load. A simple calculation of the exponential decay time shows that the time to respond to a doubling of the load is about 1.4s, and 6.8s for the load suddenly halving. These are both fairly large compared with the timescales on which TCP responds to network conditions.

3) The WTP Protocol

The WTP protocol module implements the majority of the end-system Explicit Congestion Avoidance algorithm. The transmit rate of the TCP flow is regulated using a token bucket shaper, whose token rate is adjusted upon receipt of explicit notifications of network load. Whenever a protocol agent is created in the simulator, we arrange that a WTP rate shaper is interposed between the agent and the first hop ‘Link/Queue’ objects.

The major ns protocol components involved in congestion avoidance are illustrated in Figure 2. For clarity, the objects representing transmission links and those required for maintaining routing information and demultiplexing incoming packets have been elided.
In outline, the ECA feedback loop works as follows:

1. The TCP protocol agent decides to transmit a segment, and invokes the send() method of the Agent class.

2. The Agent would normally invoke the recv() method of the outgoing link, but instead invokes recv() on the WTP object.
[image: image4.wmf]
Figure 2 Major ns2 Components involved in a TCP connection.

3. The token bucket shaper is used to determine the transmit time of the packet, and if necessary it is enqueued.

4. The packet passes through the normal ns network simulation mechanism. When it reaches the output Queue of a router, the router’s current load estimate is stamped into the IP header.

5. Any subsequent router with a larger load estimate increases the value in the IP header.

6. When the packet reaches the destination node, the recv() method of the TCPSink is invoked. The TCPSink immediately invokes the ecn() notification method of its supertype which in turn invokes the WTP module. The incoming load estimate field of the IP header is recorded. The incoming packet may also trigger the generation of a TCP ACK segment.

7. The ACK segment experiences the same transmit path as described above.

8. As the ACK leaves the queue in the WTP module, a second field in the IP header is stamped with the most recent load estimate recorded in step 6. We call this the reflected load estimate.

9. On packet receipt, the reflected load estimate is used to update the token rate of the WTP shaper. Since there is a symmetric congestion avoidance path in the reverse direction, the notification mechanisms of step 6 are also invoked. T

4) Simulation Topology and Parameters

When choosing a simulation topology and traffic pattern, there is an inevitable tension between:

1. A ‘realistic’ topology with rich interconnection, dynamic routing, realistic level shifts in demand, randomly distributed traffic patterns and link latencies, etc., and

2. Easy interpretation of results without the need to average behaviour over a large number of randomly synthesized networks.

[image: image5.emf]0

20

40

60

80

100

120

2.0 3.5 5.0 6.5

8.1

9.6

11.1

12.7

14.2

15.7 17.3 18.8 20.3 21.9 23.4 24.9 26.5 28.0 29.5 31.0 32.6

34.1

35.6

37.2

38.7

40.2

41.8 43.3 44.8 46.4 47.9 49.4 51.0 52.5

Time / s

% Bandwidth

Total RXed

Total TXed

BestEffort

Gteed

The topology and traffic patterns depicted in Figure 3 and Figure 4 respectively were intended to allow large amounts of traffic contention whist being simple to analyze and interpret. The topology consists of a series of eight routers (r0-r7), eight source nodes (s0-s7), eight destination nodes (d0-d7), a reference source node (src) and a reference destination node (dst).

A set of ‘horizontal’ reference flows pass through all 8 routers from src to dst. At each routed hop n, a set of ‘vertical’ contending flows is brought in from sn destined for dn+1. This traffic is multiplexed in with the reference traffic for a single hop and then leaves the system to make room for fresh uncorrelated traffic. The resulting traffic pattern looks something that shown in Figure 4.

For simplicity of analysis, the capacities of all links were equal, and the horizontal and vertical link latencies were chosen such that the end-to-end latency was the same for each traffic flow, i.e. in the case of horizontal links, the per-hop latency is 1/9th of the desired end-to-end value, and in the case of vertical links 4/9ths of the total.

[image: image6.emf]0

20

40

60

80

100

120

48.2

52.8 57.5

62.1

66.7 71.3 75.9 80.5

85.1

89.7 94.3 98.9

103.5

108.1

112.7 117.3 121.8 126.4 131.0 135.6

140.2

144.8 149.4 154.0 158.6

163.2

167.8 172.4 177.0 181.6

186.2

190.8 195.4 199.9 204.5

209.1

Time / s

% Bandwidth

Total RX

Total TX

BestEffort

Gteed

The maximum queue lengths of routers were scaled with link bandwidth such that the maximum queuing delay is a constant (At 1Mbps, routers had 20 packets of buffering per output port). In the case of ECN/RED, the RED minth and maxth parameters were set at 25% and 75% of the maximum queue length. TCP maximum window sizes were also set such that each TCP flow is capable of saturating any link.
B. Simulation Results

1) Steady-State Fairness and Link Utilization

It is necessary to observe the steady-state behaviour of a distributed congestion avoidance mechanism over a wide range of network conditions. Parameters which potentially influence steady state behaviour include the bottleneck bandwidth, total path transmission latencies (and hence minimum RTT), and the number of competing flows. These variables will typically range over several orders of magnitude.

As these parameters are changed, it is interesting to look at the aggregate behaviour of the network (mean utilization), and also the relative performance of the flows sharing each bottleneck.

In the following experiments, each traffic set consists of 5 flows. At each router, there will therefore be 10 competing flows, 5 from the ‘horizontal’ reference traffic and 5 from the ‘vertical’ cross-traffic. The experiments in this section were performed for seven different bandwidths ranging from 1Mbps to 100Mbps, and seven different end-to-end transmission delays ranging from 1ms to 100ms – four orders of magnitude change in bandwidth*delay product. All 49 stacked bar charts are arranged below. Each experiment lasted for 100 seconds.

The entire set of 49 experiments were performed both with and without Explicit Congestion Avoidance. In the ECA case, the WTP shapers for each flow set were configured with 5 different flow weights – from 1 to 5.

In the figures below, the percentage of the available bandwidth achieved by each flow is plotted as a stacked bar chart. The horizontal flows are stacked upwards from the bottom of the bar, and the vertical flows are plotted downwards from the top. The unused capacity is therefore left as a non-shaded area in between the two. The bars are labeled with the flow number (1-5) which, in the case of ECA, is also the flow weight.

Figure 5a) shows the results for TCP. The expected result is that flows with the same RTT should obtain approximately equal shares of the bandwidth. Since this process is stochastic, some amount of variation is to be expected. Note that, despite having the same transmission delay as the cross-traffic, the horizontal flows pass through 8 routers as opposed to 1, and therefore obtain a much reduced share of the bandwidth due to the increased loss probability and queuing delay.
The results for using the ns2 ECN/RED components are shown in Figure 5b). ECN does not make any changes to the TCP congestion avoidance algorithm, but merely signals congestion earlier, and in a manner which is intended to desynchronize flows. The reduced RTT should lead to a tighter control loop. These two factors should both help to decrease the variance in bandwidth. In the figure, the shares obtained by each flow within a set show less random variation, but the utilization falls off as the bandwidth*delay product increases.

Figure 5c) shows the behaviour when Explicit Congestion Avoidance is in use. The expected result is that the horizontal and vertical flow sets obtain similar total proportions of the available link capacity, since the feedback signal received by the WTP shaper module is independent of the RTT.

[image: image7.wmf]0

20

40

60

80

100

120

0.0

10.9

21.9

32.8

43.7

54.7

65.6

76.6

87.5

98.4

109.4

120.3

131.3

142.2

153.1

164.1

Time/s

Percentage Bandwidth

BestEffort2

BestEffort1

VBR

CBR2

CBR1

If all flows are smooth, then the aggregate load seen by each router should approximate (wi, and so each flow should be rate limited to wi/(wi. The chart clearly shows that the each flow does indeed obtain a shares of the available bandwidth proportional to its flow weight parameter (shown as an integer from 1 to 5 in each coloured bar of the chart). Due to the load estimation algorithm used in routers, the link utilization should also be close to the target 80% point. This appears to be the case across a wide range of network dimensions.

2) [image: image8.wmf]Variance in Flow Rates

The previous results were concerned with long term statistics but do not give any idea as to the short term variation in flow rates. The surface plots in Figure 6 show how the coefficient of variation of flow transmit rates (averaged over 100ms time intervals) changes with link bandwidth and end-to-end latency. The results are graphed for TCP, ECN/RED and finally for ECA. Note that of necessity the three charts are plotted on very different scales.

In all three cases, the variation in bandwidth is most pronounced for low capacity, high latency topologies. As expected, there is a marked improvement in smoothness of flows from the TCP case to ECN/RED – mainly due to the reduced round trip times and consequentially shorter control loops. Use of ECA results in much smoother traffic than even the ECN case, due to the rate based pacing of TCP transmissions.
3) End-to-End Latency

[image: image9.wmf]One of the main goals of Explicit Congestion Avoidance is to run the network in an uncongested state such that the end-to-end latency (and hence RTT) is kept to an absolute minimum. The next three charts show histograms depicting the distributions of per-packet end-to-end latencies, once again for TCP, ECN and ECA. In these experiments, the link bandwidths were 10Mbps and end-to-end propagation delay 10ms. Router queues have a limit of 500 packets. The observed end-to-end delays should be approximately the sum of the propagation delay and any queuing delay experienced. The histograms can therefore be used to deduce the queue length distributions.
Since they experience a different number of routed hops, the horizontal and vertical flows are shown separately. Figure 7a shows the two distributions for TCP. The bulk of the observations are towards the upper bound. This is the expected behaviour with TCP which is designed to drive queues to overflow and packet loss.

The distribution when ECN/RED is in use is shown in Figure 7b. The ECN parameters cause packets to start getting marked when the queue length reaches the minimum threshold (50 packets in this case), and to be marked with increasing probability until the max threshold is reached (150 in this case). The resulting distribution has a peak around the minth threshold.

The third chart shows the packet delay distributions when ECA is in use, once again plotted on a very different x-scale. The queue length distributions are much shorter with ECA since feedback starts to happen before any queuing occurs. In the ‘vertical’ case, the majority of observations are towards the lower end of the distribution which is close to the expected 10ms. The small offset is due to the fact that the routers do not perform ‘cut-through’ and thus 3 ‘packetization’ delays of ~1ms are experienced.
In the case of ‘horizontal’ flows, the minimum of the distribution is higher than the ‘vertical’ case due to the larger number of routed hops (and hence packetization delays).

4) HTTP Response Times

One of the expected benefits of reduced end-to-end latency is the improved responsiveness of short-lived HTTP requests (as alluded to in section III.B.2). To test this hypothesis, each set of long-lived traffic streams was extended to include a simulated HTTP workload averaging 30% of the link capacity. The standard ns2 WebTraf HTTP traffic generator module was used for this purpose. It randomly generates burtsy requests for compound web pages with heavy-tailed object size and inter-request distributions using a model similar to that described in [20].
The size and response time of each HTTP request were logged to a file. The simulation was run using a) standard TCP for all traffic flows, b) ECN/RED, and c) ECA/WTP. Figure 8 shows scatter-plots of response times for various randomly-distributed HTTP object request sizes, truncated above size 200 due to the heavy-tailed nature of the distribution. In each of the three cases, the top plot shows the whole distribution, and the lower plot shows more detail around the origin, plotted on the same axes for easier comparison.

a) TCP

The scatter plot for TCP shows the expected behaviour with a fairly broad distribution of response times for a given request size. The large amount of variation obscures the expected logarithmic relationship for small request sizes and linear for larger requests. The outliers clustered around 6, 12 and 18 seconds are due to loss of one or more initial SYN segments when the TCP retransmit timer is still at its initial value of 6 seconds.
b) ECN/RED

The centre two scatter plots show the results for ECN/RED. Although the spread of each band of observations is much tighter, there are many more outliers, again in bands separated by 6 seconds. This graph strongly resembles one shown in [9]. After inspection of the ns2 TCP implementation, it appears that it deliberately does not set the ECT bit on SYN segments and they are therefore discarded by the RED queue whenever they would otherwise have been marked. This unfortunate behaviour leads to a situation akin to admission-control, where flow requests come in every six seconds and only an appropriate number are accepted.

[image: image10.wmf]The lowest band of observations (with no retransmit timeouts) shows signs of the logarithmic relationship between request size and response time for requests less than 20 segments. As the request size increases and the congestion window gets larger, TCP asymptotically approaches a ‘fair share’ of the bottleneck link producing a linear region of the graph.

Since this doesn’t seem to be intended behaviour, a modification was made to the ns2 implementation and the ECN experiments were repeated, this time with the ECT bit set on SYN packets. The results obtained are shown in Figure 9. When flows are not held up by the ‘admission control’ effect, the results are very similar to those obtained from TCP. There is a marginal reduction in queue length which seems to make about a 30% improvement in response times.

[image: image11.wmf]c) ECA/WTP

The rightmost two plots show the results for ECA/WTP. The first observation is that there are many fewer outliers due to retransmit timeouts. Secondly, the response times for request sizes below about 20 segments are more tightly clustered and lower than both the TCP and ECN cases.

These transfers are largely unaffected by the traffic shaper, since most of their traffic fits within the initial token-bucket. The flow’s transmit behaviour is therefore determined by TCP slow-start, which benefits substantially from the small RTT. The logarithmic cost component is therefore reduced in proportion to the round-trip-time, leading to a noticeable improvement in response times. Long lived requests asymptotically approach a sustained rate determined by their flow weight parameter. This results in an obvious knee in the curve where request size exceeds the size of the WTP token bucket (16K).

It is worth pointing out that these distributions are for individual object requests, or a single HTTP/1.1 connection. If HTTP/1.0 is used, with multiple TCP connections per page, the improvements in response times for entire compound page downloads (consisting of multiple objects) is likely to be even more dramatic.

V. Prototype Implementations

In addition to simulation, a prototype implementation has been constructed and measured using a cluster of 16 Windows 2000 PCs connected by a 100Mbps full-duplex fast Ethernet switch. Since it is generally infeasible to modify the behaviour of ‘real’ routers, several of the nodes were used in place of routers. The standard Windows 2000 routing support was used, with the default parameters.
The current prototype does not require modification of the Windows TCP/IP stack, or applications, but instead a third-party user-mode daemon executes the additional protocol code on behalf of other applications. The kernel’s built-in packet shaping support is used to rate-control existing TCP and UDP flows.

A. Software Components

The nodes in the cluster are variously used as traffic sources, sinks and routers. The software components present on each of these node types are described below.

1) Router Nodes

The code modules required on each router node, and their interactions are shown in Figure 10. In addition to the usual routing behaviour, each router node is also responsible for emulating the bandwidth and latency constraints of its outgoing link(s). This is achieved using the Windows 2000 QoS Packet Scheduler service (psched.sys). Via the Traffic Control API, a packet filter is installed which matches all packets on the outgoing link. A “guaranteed-rate” traffic shaper is installed with a token rate equal to the desired link capacity. A small change to psched.sys also allows a programmable latency to be added to each outgoing packet.

[image: image12.wmf]The IP forwarding path provides a number of hooks which are intended to be used by independent software vendors to implement software firewalls or proxies. We make use of the IP firewall hook to inspect and modify all forwarded packets. A small kernel mode driver, kroute.sys is dynamically loaded on each router node. Since the firewall hook doesn’t provide access to the IP forwarding buffer memory, the driver keeps track of the length of a software virtual queue.

The driver uses the arrivals rate into this queue to maintain a load estimate in exactly the same manner as the ns2 simulation. Each time an IP packet is forwarded, the driver updates the Type-of-Service (TOS) field in the IP header with an 8-bit fixed-point representation of the load estimate.

A user-mode program kclient.exe is used to configure the driver and to periodically poll it for statistics. This program also installs the packet filter and traffic shaper referred to above.

2) Source Nodes

Source nodes run a number of traffic generators
, together with the third-party “traffic controller” daemon tc.exe which implements the WTP behaviour on behalf of all flows. The daemon installs a packet filter and token bucket shaper for each active flow, and listens on a well-known UDP port for explicit load notification packets. Each time it receives such a notification, it computes new token rates for all affected flows. The rates of each flow are enforced once again by the kernel psched.sys module.

3) Sink Nodes

In addition to running traffic sinks, these nodes also run a process which reflects load notifications back to the source machines. This process (mc.exe) observes all incoming packets using a promiscuous socket. It records the load estimates in the IP headers and periodically (currently every 100ms) sends the most recent observation to the well-known UDP port on the source machine.

This process also logs all packets received for off-line analysis of network behaviour.

4) All Nodes

All nodes in the network additionally run a simple DCOM server which orchestrates experimental runs. It allows dynamic configuration of all of the above components, starting and stopping of traffic sources and collection of logs and statistics.

B. Experimental Topologies

Although the physical network topology is a simple star, with ‘routers’ at some of the leaf nodes (Figure 11), it is possible to take advantage of the switched, full-duplex nature of the interconnect to configure more complex virtual topologies without the undesirable traffic correlation effects which occur when many virtual links are multiplexed onto the same physical link.
Above right is an example of this technique using the traffic pattern of Figure 4. Observe that, in the top configuration, the cross-traffic from source 1 only shares a single router output queue with the reference flow. It can therefore be switched out of the system at the Ethernet switch rather than continuing to the downstream router where it would immediately have been ‘switched’ to a different output port. At the same time, it is possible to switch in the next set of cross-traffic from source 2 resulting in the bottom configuration.

[image: image13.wmf]Using the above technique, we have been able to recreate most of simulation topologies described earlier. It also has the pleasant side-effect that each router node only needs to deal with a single output queue.

Note that, since in some places two virtual links do share a single physical link, it is impossible to realistically emulate links of capacities greater than 50Mbps. We deliberately restrict our experiments to 20Mbps. Also, due to limited availability of machines, the experimental network only had 6 routed hops, compared with the 8 hops of the ns2 simulations. The link latencies were adjusted to maintain the same total end-to-end latency.

C. Initial Results

The infrastructure described above was used to replicate the fairness experiments described in section IV.B.1). The results are presented in the same format as the simulation results (Figure 13 and Figure 15). It can be seen that the results are convincingly similar to those obtained by simulation. The horizontal and vertical flows achieve approximately the same share of the bottleneck link, and the flows in each set share the available bandwidth in proportion to their weights.

The 1Mbps results suffer, to some extent, from the fact that the MTU is relatively large compared with the link capacity.

As expected, the coefficient of variation of flow rates is slightly larger in the prototype than the simulation. This is due to the reduced precision of the in-band explicit load signal (8-bit fixed point as opposed to 32bit IEEE floating point), and the reduced frequency of ‘reflected’ load messages (the ns2 simulation could piggy-back a message on each TCP ACK, whereas the prototype uses a periodic out-of-band message.

Unfortunately, the experimental infrastructure does not easily allow end-to-end latencies to be measured.

D. ECA on a Home LAN

Section III.C described briefly the application of ECA in non-routed/LAN environments. An implementation was constructed for 10Mbps shared-media Ethernet, such as may be used in a home network.

A single elected machine monitors the load on the Ethernet using a promiscuous socket, and broadcasts RLOAD messages to a well-known UDP port on each machine, using local subnet broadcast. All machines on the network use WTP to shape their flows accordingly. Several experiments were conducted using constant bit-rate UDP, and best-effort TCP flows between various machines on the same LAN. Figure 14 shows traces of the cumulative proportions of network bandwidth obtained by each flow, with CBR flows on the bottom, and variable bit-rate flows stacked on top.

Graph a) shows the case without ECA. The Ethernet MAC protocol will on average give each machine 1/nth of the bandwidth. The CBR flow, requiring 50% of the network, is regularly disrupted by the Ethernet capture effect, and the two best-effort flows rarely share the bandwidth equally.

Graph b) shows the case with ECA bandwidth management. Since the CBR flow has a peak rate of 50%, it is assigned high priority. The two best-effort flows are assigned flow weights in various proportions, and the bandwidth obtained adjusts accordingly. Notice the differing speed responses to increases and decreases in total load.
In experiment c), two CBR flows are present. On top of these is a variable bit rate DVD-quality media stream, between a Windows Media Server and Player, which has also been assigned high priority, and it therefore able to obtain as much bandwidth as it requires. The resulting increase in observed load, detected by ECA, causes the two best-effort streams to be throttled back in order to make room, and hence they share the remaining bandwidth in proportion. With ECA enabled, the media stream is protected, but turning off the ECA mechanism resulted in audio and video breakup as soon as the media player jitter buffer is drained (less than 10 seconds).

VI. Conclusion

This paper has presented ECA, an end-to-end cooperative congestion avoidance mechanism. The technique seeks to augment rather than replace existing congestion avoidance mechanisms using ideas borrowed from congestion pricing research. The key benefits of using ECA are:

1. Reduced network latency.

2. Proportional bandwidth sharing.

3. A high priority traffic class.

Simulation results are very promising, outperforming protocol-specific Internet extensions such as ECN across a wide range of network conditions. Measurements of an initial prototype implementation agree with results predicted by simulation, despite necessary engineering approximations. Application of these same ideas to non-routed environments was briefly presented.

VII. References

[1] Jacobson, V. Congestion avoidance and control. In Proceedings of SIGCOMM '88 (Stanford, CA, Aug. 1988), ACM

[2] S. Floyd and K. Fall, Promoting the Use of End-to-End Congestion Control in the Internet, IEEE/ACM Transactions on Networking, 1998

[3] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A Simple Model and its Empirical Validation. SIGCOMM Symposium on Communications Architectures and Protocols, Aug. 1998.

[4] S. Savage, N. Cardwell, D. Wetherall, T. Anderson. TCP Congestion Control with a Misbehaving Receiver. ACM Computer Communication Review, 29(5), October 1999

[5] P. Gevros and J. Crowcroft, Experimental Results on Weighted Proportional TCP Throughput Differentiation,
In Proceedings of the Fourth International Workshop on High Performance Protocol Architectures (HIPPARCH'98) University College London, London, 15-16 June 1998

[6] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. K. Ramakrishnan, S. Shenker, and J. Wroclawski. Recommendations on queue management and congestion avoidance in the internet, January 1998. Internet Draft.

[7] S. Floyd. TCP and Explicit Congestion Notification. In ACM Computer Communications Review, 24(5):10—23.

[8] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notification to IP. IETF RFC 2481, January 1999.

[9] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, Tuning RED for web traffic, in Proceedings of ACM/SIGCOMM, 2000.

[10] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance. In IEEE/ACM Transactions on Networking, 1(4):397—413. 1993.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion Control for Unicast Applications. In Proceedings of ACM/SIGCOMM, 2000.

[12] J. K. MacKie-Mason and H. R. Varian. Pricing in the Internet. In B. Kahin and J. Keller, editors, Public Access to the Internet, Prentice Hall, New Jersey, 1994.

[13] F. P. Kelly, A. K. Maulloo and D. K. H. Tan, Rate control in communication networks: shadow prices, proportional fairness and stability. In Journal of the Operational Research Society, 49:237—252, 1998.

[14] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion control. In Automatica, 1999.

[15] P. Barham, P. Key, K. Laevens and D. McAuley, Congestion pricing for congestion avoidance, Microsoft Research Technical Report MSR-TR-99-15, MSR, 1999

[16] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav, E. David, B. Ohlman, D. Verma, Z. Whang, and W. Weiss. A Framework for Differentiated Services. Internet Draft, February 1999

[17] R. Jain and K. K. Ramakrishnan. Congestion Avoidance in Computer Networks with a Connectionless Network Layer: Concepts, Goals and Methodology. In Proceedings IEEE Comp. Networking Symposium, April 1998, pp 134-143.

[18] David E. Lapsley and Steven H. Low. Random Early Marking for Internet Congestion Control. In Proceedings of IEEE Globecom '99, December 1999

[19] D. Anderson, D. Bansal, D. Curtis, S. Seshan and H. Balakrishnan. System Support for Bandwidth Management and Content Adaptation in Internet Applications, In Proceedings of OSDI 2000.

[20] B. Mah. An Empirical Model of HTTP Network Traffic, Proceedings of INFOCOM ’97, April 1997

Figure � SEQ Figure * ARABIC �3� Simulation Topology

Source

Source

Sink

Router

Router

Figure � SEQ Figure * ARABIC �4� Experimental Traffic Pattern

Sink

Source

Figure � SEQ Figure * ARABIC �10� Router Software Components

4

3

2

Figure � SEQ Figure * ARABIC �6� Coefficient of Variation of Bandwidth over 100ms Intervals for a) TCP, b) ECN/RED and c) ECA/WTP

c)

Sink

Router

Router

Sink

Source

Figure � SEQ Figure * ARABIC �15� Variation of Flow Rates

Figure � SEQ Figure * ARABIC �13� Proportional Fairness Results

1

Source

Sink

Router

Figure � SEQ Figure * ARABIC �11� Experimental Topologies

Figure � SEQ Figure * ARABIC �12� Switched Topology Optimization

Figure � SEQ Figure * ARABIC �7� End-to-End Delay Distributions for a) TCP, b) ECN/RED and c) ECA/WTP

Figure � SEQ Figure * ARABIC �8� HTTP Response Time Distributions for a) TCP, b) ECN/RED and c) ECA/WTP

a)

b)

c)

b)

a)

Figure � SEQ Figure * ARABIC �5� Long Term Fairness Statistics for a) TCP b) ECN/RED and c) ECA/WTP

Figure � SEQ Figure * ARABIC �9� ECN/RED with ECT Flag on SYNs

1

2

1

2

S

S

S

S

S

S

S

S

S

D

R

R

R

R

D

R

D

R

D

TCP

ECN/RED

ECA/WTP

ECN/RED

TCP

ECA/WTP

DVD

Best-Effort 2

Best-Effort 1

CBR 2

CBR 1

Best-Effort 2

Best-Effort 1

CBR

Best-

Effort 1

Best-Effort 2

CBR

c)

b)

a)

150

0

150

50

0

0

Time / s

Time / s

Time / s

% Bandwidth

% Bandwidth

% Bandwidth

Figure � SEQ Figure * ARABIC �14� ECA on a Shared 10Mbps Ethernet – a) Without ECA, b) With ECA, c) Adding DVD Video

� The IETF’s original ECN proposal used a TCP option for this purpose.

� It is also a deliberate reference to the ‘Willingness To Pay’ mechanism of Congestion Pricing schemes since it fulfils much the same rôle.

� The economics behind congestion pricing normally require that the each packet should be ‘charged’ the sum of the prices of all resources it consumes.

� Traffic was generated using pttcp available from http://www.cl.cam.ac.uk/Research/SRG/netos/netx/

PAGE
13

_1046096511.unknown

_1044256232.unknown

