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ABSTRACT
Labeling text data is quite time-consuming but essential for
automatic text classification. Especially, manually creating
multiple labels for each document may become impractical
when a very large amount of data is needed for training
multi-label text classifiers. To minimize the human-labeling
efforts, we propose a novel multi-label active learning ap-
proach which can reduce the required labeled data with-
out sacrificing the classification accuracy. Traditional active
learning algorithms can only handle single-label problems,
that is, each data is restricted to have one label. Our ap-
proach takes into account the multi-label information, and
aims to label data which can optimize the expected loss re-
duction. Specifically, the model loss is approximated by the
size of version space, and we optimize the reduction rate
of the size of version space with Support Vector Machines
(SVM). Furthermore, we design an effective method to pre-
dict possible labels for each unlabeled data point, and ap-
proximate the expected loss by summing up losses on all
labels according to the most confident result of label pre-
diction. Experiments on seven real-world data sets (all are
publicly available) demonstrate that our approach can ob-
tain promising classification result with much fewer labeled
data than state-of-the-art methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.5.2 [Design Methodology]: Classifier Design and
Evaluation

General Terms
Algorithms, Performance, Experimentation

Keywords
Active Learning, Text Classification, Multi-label Classifica-
tion, Support Vector Machines
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1. INTRODUCTION
As text data becomes a major information source in our

daily life, many research efforts have been conducted in text
classification to better organize text data, in applications
like document filtering, email classification, Web search, etc.
In particular, multi-label text classification problems have
received considerable attention, since many text classifica-
tion tasks are multi-labeled, i.e., each document can belong
to more than one category. Take news classification as an ex-
ample, one news article talking about the effect of Olympic
games on tourism industry might belong to the following
topic categories: sports, economy and travel.

In the literature, supervised learning algorithms are widely
used in text classification. It requires a sufficient amount of
labeled data for training a high quality model. However,
labeling is usually a time-consuming and expensive process
done by domain experts. Active learning is an approach
to reduce the labeling cost. The active learner iteratively
selects a sample of data to be labeled based on some se-
lection strategies suggesting that the data most deserves to
be labeled. Thus it can achieve comparable performance
with supervised learners while using much less labeled data.
Active learning is particularly important for the multi-label
text classification task. The reason is that, in the single-
label case, a human judge can stop labeling an instance once
its category is identified. But in the multi-label case, hu-
man judges need to decide all possible categories for each
instance. Thus the effort of assigning labels for multi-label
data is much larger than for the single-label data.

Despite the value and significance of this problem, there is
very limited research on multi-label active learning. Most of
the active learning research focuses on single-labeled clas-
sification problem [9, 20, 13, 21]. The sample selection
strategy strictly follows the assumption that each instance
has only one label. Its weakness in multi-label classification
can be explained by the following example. Suppose there
are three categories c1, c2, c3 in the multi-label classifica-
tion task. The popular one-versus-all technique [3] is used
and the classification probabilities on all possible classes are
given. Assume the probabilities on instance x1 are [c1:0.8,
c2:0.5, c3:0.1] and on x2 is [c1:0.7, c2:0.1,c3:0.1]. x1 actually
has two labels c1 and c2, and x2 has one label c1. It can be
found that correctly predicting labels for x1 is harder than
x2. However, if we assume each instance only has one label
and take the most uncertainty strategy, x2 would be consid-
ered to be harder to classify, since the probability score on
the predicted label c2 is 0.7, which is lower than that of x2

0.8. Thus considering multi-label information in the sample



selection strategy is very important.
In this paper, we propose a novel multi-label active learn-

ing approach for text classification. The sample selection
strategy aims to label data which can help maximize the
reduction rate of the expected model loss. To measure the
loss reduction, we use Support Vector Machines (SVM) in
terms of version space [20] due to the effectiveness of SVM
active learning on text classification. In the original work,
the loss is modeled for single-label case, and here we ex-
tend it to multi-label case. We also propose an effective
method to predict labels for multi-label data. The expected
loss is approximated with the loss associated with the most
confident result of label prediction. We will show that a
proper label prediction method is critical in measuring loss
for multi-label data.

We empirically evaluate the effectiveness of the proposed
approach using a number of real-world data sets that are
publicly available. The results demonstrate that our method
is superior to the state-of-the-art active learning algorithms
for multi-label text classification, and can significantly re-
duce the demand of labeled data while maintaining promis-
ing classification results.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the def-
inition of multi-label text classification problem. Section
4 introduces our SVM-based active learner, including the
loss optimization framework and the sample selection strat-
egy. Section 5 shows experimental results of our algorithm
on seven real-world data sets compared with other baseline
methods. Section 6 presents conclusions and future work.

2. RELATED WORK
Active learning on text classification has been well re-

searched. Based on the adopted sample selection strategy,
they can be grouped into three types: 1) Uncertainty sam-
pling [9, 13]. The active learner iteratively labels the un-
labeled data on which the current hypothesis is most un-
certain. 2) Expected-error reduction [2, 17, 21]. The strat-
egy aims to label data to minimize the expected error on
the unlabeled data. Usually it requires expensive compu-
tational effort on estimating the expected error, since each
of the unlabeled data needs to be evaluated. 3) Committee-
based active learner. It has the similar idea with uncertainty
sampling strategy. The active learner selects data to be la-
beled that have largest disagreement among several commit-
tee members(classifiers) from the version space. The work
of query by committee [18] is the first algorithm of this kind.
In [20], the idea is extended to Support Vector Machine ac-
tive learning, and it models the reduction of version space
size with SVM.

However, most of the previous research targets single-label
classification problems. The sample selection strategy evalu-
ates each unlabeled data by assuming it has only one label.
For instance, the uncertainty sampling strategy will focus
on measuring the confidence of the most likely class, and
the error reduction strategy will estimate the expected error
for just one class. Thus these strategies can not be directly
applied in multi-label text classification.

There is very limited research on multi-label active learn-
ing. The research work of [8] is the one most related to our
paper with respect to the studied problem. It decomposes
the multi-label classification problem to several binary ones
using one-versus-all approach, and selects data examples to

minimize the smallest SVM margin among all binary clas-
sification problems. The approach does not consider the
multi-label information, and treats the data as the same as
multi-class data. In [11], an SVM active learning method
was proposed for multi-label image classification. It selects
unlabeled data which has the maximum mean loss value over
the predicted classes. The multi-label classification problem
is also viewed as several binary classification tasks. A thresh-
old of loss value is estimated for each binary classifier, and
then used to decide the predicted classes for unlabeled data.
According to our experiments, this threshold cutting method
is poor on the text classification data sets we used. Most of
the time, they can not output any predicted labels. Re-
cently, [15, 16] developed a two-dimensional active learning
algorithm for image classification, which selects sample-label
pairs to minimize the Bayesian classification error bound. It
is reasonable to label picture-category pairs since judging
a picture’s label is very efficient. However, this method is
not realistic for text classification task. Because it will in-
troduce much additional cost if a document is read several
times. Obviously, the cost of reading a document and judg-
ing its label is much bigger than that of a picture.

3. PROBLEM DEFINITION
Multi-label text classification is the task of automatically

classifying text documents into a subset of predefined classes.
Denote training examples as x1, ...,xn and the k classes as
1, ..., k. We represent the label set of xi by a binary vector
yi = [y1

i , ..., yk
i ], yj

i ∈ {−1, +1}, where yj
i = 1 if xi belongs

to class j, otherwise yj
i = −1. Denote the set of all pos-

sible class combinations as Y = {−1, 1}k. The multi-label
classifier can be expressed as a decision function f : X → Y.

In our active learning study, we consider SVM as the basic
multi-label classifier, since SVM has met with significant
success on text classification tasks [6, 22]. Usually, multi-
label SVM adopts the one-versus-all approach, which trains
a separate binary classifier for each possible class against the
rest of classes, and combines the output of all the binary
classifiers to determine the final labels of the given data. In
binary classification, SVM tries to find the hyperplane that
can separate the training data by a maximal margin. A
binary classifier is of the form f(x) = w · x. Denote fi as
the classifier with target class i. Given a test instance x′, if
fi(x

′) > 0, then x′ belongs to class i, otherwise, the labels
of x′ will not include class i.

In this paper, we adopt the pool-based active learning ap-
proach which is the most popular paradigm of active learning
in the literature. Assume we are given a pool of partially
labeled data. Denote the data with labels by Dl, which is
typically small in size, and the remaining data without la-
bels by Du. At the beginning, a classifier is trained using the
initial labeled set Dl. Based on this classifier, the learner se-
lects a sample from Du and queries for its true labels. Then
the newly labeled data is incorporated into Dl. The training
and labeling process runs iteratively after a certain number
of iterations or when the classifier reaches a sufficient accu-
racy.

The key issue of active learning is how to select the most
informative data examples to be labeled, which is also called
sample selection strategy. So, the research problem studied
in this work can be described as follows: in order to train
a reliable multi-label text classifier, implement a sample se-
lection strategy which can reduce the human labeling cost



as much as possible.

4. SVM-BASED ACTIVE LEARNING FOR
MULTI-LABEL TEXT CLASSIFICATION

In this section, we will first introduce the optimization
framework for multi-label active learning. Next we will de-
scribe our sample selection strategy with multi-label SVM.

4.1 Optimal Active Learning Framework
The optimization goal of our multi-label active learner is

to label data which can contribute the largest reduction of
the expected loss.

Let P (x) be the input distribution. Denote the multi-
label prediction function given training set Dl as fDl . The
predicted label set x is fDl(x). Suppose the true label set
of x is y, then the estimated loss on x can be written as
L(fDl(x),y) (we will simplify it as L(fDl) in the following
part), and the expected loss of the learner can be expressed
as follows:

σ̂Dl =

∫

x

(
∑
y∈Y

L(fDl)P (y|x))P (x)dx (1)

As it is rather difficult to estimate P (x) directly, a practical
way to estimate σ̂Dl is to measure it over all the examples
in Du, as Du is usually very large in size. Therefore we have

σ̂Dl =
1

|Du|
∑

x∈Du

∑
y∈Y

L(fDl)P (y|x) (2)

The active learner will evaluate each possible set of unla-
beled data Ds to find the optimal set and query for its la-
bels. Then the newly labeled data will be incorporated to
the training set. Let D′

l = Dl+Ds, and the expected loss for
the classifier trained on D′

l as σ̂D′
l
. The optimization prob-

lem is to find the optimal query set D∗
s , which once added,

will generate the largest reduction on expected loss.

D∗
s = arg max

Ds

(σ̂Dl − σ̂D′
l
)

= arg max
Ds

(
∑

x∈Du

∑
y∈Y

(L(fDl)− L(fD′
l
))P (y|x))

(3)

As in [1], we assume that any x in Du−Ds has equal impact
on the learner trained from Dl and D′

l. Then we will have

D∗
s = arg max

Ds

(
∑

x∈Ds

∑
y∈Y

(L(fDl)− L(fD′
l
))P (y|x)) (4)

4.2 Sample Selection Strategy with Multi-label
SVM

According to Equation 4, the optimization problem can be
divided into two parts: how to measure the loss reduction of
the multi-label classifier and how to provide a good proba-
bility estimation for the conditional probability p(y|x). We
will address these two issues respectively in the following
subsections.

4.2.1 Estimate Loss Reduction
As discussed in Section 3, we use SVM for the base binary

classifier, and decompose the multi-label problem to 1-vs-all
subproblems in active learning. By decomposing the classi-
fier into several binary ones, the overall loss of the classifier

can be measured by gathering the loss of all binary classi-
fiers.

L(f) =

k∑
i=1

l(fi), (5)

where l(fi) is the loss on binary classifier fi. So the prob-
lem becomes how to estimate the model loss of each binary
classifier. As suggested by S. Tong et al. [20], we measure
the model loss by the size of version space of a binary SVM.
According to [20], the version space of SVM can be defined
as follows:

V = {w ∈ W | ‖w‖ = 1, yi(w · xi) > 0, i = 1, ..., n} (6)

where W denotes the parameter space. The size of a version
space is defined as the surface area of the hypersphere ‖w‖ =
1 in W .

Based on the work in [20], we can use SVM margin as the
measure of the version space size. When a new labeled ex-
ample is added, we can approximate the new version space
size by computing the SVM margin of the updated classi-
fier. However, it is too expensive in computation when each
data in the unlabeled pool is evaluated. To make it more
practical, we apply the heuristics idea in [19] to simplify the
approximation by mapping the SVM margin of the current
classifier to the size of the new version space.

In multi-label settings, denote V i
Dl

as the size of version

space of the binary classifier f i
Dl

associated with target class

i and learnt from labeled data Dl. After adding point (x, yi),
where yi ∈ {−1, +1} is the true label for data x on class i,
the reduction of model loss on the binary classifier f i

Dl
, can

be approximated by:

l(f i
Dl+(x,yi))

l(f i
Dl

)
≈

V i
Dl+(x,yi)

V i
Dl

≈ 1 + yif i
Dl

(x)

2
(7)

Then the loss reduction part in Equation 4 can be re-written
by:

L(fDl)− L(fD′
l
) =

k∑
i=1

(l(f i
Dl

)− l(f i
D′

l
))

=

k∑
i=1

(l(f i
Dl

) · (1−
l(f i

D′
l
)

l(f i
Dl

)
))

∝
k∑

i=1

(
1− yif i

Dl
(x)

2
)

(8)

Note that l(f i
Dl

) has nothing to do with the selected unla-
beled example x, so we can focus on optimizing the reduction
rate.

Intuitively, the idea of the above estimation can be ex-
plained as follows. Consider an unlabeled data example x,
if x can be correctly predicted by the current classifier f ,
then the smaller the value of |f(x)| is, the more uncertain
the classifier is on x, and x deserves more to be labeled. This
is consistent with the result of the above measure, since x
will contribute more in reducing the size of the version space.
On the other hand, if the classifier provides wrong predic-
tion result for x, then the larger |f(x)| is, the more mistake
the classifier will make, and in another view, adding x will
greatly help reduce the size of the version space.

4.2.2 Label Prediction



Now we come to the issue of estimating the conditional
probability p(y|x), y ∈ Y. Note that for k labels, there
are 2k possible label combinations. It is intractable for ac-
tive learner to provide estimation on all these possibilities.
Particularly, it will become harder when the training data
is quite limited, which is common in active learning. To
simplify the estimation, we approximate the expected loss
function with the loss function on the most possible label
combination. It implies that the loss can be expected to
have large reduction since the most confident labeling will
be most likely to be correct. Thus the problem becomes
how to produce better label prediction on the unlabeled
data. We propose a novel prediction approach to address
this problem. Instead of directly estimating the possible la-
bels for each data, we first try to decide the possible label
number each data may have, and then determine the final
labels based on the probability on each label obtained by
the corresponding binary classifier.

Suppose there are k labels. Using the one-versus-all ap-
proach, we can have k binary classifiers. Given data x, de-
note p(yi = 1|x) as the probability of x belonging to class i.
We can obtain k classification probabilities on x produced by
the k binary classifiers. Sort these k probabilities in decreas-
ing order. If x actually has m labels, the first m probabilities
are expected to be large while the other k−m probabilities
are expected to be small. Based on this assumption, we
want to predict the number of labels for each data based on
the probabilities output by the binary classifiers.

Specifically, we predict the number of labels by tackling a
multi-class classification problem. Logistic regression (LR)
algorithm is used to train a predictive model. For k labels,
there are k possible number of labelss. So we have k classes
in the multi-class classification problem. Before LR is used,
we transform the decision output on the training data to
classification probabilities. Here, we use the sigmoid func-
tion [12] to transform the SVM output to probability values.
For a data example x, we have

p(yi = 1|x) =
1

1 + exp(Afi(x) + B)

where fi is the binary SVM classifier associated with class i,
A and B are scalar values estimated according to maximum
likelihood criteria.

The process of predicting number of labels can be de-
scribed as follows:

1. Use the SVM classifier to assign classification proba-
bilities for all data examples.

2. For each instance x, normalize the classification proba-

bilities p(y1 = 1|x), ..., p(yk = 1|x) to make
k∑

i=1

p(yi =

1|x) = 1. Sort them in decreasing order and obtain
q1(x), ..., qk(x).

3. Train logistic regression classifier. For each training
data x, present [1 : q1(x), 2 : q2(x), ..., k : qk(x)] as the
training features for LR model. The number of labels
of x is used as the new category to train a multi-class
classifier.

4. For each data in the unlabeled pool, apply the LR
classifier to predict the probabilities of having different
number of labels, and output the label with the largest

probability to be the predicted number of labels for the
data.

Suppose the most possible number of labels for data x is
m, and i1, ..., im are the m classes with the largest prob-
abilities produced by the binary SVM classifiers. Then the
predicted label vector ŷ can be represented by the binary
vector [ŷi1 = 1, .., ŷij = 1, ŷij+1 = −1, ..., ŷik = −1]. We
call this approach LR− based label prediction.

By incorporating the predicted label vector into the ex-
pected loss estimation, we obtain our data selection strategy,
Maximum loss reduction with Maximal Confidence(MMC).
It can be written as

D∗
s = arg max

Ds

(
∑

x∈Ds

k∑
i=1

(
1− ŷifi(x)

2
)), (9)

Based on the above discussion, the proposed active learn-
ing algorithm is described in Algorithm 1.

Algorithm 1 Multi-label Active Learning

Input: Labeled set Dl

Unlabeled set Du

Number of iterations T
Number of selected examples per iteration S

1: for t = 1 to T do
2: Train a multi-label SVM classifier f based on training

data Dl

3: for each instance x in Du do
4: Predict its label vector ŷ using the LR-based pre-

diction method described in Section 4.2.2.
5: Calculate the expected loss reduction with the

most confident label vector ŷ, score(x) =∑k
i=1(

1−ŷifi(x)
2

)
6: Sort score(x) in decreasing order for all x in Du

7: Select a set of S examples D∗
s with the largest scores,

and update the training set Dl ← Dl + D∗
s

8: Train the multi-label learner ` with Dl

5. EXPERIMENTS
In this section, we will evaluate our proposed multi-label

active learning approach for multi-label text classification
task on seven real-world data sets, comparing with the state-
of-the-art active learning approaches.

5.1 Data Sets and Experiment Settings
The first data set we used is RCV1-V2 [10] text data set,

which has been widely used as a benchmark data set to
evaluate text classification algorithms. It contains Reuters
newswire stories which are organized by three different cat-
egory sets: Topics, Industries, and Regions. We considered
the Topics category set in our experiments. Each document
is assigned with at least one related topic category. The
data used in our work can be downloaded from the web1. It
is a subset of RCV1-V2 data used in [4] and contains 3,000
documents falling into 101 categories.

The other 6 data sets are web pages collected through the
hyperlinks from Yahoo!’s top directory (www.yahoo.com).

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
multilabel.html#rcv1v2 (topics; subsets)



Each data set is associated with one of Yahoo!’s top cate-
gories, and each page is labeled with one or more second
level sub-categories. The 6 data sets used in our experi-
ments are: Arts&Humanities, Business&Economy, Comput-
ers&Internet, Education, Entertainment, and Health. They
can be downloaded from the web2. They are also used in
[14, 7] to evaluate multi-label text classification algorithms.

The details of all the 7 data sets are given in Table 1[7].
“#Inst” is the number of instances in each data set. “#Feat”
is the feature dimension of each data set. In our experi-
ments, we use words to represent each document. “#Label”
is the number of labels. The “Label size percentage” gives
the percentage of instances with different number of labels.

On all data sets, the documents are transformed to vec-
tors with TF-IDF format, and each vector has unit modulus
with L-2 length normalization. One-versus-all classification
is conducted for each category and the multi-label classi-
fication problem is treated as several binary classification
problems, where the documents from the category of inter-
est are labeled as positive one (i.e. y = 1), and the rest of
the documents are labeled as negative one (i.e. y = −1).
SV MLight package [6] is downloaded and used to train the
binary classifier. Linear kernel is used due to its good perfor-
mance in text classification task [5]. The penalty parameter
C is set to 1.0 by default.

In our active learning experiments on each data set, we
first randomly selected a small set of documents to form the
initial labeled set, and left the remaining documents as the
unlabeled pool. An active learning method was applied to
select a given number of examples from the unlabeled pool
in each iteration, and then add them to the labeled set with
their labels. We performed several active learning iterations
on each data set until the learner achieves sufficient accuracy.
In every iteration, once the selected data being incorporated,
the active learner retrained a new classifier on the expanded
labeled set and then its performance was evaluated on the
remaining data examples. We used Micro-Average F1 score
as the evaluation measure, since it is a standard evaluation
used in most previous text classification research. As defined
in [22], micro-F1 score in multi-label case is given as follows

2
k∑

j=1

n∑
i=1

ŷj
i y

j
i

k∑
j=1

n∑
i=1

ŷj
i +

k∑
j=1

n∑
i=1

yj
i

where n is the number of test data, yi is the true label vec-
tor of the i-th data instance, yj

i = 1 if the instance belongs

to category j; otherwise yj
i = −1. ŷi is the predicted la-

bel vector. We computed the average of micro-F1 scores
for each active learning iteration based on 10 randomized
experiments.

In our experiments, we will evaluate and compare four
active learning methods:

• MMC. The sample selection strategy proposed in this
paper.

• Random. The strategy is to randomly select data ex-
amples from the unlabeled pool.

• BinMin. This is a sample selection strategy proposed
in [8], which is most related to our research work with

2http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz

respect to the problem studied. In this work, one-
versus-all approach is used for multi-label classifica-
tion, and SVM is used as the basic classifier. The
optimal unlabeled example is selected according to

arg min
x

min
i=1,...,k

|fi(x)|

where fi is the binary classifier on the binary problem
associated with class i. That is, it selects unlabeled
examples with respect to the most uncertain label. As
stated in Section 2, this method does not take advan-
tages of the multi-label information. Therefore the se-
lected example is not optimal for multi-label classifi-
cation.

• Mean Max Loss(MML).This strategy is to select un-
labeled data which has the maximum mean loss value
over all the predicted labels [11]. For each predicted
label j, the loss is measured as

k∑
i=1

max[(1−mijfi(x)), 0]

where mij = 1 if i = j, else mij = −1, and fi is
the binary SVM classifier on class i. The algorithm
used a threshold cutting method to decide the pre-
dicted labels. However, according to our experiments
on the text data sets, this method is usually unable
to pick out predicted labels correctly. Thus we replace
the label prediction part with our LR-based prediction
method in Section 4.2.2, and focus on evaluating the
effectiveness of the loss optimization.

5.2 Results and Discussions
In this section, we will present and discuss the experiment

results on the RCV1-V2 data set as well as the 6 Yahoo! data
sets.

Experimental Results with RCV1-V2 data set.
In the first experiment, we would like to verify whether

our method of label prediction (presented in Section 4.2.2)
is effective when only a small amount of training data is
available, as this is very typical in active learning. Two
popular prediction methods for multi-label classification are
implemented for comparison purposes. In previous studies,
the SCut method is widely used and proved very effective
for predicting labels in multi-label classification tasks [10].
In [10], a binary classifier is first trained for each label. A
threshold score is tuned for each binary classification task
and then used to decide if an unseen data example belongs
to the corresponding class or not. The second prediction
method is simply setting the threshold score to be zero for
each binary problem. If the classification score is positive,
then the data belongs to this class, and vice versa. This
simple method has its theoretical foundation, as when SVM
is used, zero score corresponds with the classification hyper-
plane induced from statistical learning theory.

In order to verify the effectiveness of the LR-based method
in predicting labels, we varied the number of training data
from 100 to 1,000 (with 100 as step size). The correspond-
ing micro-F1 curves for predicting labels are plot in Fig-
ure 1. We can observe that, as the number of training data
varies, the LR-based method achieves substantially better



Table 1: Statistics on RCV1-V2 and Yahoo! Data Sets

Data sets #Inst #Feat #Label
Label size percentage(%)

1 2 3 4 ≥ 5
RCV1-V2 3,000 47,236 101 12.3 29.5 35.7 10.8 11.7

Arts&Humanities 3,711 23,146 26 55.6 30.5 9.7 2.8 1.4
Business&Economy 5,709 21,924 30 57.6 28.8 11.1 1.7 0.8
Computers&Internet 6,269 34,096 33 69.8 18.2 7.8 3.0 1.1

Education 6,029 27,534 33 66.9 23.4 7.3 1.9 0.6
Entertainment 6,355 32,001 21 72.3 21.1 4.5 1.0 1.1

Health 4,556 30,605 32 53.2 34.0 9.5 2.4 0.9
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Figure 1: Comparison between label prediction
methods on RCV1-V2 data set (no active learning)

performance than both baseline methods. When less train-
ing data is available, the advantage of LR is more obvious.
This demonstrates that it is more effective in predicting la-
bels, thus suitable for label prediction in multi-label active
learning framework. We also find that the Scut method is
not stable. When the training data number is small (e.g.,
<300), the tuned threshold score is even worse than the de-
fault zero score. When more training data is available (e.g.,
>600), the tuned score is better than the default zero score
but not so good as LR method.

In the following we will report the active learning experi-
ment results. We randomly selected 500 examples as the ini-
tial labeled data. Active learning was iteratively performed
for 50 iterations, selecting 20 examples from the unlabeled
pool each time. Figure 2 and Table 2 show the experimen-
tal results of micro-F1 scores averaging over 10 random tri-
als. The proposed MMC strategy outperforms other base-
line methods by a large margin. Surprisingly, we can see
that MML performs even worse than Random at the be-
ginning, and worse than MMC and BinMin for all cases.
Since MML adopts the same label prediction approach as
MMC, the observation above indicates that the loss opti-
mization approach used in MML is not effective. Instead,
our approach optimizes the loss reduction rate over all labels
based on the most confident label vector, and it can success-
fully pick out useful data examples to be labeled. We can
also find that BinMin strategy is only slightly better than
Random, while our proposed method outperforms all base-
line methods much more significantly. This is because the
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Figure 2: Micro-F1 score on RCV1-V2 data set

Table 2: Micro-F1 score at different iterations on
RCV1-V2 data set(%)

K MMC BinMin MML Random
100 68.02 67.35 66.38 67.10
200 70.28 69.08 68.05 68.77
300 72.62 70.68 69.39 70.26
400 74.62 71.69 70.72 71.33
500 76.33 72.66 71.75 72.29
600 77.81 73.76 73.04 72.99
700 79.07 74.61 74.23 73.69
800 80.32 75.37 74.84 74.27
900 81.62 76.25 75.47 74.89
1000 82.88 77.19 75.77 75.12

BinMin strategy does not take advantage of the multi-label
information, but equally deals with the loss of the correctly
predicted label and that of the wrongly predicted label, while
our approach effectively estimates possible labels for each
instance and incorporates the multi-label information to op-
timize the expected loss reduction.

Table 2 shows the performance results with the number
of training samples added. We can find that as the number
of selected data increases, the improvement becomes more
and more significant. For example, when 1,000 examples are
added, the micro-F1 score of our method achieves 82.88%,
while that of BinMin, MML and Random are 77.19%, 75.77%
and 75.12% respectively. We can find that MMC achieves
the similar performance with BinMin by using about 600 se-
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Figure 3: Micro-F1 score on RCV1-V2 data set after
adding 1000 examples

lected examples, while BinMin needs to select 1,000 exam-
ples. It indicates that MMC can save about 40% labeling
effort compared with BinMin.

In order to investigate if our MMC algorithm is sensitive
to the size of initial labeled data set, we varied the number of
initial training data from 100 to 1,000, with 100 as step size.
For each fixed initial labeled set, we applied active learning
and selected 20 examples at each iteration. Then we com-
pared the performance of the final classifier after 50 active
learning iterations. Figure 3 presents the micro-F1 scores
of final classifiers with the size of initial training data set.
We can see that our proposed MMC algorithm consistently
outperforms all other methods when the initial training data
set varies in size. The consistent improvement indicates that
our MMC strategy is robust with different size of the initial
labeled data set.

We also varied the sampling size per run and investigated
its impact on the performance of the active learner. In
this experiment, we started with 500 training examples and
stopped after 1,000 examples are added. The sampling size
S was set to 1, 20, 50, 100 and 200. The results of MMC
with various sampling size are depicted in Figure 4. We can
see that generally the performance improves as the sampling
size decreases. A possible explanation is that having more
chances to query labels enables the learner make better eval-
uation on unlabeled examples, and choose more informative
examples to be labeled.

Experimental Results with Yahoo! data sets.
The following experiments are conducted with the 6 Ya-

hoo! data sets. On each data set, we randomly selected 500
data instances as the initial training data, and set the sam-
pling size in each active learning run to 20. The learning
process was repeated for 50 rounds. The active learning re-
sults were averaged over 10 random trials. Fig 5 presents the
performance of all active learners with the number of train-
ing data added. We can observe that our proposed method
MMC consistently outperforms other baseline methods on
all six data sets. The most noticeable case is the Comput-
ers&Internet data set, where the BinMin method is unable
to improve the micro-F1 measurement than Random and
MML presents similar performance with Random. How-
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Figure 4: Micro-F1 score of MMC on RCV1-V2 data
set with different sampling sizes per run

Table 3: Micro-F1 score on the Yahoo! data sets
with 1,000 training samples added (%)

Data sets MMC BinMin MML Random
Arts&Humanities 66.50 63.16 63.25 62.05
Business&Economy 78.97 76.97 76.50 75.29
Computers&Internet 74.40 70.97 72.12 71.58
Education 68.99 67.07 65.31 66.48
Entertainment 73.40 70.74 71.76 69.52
Health 79.78 78.18 74.94 74.60

ever, MMC achieves substantially better performance. It
can be observed that MMC only requires labeling 200 ex-
amples to achieve the similar performance with MML and
Random which require labeling about 7,00 and 1,000 exam-
ples respectively. We can also see that MML has worse or
similar performance compared with Random on five data
sets. This casts doubt on the effectiveness of the optimiza-
tion framework which MML takes to maximize mean loss
over the predicted labels. The poor performance of BinMin
underscores the importance of considering multi-label infor-
mation when evaluating unlabeled examples. The promis-
ing results of MMC confirm that the proposed method can
provide proper evaluation on the unlabeled data examples,
and select the informative ones which can help enhance the
learner more effectively. Table 3 summarizes the classifica-
tion results measured by micro-F1 after 50 active learning
iterations on the six Yahoo! data sets. It shows that the
proposed MMC method significantly improves the micro-F1
measurement over all other baseline methods for all six data
sets. When BinMin and MML only makes slight improve-
ment, the improvement of MMC is much more significant.

From the above experiments, we can observe that MMC
provides promising performance on diverse data sets. This
indicates that it is more effective and robust for training
multi-label text classifier than the state-of-the-art active learn-
ing methods.

6. CONCLUSIONS
In this paper, we try to address the problem of multi-label

active learning for text classification. The goal is to reduce
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Figure 5: Micro-F1 score on Yahoo! data sets



the required size of labeled data in multi-label classification
while maintaining favorable accuracy performance. We pro-
pose a novel multi-label active learning algorithm with Sup-
port Vector Machines (SVM). The optimization goal is to
select data to be labeled which can maximize the expected
reduction in model loss. Our approach provides proper ap-
proximation on the loss reduction and the expected loss in
the optimization framework. Experiments on several real-
world data sets show that our proposed method outperforms
the state-of-the art active learning techniques on multi-label
text classification by a large margin and can significantly re-
duce the labeling cost.

Note that our active learning approach should evaluate
each of the unlabeled data at every active learning itera-
tion. The computation would be expensive when the size of
unlabeled pool is very large and the number of categories is
very big. So it would be interesting to study how to eval-
uate only a subset of the unlabeled pool and also be able
to pick out informative data to be labeled. We plan to ex-
plore this extension in the future. Also, we will apply our
method on other multi-label classification tasks, e.g., image
classification.
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