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Abstract. This paper conducts a survey of several small clusters of machines in 

search of the most energy-efficient data center building block targeting data-

intensive computing. We first evaluate the performance and power of single 

machines from the embedded, mobile, desktop, and server spaces.  From this 

group, we narrow our choices to three system types. We build five-node 

homogeneous clusters of each type and run Dryad, a distributed execution 

engine, with a collection of data-intensive workloads to measure the energy 

consumption per task on each cluster. For this collection of data-intensive 

workloads, our high-end mobile-class system was, on average, 80% more 

energy-efficient than a cluster with embedded processors and at least 300% 

more energy-efficient than a cluster with low-power server processors.  

1   Introduction 

Power consumption is a first-order design constraint in the data center (DC).  

Although still small in absolute terms, DC power consumption is growing rapidly, 

doubling between 2000 and 2005 [1]. The energy usage of the computational building 

blocks of the DC is critical to the overall power consumption, since it affects the 

design and operation of the cooling and power distribution infrastructure as well as 

the computational infrastructure [2, 3, 4]. 

Traditionally, the computational nodes in DCs operate with low system utilization 

but require high availability and fast response time. Researchers have therefore 

advocated the design of hardware whose power consumption is proportional to the 

system load [5]. However, there is a new class of DC benchmarks that use as many 

resources as are available. Many of these applications are I/O- and network-bound but 

exhibit phases of high CPU utilization. Dryad, Hadoop, MapReduce, and Condor are 

frameworks for this type of application [6, 7, 8, 9]. 

In the past, research on these data-intensive workloads has assumed that the 

applications would be bottlenecked by low I/O bandwidth and high latency. However, 

the introduction of NAND flash-based solid-state drives (SSDs) virtually eliminates 

the disk seek bottleneck, enabling much higher I/O bandwidth and very low latency. 

Although SSDs do not yet provide the capacity of magnetic disk drives, SSDs can be 



very low-power devices and have the ability to consolidate the storage system by 

providing far more IOPS, better feeding the processor with data [10]. 

In this paper, we characterize clusters across a variety of system types in order to 

find energy-efficient DC building blocks, with a focus on emerging data-intensive 

applications. 

We initially characterize a variety of embedded, mobile, desktop, and server 

systems using single-machine performance, power, and energy efficiency. Using 

these benchmarks as a guide to prune the system space, we build homogeneous 

clusters of the top three systems.  We execute DryadLINQ applications on these 

clusters in order to understand their energy efficiency for different application types. 

This paper makes the following contributions: 

 We characterize a wide range of real systems from embedded and mobile to 

desktop and server processors, focusing on single-thread and/or single-system 

performance. 

 We characterize homogeneous compute clusters composed of embedded, mobile, 

and server processors in the context of data-intensive applications to find the most 

energy-efficient computing infrastructure over a wide range of workloads.   

 We compare the energy efficiency of system classes that have not been compared 

in previous work, and we make this comparison across workloads with varying 

computational and I/O demands. 

The rest of this paper is organized as follows. Section 2 is an overview of related 

work in this area.  Section 3 describes our experimental infrastructure and the 

hardware and software evaluated. Section 4 presents our experimental results. We 

further discuss these results in Section 5 and conclude with Section 6. 

2   Related Work 

A growing body of research proposes energy-efficient building blocks for cluster and 

DC computing, but this work has typically investigated only a limited subset of 

system types and/or applications. 

One major trend is to propose building blocks for data-intensive computing that 

combine embedded processors, such as the Intel Atom, with solid-state disks. 

However, many of these proposed systems have been evaluated for only a single 

workload or against a limited set of alternative hardware. 

For example, Szalay et al. propose “Amdahl blades,” consisting of Intel Atom 

processors with SSDs, and present a scaling study comparing these blades to 

traditional high-end cluster nodes using data from a synthetic disk-stressing 

benchmark [11].  The Gordon system, designed by Caulfield et al., also combines 

Atom processors with flash memory.  It was evaluated against a Core 2 (single-core)-

based server over a variety of MapReduce workloads using simulation and modeling 

rather than physical measurements [12]. 

The FAWN cluster, proposed by Andersen et al., consists of ultra-low-end 

embedded processors and high-end solid-state disks [13].  A version using the Intel 

Atom was evaluated across a wide range of workloads [14].  This evaluation showed 

FAWN breaking the energy-efficient sorting record set by Beckmann in 2010 with 



similar hardware [15]. The overall conclusion of the evaluation was that the FAWN 

hardware was superior to desktop- and server-class hardware for I/O-bound 

workloads and for memory-bound workloads with either poor locality or small 

working sets.  However, high-end mobile processors were not evaluated in the FAWN 

study.  Reddi et al. use embedded processors for web search and note both their 

promise and their limitations; in this context, embedded processors jeopardize quality 

of service because they lack the ability to absorb spikes in the workload [16]. 

Several studies have proposed high-end laptop hardware for energy-efficient DC 

computing.  Rivoire et al. used a laptop processor and laptop disks to set an energy-

efficient sorting record in 2007 [17], while Lim et al. proposed a laptop-processor-

based building block for Web 2.0 workloads in 2008 [18]. However, these systems 

preceded the movement toward embedded processors and SSDs, and their conclusions 

must be revisited in light of these recent developments. 

Finally, the CEMS servers proposed by Hamilton use a variety of desktop 

processors and a single enterprise-class magnetic disk [19]. These servers are 

evaluated using a CPU-bound webserver workload designed to exercise the CPU at 

varying utilizations up to 60%.  Unlike much of the previous work, this study found 

that for this workload, the systems with the lowest power consumption were not the 

most energy-efficient systems. 

3   System Overview 

In this section, we describe the hardware platforms we examine, the benchmarks we 

use to evaluate them, and the infrastructure used to measure power. 

3.1   Hardware 

We consider a variety of systems based on embedded, mobile, desktop, and server 

processors. Table 1 provides a list of the important features of the systems under test 

(SUTs). All systems are running 64-bit Windows Server 2008 with support for Dryad 

and DryadLINQ jobs. We tried to provision the systems with 4 GB of DRAM per 

core when possible, but two of the embedded systems were only able to address a 

fraction of this memory. The industry-standard server system used 10,000 RPM 

enterprise hard disks, and the other systems each contained a single Micron RealSSD. 

This difference affected the server’s average power by less than 10% and had a 

negligible effect on the system’s overall energy efficiency. 

3.2   Benchmark Details 

We ran an assortment of benchmarks, some CPU-intensive, others utilizing disk and 

network, in order to find the most energy-efficient cluster building block and see how 

robust this choice is across different types of workloads. A few of these benchmarks 

are used to evaluate single-machine performance, and the rest are DryadLINQ jobs 



Table 1.  Systems evaluated in this paper. Costs are approximate and given in US dollars at the 

time of purchase.  Costs are not given for systems that were donated as samples.  In the 

memory column, the star denotes the maximum amount of addressable memory.  

System 
Under Test 

CPU Memory Disk(s) 
System 
Information 

Approx. 
cost 

1A 

(embedded) 

Intel Atom N230, 1-core, 

1.6 GHz, 4W TDP 

4 GB 

DDR2-800 
1 SSD Acer AspireRevo $600 

1B 

(embedded) 

Intel Atom N330, 2-core, 

1.6 GHz, 8W TDP 

4 GB 

DDR2-800 
1 SSD 

Zotac IONITX-A-

U 
$600 

1C 
(embedded) 

Via Nano U2250, 1-core, 
1.6 GHz 

2.37 GB 
DDR2-800* 

1 SSD 
Via VX855 

sample 

1D 

(embedded) 

Via Nano L2200, 1-core, 

1.6 GHz 

2.86 GB 

DDR2-800* 
1 SSD 

Via 

CN896/VT8237S 
sample 

2 (mobile) 
Intel Core2 Duo, 2-core, 

2.26 GHz, 25W TDP 

4 GB 

DDR3-1066 
1 SSD Mac Mini $1200 

3 (desktop) 
AMD Athlon, 2-core,  

2.2 GHz, 65W TDP 

8 GB 

DDR2-800 
1 SSD MSI AA-780E sample 

4 (server) 
AMD Opteron, 4-core, 

2.0 GHz, 50W TDP 

32 GB 

DDR2-800 

2 10K 

rpm 

Supermicro 

AS-1021M-T2+B 
$1900 

 

dispatched to five-node clusters. We ran a single instance of each application at a 

time. 

The single-machine benchmarks are as follows: 

 SPECpower_ssj 2008. This benchmark uses a CPU- and memory-intensive Java 

webserver workload to probe the power usage of a SUT's CPU at various 

utilizations. Since the performance of this benchmark can vary drastically 

depending on the JRE used, we use the Oracle JRockit JRE tuned with platform-

specific parameters based on similar reported benchmark runs. 

 SPEC CPUint 2006. This benchmark suite runs a variety of CPU and memory-

intensive jobs and then provides a score based on the aggregate performance of 

these individual benchmarks. We do not make any architecture-specific 

optimizations for this workload. 

 CPUEater. This benchmark fully utilizes a single system's CPU resources in order 

to determine the highest power reading attributable to the CPU. We use these 

measurements to corroborate the findings from SPECpower. 

The multi-machine DryadLINQ benchmarks are: 

 Sort. Sorts 4 GB of data with 100-byte records. The data is separated into 5 or 20 

partitions which are distributed randomly across a cluster of machines. As all the 

data to be sorted must first be read from disk and ultimately transferred back to 

disk on a single machine, this workload has high disk and network utilization. 

 StaticRank. This benchmark runs a graph-based page ranking algorithm over the 

ClueWeb09 dataset [20], a corpus consisting of around 1 billion web pages, spread 

over 80 partitions on a cluster. It is a 3-step job in which output partitions from 

one step are fed into the next step as input partitions. Thus, StaticRank has high 

network utilization. 

 Prime. This benchmark is computationally intensive, checking for primeness of 

each of approximately 1,000,000 numbers on each of 5 partitions in a cluster. It 

produces little network traffic. 



 WordCount. This benchmark reads through 50 MB text files on each of 5 

partitions in a cluster and tallies the occurrences of each word that appears. It 

produces little network traffic. 

3.3   Measurement Infrastructure 

The measurement infrastructure consists of a hardware component to physically 

measure both the total system power and power factor and a software component to 

collect both the power measurements and application-level Event Tracing for 

Windows (ETW) metrics.  

We use WattsUp? Pro USB digital power meters to capture the wall power and 

power factor once per second for each machine or group of machines. We use the API 

provided by the power meter manufacturer to incorporate measurements from the 

power meter into the ETW framework. 

4   Evaluation 

In this section, we first examine the single-machine performance of a range of 

machines.  We use these results to identify the three most promising candidate 

systems for the cluster-level benchmarks.  The results from both the single-machine 

and multi-machine benchmarks show that the mobile-class system consistently 

provides high energy efficiency on a wide range of tasks, while the other classes of 

systems are suitable for a more limited set of workloads. 

4.1   Single-Machine Benchmarks 

To pare down our list of systems, we used three single-machine benchmarks to 

characterize the systems’ single-thread performance and power consumption.  Based 

on this characterization, we can eliminate any systems that are Pareto-dominated in 

performance and power before proceeding to the cluster benchmarks. 

 

Performance. We use SPEC CPU2006 integer benchmarks to compare the single-

threaded SPEC-rate performance across all the platforms in Table 1. This benchmark, 

because it is CPU-intensive, should favor the processors with more complex cores. In 

addition to the dual-socket quad-core AMD Opteron server in Table 1 (SUT 4), we 

included two more Opteron servers: a dual-socket single-core server (2x1) with 8 GB 

of RAM and a dual-socket dual-core server (2x2) with 16 GB of RAM. These systems 

were included to quantify single-core performance improvements over time, as well 

as the benefits of additional cores.  Figure 1 shows the per-core results, which are 

normalized to the Intel Atom single-core-based system (SUT 1A). 

There are two surprising results. First, the mobile Intel Core 2 Duo (SUT 2) has 

per-core performance that matches or exceeds that all of the other processors, 

including the server processors. Second, and more surprising, is the fact that the Atom 

processor performs so well on the libquantum benchmark. Overall, these results 
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Fig. 1. Per-core SPEC CPU2006 integer performance normalized to the Atom N230 for the 

systems (embedded, mobile, desktop, and server processors) from Table 1 plus two legacy 

Opteron servers. The legend should be read from left to right and top to bottom. It lists the bars 

in order from left to right. 

 

demonstrate that SUT 2 (Intel Core 2 Duo) and SUT4 (AMD Opteron 2x4) provide 

the highest single-thread performance. 

 

Power Consumption. Single-thread performance is not the only factor to consider 

when selecting the appropriate energy-efficient building blocks for the DC. Before 

diving into benchmarks that provide data on work done per Watt or Joule, we measure 

system power at idle and when running CPUEater at 100% utilization.  Figure 2 

shows power consumption at these two utilization points for all of the systems from 

Figure 1, ordered by the maximum system power under full CPU load. Surprisingly, 

the four embedded-class systems do not have significantly lower idle power than the 

other systems; in fact, the mobile-class system with a 25 W TDP processor has the 

second-lowest idle power. However, the 100% utilized systems result in a different 

ordering. The mobile-class system now has significantly higher power than the 

embedded systems, which use processors with 4-16 W TDPs. 

 

Balancing Performance and Power. To confirm our conclusions based on 

examining performance and power separately, we used SPECpower_ssj to 

characterize the amount of work or operations done per watt. As Figure 3 shows, the 

Intel  Core 2 Duo  system (SUT 2) and the  Opteron  (2x4) system  (SUT 4) yield the  



 

Fig. 2. Power consumption at idle and at 100% CPU utilization for all the systems in Figure 1. 

The systems are shown in order from lowest to highest power consumption at 100% utilization. 

The legend should be read from top to bottom. It lists the bars in order from left to right. 

 

 

Fig. 3. SPECpower_ssj results for four of the systems from Table 1 plus the two previous 

generations of Opteron servers. 

 

best power/performance, followed by the Atom system (SUT 1B).  These results 

reinforce our conclusions from looking at power and performance separately. 

Furthermore, this benchmark goes beyond the single-core performance measured by 

SPEC CPU 2006. 

 



4.2   Multi-machine Dryad Benchmarks 

Based on the characterization from Section 4.1, we set up 5-node clusters of the three 

most promising systems (1B, 2, and 4) and ran the four DryadLINQ benchmarks: 

Sort, Primes, StaticRank, and WordCount. 

Figure 4 shows the average energy usage for these benchmarks, normalized to the 

mobile system (SUT 2). It shows two versions of Sort that only differ by the number 

of data partitions, 5 or 20; the 20-partition version has better load balance. 

The energy usage per task of SUT 2, the mobile Core 2 Duo-based server, is 

always lower than that of SUT 4, the Opteron-based server, across all the 

benchmarks, using three to five times less energy overall for the different 

benchmarks. 

The relative energy usage of SUT 1B, the Atom-based system, varies the most 

from benchmark to benchmark.  It degrades significantly for Primes, which is the 

most CPU-intensive benchmark.  For this benchmark, the traditional server system 

(SUT 4) is more energy-efficient than the Atom-based system.  SUT 4 has a 

performance advantage with four times the number of cores, enabling it to finish 

parallel and computationally intense tasks more quickly but with a significantly 

higher power envelope than SUT 1B. 

This advantage disappears, however, for StaticRank, which has a mix of CPU and 

I/O. SUT 4 can finish this job only slightly faster than SUT 2 or 1B, but it uses much 

more power. However, it should be noted that the partition size used for StaticRank is 

set by the memory capacity limitations of the mobile and embedded platforms. This 

biases the results in their favor, because at this workload size, SUT 4’s execution is 

dominated by Dryad overhead. 

More surprisingly, the Atom-based system is less energy-efficient for Sort than the 

mobile-CPU-based system.  Previous work on platforms for sequential I/O-intensive 

workloads used Atom-based systems on the assumption that the I/O would be the 

bottleneck and the CPU would thus not be heavily utilized [11, 14, 15].  However, the 

SSDs in these systems mitigate this bottleneck for Sort, placing more stress on the 

CPU. In contrast, the Atom-based system is most energy-efficient for WordCount, 

which is the least CPU-intensive of the four benchmarks. 

These energy measurements on cluster benchmarks complement the results on 

single-machine benchmarks: low-power mobile class platforms have an advantage 

over high-power, high-performing server-class platforms as energy-efficient DC 

building blocks that do not skimp on performance. Their performance and power also 

are more robust over a wider range of benchmarks than the embedded-class systems. 

5   Discussion 

The results demonstrate a clear class of systems that is well suited for data-intensive 

computing. This result is somewhat surprising due to the interface limitations of real 

mobile-class systems. We discuss this result in more detail, and we follow that 

discussion with some of the system improvements that would be necessary to build a  

 



 

Fig. 4. Normalized average energy usage for SUT 2, SUT 1B, and SUT 4 for each benchmark 

on each system and the geometric mean. 

more compelling energy-efficient system, requiring minor modifications to today’s 

components. 

5.1   Energy Efficiency 

Our results show that low-power embedded components are not necessarily ideal for 

energy efficiency, even for applications that are not normally considered CPU-

intensive (e.g. Sort).  With the increase in I/O capabilities provided by SSDs, our 

results indicate that embedded-class processors are not always sufficient to balance 

the I/O bandwidth. In fairness, one disadvantage that these systems had is that the 

chipsets and other components dominated the overall system power; in other words, 

Amdahl’s Law limited the benefits of having an ultra-low-power processor.  As the 

non-CPU components become more energy-efficient, this type of system will be more 

competitive. 

Our results also confirm that standard servers are becoming more energy-efficient. 

We presented results from three consecutive generations of Opteron servers running 

SPEC benchmarks. Over time, these systems have maintained or improved single-

thread performance, increased system throughput, and simultaneously reduced overall 

system power and energy. Until recently, embedded systems were the only systems 

that exhibited the same trends. This is a result of combining lower-power server 

processors with efficient power supplies and related components. However, there still 

is a long way to go. 



5.2   The Missing Links 

Research on energy-efficient DC building blocks has largely been limited to 

evaluations of existing hardware. While simulation provides the flexibility to derive 

any reasonable system imaginable, the runtimes for the applications used in this study 

make simulation of any type prohibitively expensive. For this data-intensive 

benchmark suite, the wall-clock runtime varied from just over 25 seconds 

(WordCount on SUT 4) to ~1.5 hours (StaticRank on SUT 1B).  Therefore, this study 

was constrained to use existing hardware. However, there are several clear 

improvements that could be made to increase the energy efficiency of future 

datacenter hardware. 

First, the embedded and mobile systems had very restrictive I/O subsystems, 

limited by the number of ports and overall bandwidth. Likewise, the network is also a 

limiting factor, which can be solved with more energy efficient designs and higher 

bandwidth, like 10 Gb solutions. 

Finally, only configurations 3 and 4 supported ECC DRAM memory. Memory is 

the conduit to the processor, and memory errors are on the rise, especially for large 

systems [21, 22]. We view ECC as a requirement for any data-intensive computing 

system. 

Our ideal system would couple a high-end mobile processor (like the Intel Core 2 

Duo or AMD equivalent) with a low-power chipset that supported ECC for the 

DRAM, larger DRAM capacity, and more I/O ports with higher bandwidth. 

6   Conclusions 

Our results from small clusters demonstrate that systems built using high-end 

mobile processors and SSDs are the most energy-efficient systems for data-intensive 

cluster computing across all the applications we tested. We compared systems across 

the spectrum of available hardware, including systems advocated by other researchers 

proposing solutions to this problem [11]. A concern with ultra-low-power embedded 

systems is that the chipset and peripherals can dominate the overall power usage, 

making these systems less energy-efficient than their processors alone. Our results 

also show that the successive generations of server systems are becoming more 

energy-efficient, as we expected. We were able to use single-threaded and single 

system benchmarks to filter the systems down to a tractable set in order to run a 

variety of large-scale benchmarks. The initial benchmark results were consistent with 

the data-intensive benchmark results. Moving forward, we expect that embedded 

processor systems will be overpowered by their I/O subsystem requirements for data-

intensive applications in the near future. Furthermore, by optimizing the chipset and 

peripherals, even more energy-efficient systems can be built for this application 

space. These systems will use less power, reducing overall power provisioning 

requirements and costs. 

Finally, there is a large body of future work that we would like to pursue. First, we 

would like to use OS-level performance counters to facilitate per-application 

modeling for total system power and energy. Furthermore, we know of no standard 



methodology to build and validate these models. Likewise, developing standard 

metrics and benchmarks will make these comparisons easier in the future.  
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