
Correlating Events with Time Series for Incident Diagnosis

Chen Luo
∗

Jilin University
rackingroll@163.com

Jian-Guang Lou
Microsoft Research

jlou@microsoft.com

Qingwei Lin
Microsoft Research

qlin@microsoft.com

Qiang Fu
Microsoft Research

qifu@microsoft.com

Rui Ding
Microsoft Research

juding@microsoft.com

Dongmei Zhang
Microsoft Research

dongmeiz@microsoft.com
Zhe Wang

Jilin University
wz2000@jlu.edu.cn

ABSTRACT
As online services have more and more popular, incident
diagnosis has emerged as a critical task in minimizing the
service downtime and ensuring high quality of the services
provided. For most online services, incident diagnosis is
mainly conducted by analyzing a large amount of teleme-
try data collected from the services at runtime. Time series
data and event sequence data are two major types of teleme-
try data. Techniques of correlation analysis are important
tools that are widely used by engineers for data-driven in-
cident diagnosis. Despite their importance, there has been
little previous work addressing the correlation between two
types of heterogeneous data for incident diagnosis: continu-
ous time series data and temporal event data. In this paper,
we propose an approach to evaluate the correlation between
time series data and event data. Our approach is capable
of discovering three important aspects of event-timeseries
correlation in the context of incident diagnosis: existence of
correlation, temporal order, and monotonic effect. Our ex-
perimental results on simulation data sets and two real data
sets demonstrate the effectiveness of the algorithm.

Keywords
Correlation, Incident Diagnosis, Two-sample Problem

1. INTRODUCTION
The research in this paper is motivated by a real-world

application in incident investigation of online services[20].
Unlike traditional shrink-wrapped software, online service
systems are designed to run continuously and be available

∗This work is conducted during his internship at Microsoft
Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623374.

all time(24x7). However, during the operation of an on-
line service, live-site service incidents (unplanned interrup-
tion/outage of the service) are often unavoidable, and can
lead to significant economic loss or other serious consequences.
For example, many reputable online services such as those
provided by Amazon, Google, and Citrix have experienced
live-site incidents during the past couple of years [1, 14].
In order to minimize service downtime caused by service
incidents, much effort has been invested in improving the
efficiency of service-incident diagnosis.

Diagnosis of service incidents mainly depends on analyz-
ing the telemetry data collected at the runtime of the service
[20]. Unlike a desktop application, the back-end system of
an online service is often a large-scale distributed system. It
is usually impractical to attach a debugger to the service to
investigate service incidents. In most online systems, data
analysis is the only way for engineers to diagnose service
incidents. Telemetry data such as service-level logs, perfor-
mance counters, and machine/process/service-level events
can often provide enough information for incident diagnosis.
Most telemetry data can be grouped into two categories:
continuous time series data and temporal event data. A
time series is a sequence of real-valued data points, mea-
sured typically at successive time points equally spaced with
a uniform time interval. A typical example of time series in
an online service system is the performance counter of CPU
usage. An event sequence in an online service is used to
record the occurrences of a specific software message indi-
cating that something has happened in the system, e.g., an
event sequence of “Out of memory” contains events of “Out
of memory”, which occur when there is not enough memory
in the system.

Among all data-driven techniques for incident diagnosis,
correlation analysis between telemetry data and system states
plays a very important role [7] because correlation relation-
ships often provide hints for causality analysis. Although
the correlated metrics may not exactly be the root causes
of incidents, they could be intermediate useful information
that pinpoints the root causes. In practice, engineers usu-
ally start their incident investigation by searching for a small
set of system metrics that are correlated to the Key Perfor-
mance Indicators (KPI) of the service (Here, a KPI is an
indicator that can be used to manifest system’s health state,
e.g., service availability or request latency) [9].

CPU Usage

System Event

CPU Intensive Program CPU Intensive ProgramDisk Intensive Program Disk Intensive Program

Figure 1: The relationships between CPU usage and two system tasks (disk intensive task and CPU intensive
task)

Because of the importance of correlation analysis, a lot of
tools have been built to analyze the correlation between time
series [32] and the correlation between system events [18, 17,
2]. However, how to evaluate the correlation between a time
series and an event sequence is still not well studied. Be-
cause of the heterogeneous property of these two types of
data, traditional correlation analysis, such as Pearson cor-
relation and Spearman correlation [8], often cannot provide
satisfying results. Furthermore, in a large-scale system, an
occurrence of an event may be related to a change of a time
series during a time period rather than a point-to-point cor-
responding relationship in the traditional correlation analy-
sis techniques.

In this paper, we propose an approach to evaluate the
correlation between a time series and an event sequence.
Motivated by the real requirement of incident management,
our correlation technique tries to answer the following three
questions: a. Are they correlated? b. What is the delay
relationship between them? c. What is the monotonic effect
between them (refer to Section 2 for the definition of mono-
tonic effect)? In the context of service incident management,
the answers to these questions can provide rich information
to engineers for incident diagnosis. We formulate the cor-
relation problem as a two-sample problem [21], and then
use the nearest neighbors method to evaluate the existence
of the correlation. At the same time, we identify temporal
relationships and monotonic effects by analyzing the rela-
tionships between sub-series before and after the occurrence
of each event(refer to Section 2).

The contributions of this paper are as follows:

1. Motivated by real applications, we articulate the corre-
lation problem as the aforementioned three questions.
To the best of our knowledge, this is the first attempt
to evaluate the three aspects of correlation between a
time series and an event sequence for incident diagno-
sis.

2. We formulate the correlation problem as a two-sample
problem, and propose a novel framework to resolve the
problem.

3. The experiments on simulated data and real data from
Microsoft services show the effectiveness of our method.

The rest of the paper is organized as follows: The problem
statement and formulation are introduced in Section 2. We

propose our approach in Section 3. The Empirical evalua-
tion is shown in Section 4. In Section 5, we introduce some
related works. Finally, we conclude our work in Section 6.

2. PROBLEM STATEMENT AND FORMU-
LATION

2.1 Problem Statement
In statistics, correlation is any statistical relationship be-

tween two random variables in which random variables do
not satisfy a mathematical condition of probabilistic inde-
pendence. Let us give an example first to demonstrate the
correlation between event data and the time series data.
Fig. 2 shows two types of events (e.g., starting a disk inten-
sive program and a CPU intensive program) and a time se-
ries (e.g., a performance counter of CPU Usage). Every time
a CPU intensive program starts, the performance counter of
CPU Usage will increase significantly. On the other hand,
the value of CPU Usage does not have any specific pattern
related to the starting events of a disk intensive program. As
a result, we can say that the starting events of the CPU in-
tensive program and the performance counter of CPU Usage
have a correlating relationship, while there is no correlation
between the starting events of a disk intensive program and
the CPU Usage. Such kind of correlation analysis is an im-
portant step for incident diagnosis [9, 6].

In incident diagnosis scenarios, engineers typically study
the following three aspects of the correlation among telemet-
ric data when they are investigating service incidents.

• Existence of Dependency. Is there a correlation be-
tween an event sequence and a time series? Although
statistical correlation is not sufficient to demonstrate
the presence of a causal relationship, it is still quite
useful for incident diagnosis because it can often pro-
vide hints to engineers for causal analysis.

• Temporal Order of Dependency. Given a pair of
dependent data streams, the direction of the correla-
tion is useful information in causal analysis [23]. The
temporal order of the occurrence often provides infor-
mation about the cause-effect direction in the context
of incident diagnosis. For example, for a given depen-
dent pair: an event sequence E and a time series S, if

events in E always occur before corresponding signifi-
cant changes of S, we can often propose a hypothesis
that E might be related to a cause of the changes of S,
and then take actions to verify this hypothesis based
on other aspects of data from the service system.

• Monotonic Effect of Dependency. In many cases,
some event occurrence is related to a significant value-
increase (or value-decrease) of a time series. Such a
positive (or negative) monotonic effect between two
dependent data streams is also a very important prop-
erty of correlation for causal inference [30]. For exam-
ple, during diagnosis, our domain knowledge tells us
that significant increase of CPU usage may cause the
service to violate its quality SLA (Service Level Agree-
ment) but the decreases of CPU usage should not.

Given an event sequence (or event type) denoted as E, the
timestamps of the events are denoted as TE = (t1, t2, · · · , tn),
where n is the number of events that happened. A time se-
ries, denoted as S = (s1, s2, · · · , sm), where m is the number
of points in the time series. Unlike the timestamps of an
event sequence, the timestamps of a time series, denoted
as TS = (t(s1), t(s2), · · · , t(sn)), have the relationship of
t(si) = t(si−1) + τ , where τ is the sampling interval.

Here, we assume that each time series has an even sam-
pling interval, which is true in many applications. In our
analysis, we also assume that the effect of an event on a
time series only lasts a certain time interval that is very
small compared to the total lasting time of the time series.
This assumption is valid in a real-world online service sys-
tem which is in a normal and healthy state most of the time.
Any incident will be resolved soon after its occurrence by the
system operation team.

As mentioned before, if an event type E and a time se-
ries S have a correlation relationship, every time an event E
happens, there is a corresponding change of the time series
S. The potential temporal relationships between an occur-
rence of an event ei ∈ E and its corresponding change of
the time series are illustrated in Fig. 2. Here, each change
is represented as a sub-series of S.

Supposing `reark (S, ei) denotes a sub-series of S after ei
happens with length of k, and `frontk (S, ei) denotes a sub-
series of S before the ei happens. Intuitively, if event E
does not correlate to time series S, then both `reark (S, ei) and

`frontk (S, ei) (i = 1 · · ·n) are not related to the occurrences of

ei. In other words, the sub-series Γ front = {`frontk (S, ei), i =
1 · · ·n} (or Γ rear = {`reark (S, ei), i = 1 · · ·n})are not statis-
tically different from other sub-series with length of k (de-
noted as Θ) that are randomly sampled from S. On the
other hand, if there is a correlation relationship between E
and S, the sub-series Γ front = {`frontk (S, ei), i = 1 · · ·n}
(or Γ rear = {`reark (S, ei), i = 1 · · ·n}) will be statistically
different from the randomly sampled sub-series Θ.

Based on this information, we have the following defini-
tions.

Definition 1. An event sequence E and a time series S
are correlated and E often occurs after the changes of S (de-
noted as S → E), if and only if the probabilistic distribution

of {`frontk (S, ei), i = 1 · · ·n} is statistically different from the
randomly sampled sub-series Θ.

Definition 2. An event sequence E and a time series
S are correlated and E often occurs before the changes of

front sub-series rear sub-series

Sub-series LengthCPU Usage

CPU Intensive Program
System Event

Figure 2: Example of front sub-series and rear-series

S (denoted as E → S), if and only if the probabilistic dis-
tribution of {`reark (S, ei), i = 1 · · ·n} is statistically different
from the randomly sampled sub-series Θ and the probabilistic
distribution of {`frontk (S, ei), i = 1 · · ·n} is not statistically
different from Θ.

Definition 3. An event sequence E and a time series S
are correlated (denoted as E ∼ S), if there is a relationship
of E → S or S → E.

Definition 4. If E → S (or S → E) and the event oc-
currences of E are related to significant value-increases of

S, we denote the correlation as E
+→ S (or S

+→ E).
If E → S (or S → E) and the event occurrences of E are
related to significant value-decrease of S, we denote the cor-

relation as E
−→ S (or S

−→ E).

2.2 Modeling as a Two-Sample Problem
Based on the above definitions, our correlation analysis

problem can be transformed to a multivariate two-sample
hypothesis-testing problem. Two-sample tests are commonly
used when checking whether two samples come from the
same underlying distribution, which is assumed to be un-
known. In our context, one sample is the set Γ front or
Γ rear, the other sample is Θ that is the set of sub-series
randomly sampled from S. Each data point is actually a
sub-series, which can be represented as a vector of k dimen-
sions. Therefore, the original problem becomes a multivari-
ate two-sample test.

Here, we use one set Γ front and Θ as our example. Let
Γ front and Θ be independent random samples generated
from unknown distributions F and G, respectively. The dis-
tributions are assumed to be absolutely continuous with re-
spect to Lebesgue measure. Their densities are denoted as f
and g, respectively. The hypotheses of the two-sample test
can be stated as follows:{

H0 : F = G
H1 : F 6= G

(1)

If H1 is true, that means the probabilistic distribution of
Γ front is statistically different from the randomly sampled
sub-series Θ. In addition, as Definition 1, time series S and
event E are correlated. Otherwise, if H0 is true, then time
series S and event E may not be correlated.

3. THE APPROACH
In this section, we propose a nearest-neighbor based method

algorithm to analyze the three aspects of correlation, and
then analyze the complexity of the proposed approach.

3.1 Nearest Neighbor Method
Multivariate two-sample tests have been of continuous in-

terest to the statistics community. Several different algo-
rithms of this kind have been proposed [10, 21, 28]. To uti-
lize some structure based distance measures such as DTW
[4] or DTW-D [5], we apply the nearest neighbor statistic
based method [28] in our scenario. It is worth pointing out
that, other two-sample tests algorithms [10, 21] can also be
used in our method.

In this subsection, we take Γ front as an example. Given
the two samples Γ front = {`frontk (S, ei), i = 1 · · ·n} and
Θ = {θ1, θ2, · · · , θñ}, and the pooled sample by Z = Γ ∪Θ,
we label the pooled sample as Z1, · · · , Zp with p = n + ñ
where

Zi =

{
`frontk (S, ei), if i = 1, · · · , n
θi−n, if i = n+ 1, · · · , p. (2)

For a finite set of sub-series A and a sub-series x ∈ A, let
NNr(x,A) denote the r-th nearest neighbor of x within the
set {A\x}. For two mutually exclusive subsets A1, A2 and
a point x ∈ A, we define an indicator function:

Ir(x,A1, A2) =

{
1, if x ∈ Ai &&NNr(x,A) ∈ Ai,
0, otherwise.

(3)

The function Ir(x,A1, A2) indicates whether x and its r-th
nearest neighbor in A\x belong to the same subset.

In our problem, the nearest-neighbor based tests rely on
the following quantity and its generalizations:

Tr,p =
1

pr

p∑
i=1

r∑
j=1

Ij(x,A1, A2) (4)

Here, p = |n + ñ| is the size of the sample. The test
statistic Tr,p is the proportion of pairs containing two sub-
series from the same sample, among all pairs formed by a
sample sub-series and one of its nearest neighbors in the
pooled sample Z. Intuitively Tr,p is small under the null
hypothesis when the two samples are mixed well, while Tr,p
is large when the two underlying distributions are different.

Then, as in [28], when p is large enough, (pr)1/2(Tr,p −
µr)/σr obeys a standard Gaussian distribution with the fol-
lowing parameters:

µr = (λ1)2 + (λ2)2 (5)

and

σ2
r = λ1λ2 + 4λ2

1λ
2
2 (6)

where λ1 = n/p and λ2 = ñ/p. The traditional Gaus-
sian distribution test, Γ front and Θ are significantly differ-
ent when: (pr)1/2(Tr,p − µr)/σ2

r > α, where α = 1.96 for
P = 0.025 (or α = 2.58 for P = 0.001). For more about
the hypothesis test in a Gaussian distribution, please refer
to [15].

3.2 Mining Existence and Temporal Order
According to the definitions in Section 2, we can summa-

rize that if event E and time series S are correlated, the fol-
lowing statement must be true: the front sub-series Γ front

CPU Usage

CPU Intensive Program SQL Query Alert System Event

Figure 3: Example of temporal order, CPU intensive
program → CPU usage and CPU usage → query alert

Memory Usage

Loading Data Task Program Quit
System Event

Figure 4: Effect examples: loading data task
+→ mem-

ory and program exiting
−→ memory

and randomly sampled sub-series Θ are statistically differ-
ent; or the rear sub-series Γ rear and randomly sampled sub-
series Θ is statistically different. In our approach, we use
the above nearest-neighbor method to determine whether
two sets of sub-series have an identical distribution.

If the front sub-series Γ front and randomly sampled sub-
series Θ are statistically different, then S → E. Otherwise, if
the rear sub-series Γ rear and Θ is statistically different, then
E → S. Fig. 3 shows an example of Correlation Temporal
Order. From Fig. 3, we can see CPU Intensive Program →
CPU Usage, and CPU Usage → SQL Query Alert.

3.3 Mining Effect Type
As explained in Definition 4, in order to determine the

monotonic effects such as E
+→ S (or E

−→ S) of correlation,
we need to check whether there exists a significant value
increase (or decrease) on the time series S after an event E
happens. Similarly, it can also be formulated as a problem
of statistical hypotheses testing. In this research, we use
t − test [15] to check whether there is a significant value
increase (or decrease) from Γ front to Γ rear.

Here, the tscore between Γ front and Γ rear can be calcu-
lated by the following equation:

tscore =
µΓfront − µΓrear√

(n1−1)σ2
Γfront

+(n2−1)σ2
Γrear

n1+n2−2
(1
n1
− 1

n2
)

(7)

Algorithm 1: The Overall Algorithm

Input: Event E = (e1, e2, ..., en), and Time Series
S = (s1, s2, ..., sm), and the sub-series length k.

Output: The correlation flag C, the direction D, and
the effect type T

1 Initialize Γ front and Γ rear;
2 Initialize Θ;
3 Initialize R = false, D = NULL, T = NULL;

4 Normalize each `frontk (S, ei) and `reark (S, ei).;

5 Test Γ front and Θ using Nearest Neighbors Method.
The result is denoted as Df .;

6 Test Γ rear and Θ using Nearest Neighbors Method.
The result is denoted as Dr.;

7 if (Dr == true&&Df == false) then
8 R = true.;
9 Calculate tscore using Equation (8).;

10 if (tscore > α) then

11 T = E
−→ S.;

12 else if (tscore < −α) then

13 T = E
+→ S.;

14 else if (Dr == false&&Df == true) ||
(Dr == true&&Df == true) then

15 R = true.;
16 Calculate tscore using Equation (8).;
17 if (tscore > α) then

18 T = S
−→ E.;

19 else if (tscore < −α) then

20 T = S
+→ E.;

21 Out put R, D and T ;
22 Algorithm End.

where µΓfront and µΓrear are the mean values of Γ front and
Γ rear. σΓfront and σΓrear are their variance values. In our
research, n1 = n2 = n, and n is the event number in E, thus
Equation 7 can be reduced to:

tscore =
µΓfront − µΓrear√
σ2
Γfront

+σ2
Γrear

n

(8)

Then, if tscore > α, we have a negative monotonic effect

(e.g, E
−→ S or S

−→ E); and if tscore < −α, we have a

positive monotonic effect (e.g., E
+→ S or S

+→ E). Here,
α = 1.96 for P = 0.025 (or α = 2.58 for P = 0.001) [15].

At the same time, for a given α,if |tscore| < α, we cannot
determine the effect type with a high level of confidence.
However, such situations are seldom found in the real sce-
narios of incident diagnosis. Most services have be designed
with a large certain margin to fault-tolerate. When a ser-
vice incident is detected, the corresponding time-series must
have a significant difference from its normal behavior (i.e.,
tscore > α) [9].

3.4 The Overall Algorithm
The overall algorithm is then summarized as Algorithm 1.

This algorithm implements the methods we have introduced
in the above subsections. It performs two two-sample tests
based on the sub-series Γ front, Γ rear, and Θ. The output
of this algorithm contains all three aspects of the correlation

-10

0

10

20

30

40

50

60

70

80

1 5 9 13 17 21 25 29 33 37 41 45 49

C
o
n
fi
d
e
n
t
C
o
e
ffi
ci
e
n
t

Window Size (k)

CPU Intensive Program vs.

CPU Usage

Disk Intensive Program vs.

CPU Usage

Figure 5: Confidence vs. sub-series length k.

between a time series and an event sequence. In this section,
we discuss details of the algorithm implementation.

3.4.1 Setting Parameters
The length of sub-series k is an important parameter which

can directly influence the performance of our algorithm. We
use one example to illustrate the influence of k. Fig. 5
shows two curves, where the vertical axis represents the
value of (Nk)1/2(Tk,N − µk)/σ2

k. For a given α, its value
is directly related to the confidence of hypotheses H1. A
larger (Nk)1/2(Tk,N − µk)/σ2

k means a high confidence of
H1. We denote it as “Confidence Coefficient”. In Fig. 5, the
black curve is the confidence coefficient obtained by eval-
uating the correlation between a pair of “CPU Extensive
Program” and “CPU Usage”. We know there does exist any
correlation between the pair of data. This means the higher
confidence of H1 is better. Because the front sub-series (or
the rear sub-series) with a very small length (i.e., k < 4)
only contains limited information, the confidence in testing
is not high enough. As the length increases, we can see a
significant increase in confidence in Fig. 5. However, when
the length is larger than a certain value (e.g., 8), the con-
fidence decreases after the maximum value. The reason is
that as the sub-series length increases thereby the effect of
event to time series starts to diminish which makes the sub-
sequence closer to the population Θ. In Fig. 5, the blue
curve is the confidence coefficient obtained from the pair of
“Disk Transfer Extensive Program” and “CPU Usage”. Do-
main knowledge clearly tells us this pair is not correlated.
The result also confirms this fact. The curve of confidence
coefficient is flat and very close to 0 for any value of k. It
means the rejection of H1 is not influenced by k if two data
sets are not correlated.

In some cases, the value of k can be selected based on
domain knowledge and experiments. However, in most real
world situations, there are millions of time series and events,
and we do not have enough domain knowledge to pre-select
the values of all sub-series lengths. In this research, we de-
sign a method to auto-select the sub-series length for a time
series based on the autocorrelation function [12] of the time
series. Given a time series S = (s1, s2, ..., sn), the autocor-
relation is showed as follows:

Time Series

(a) Time Series

The First Peak

Autocorrela!on

(b) Autocorrelation

Figure 6: Example of a time series and the corre-
sponding autocorrelation.

R(l) = E(si ∗ si−l). (9)

where l denotes the lag of the correlation. The autocorrela-
tion function of a time series can be used to represent the
energy of signals in the time series with a period of l [12].
Therefore, our length k can be assigned the value of the
first peak to include the significant signal of the time series.
The experiment (Section 4.5) shows the effectiveness of this
method and Fig. 6 shows an example.

Besides k, the number of neighbors r is also a very impor-
tant parameter. It has been demonstrated that r = ln(p) is
a good choice in literatures [28]. In this paper, we directly
follow their suggestion.

4. EMPIRICAL EVALUATION
In this section, we make an empirical evaluation of our

algorithm by performing a set of experiments on a data set
from a controlled environment and two real data sets.

4.1 Baseline
In order to evaluate the effectiveness of our algorithm, we

choose two baseline algorithms in our experiment. The first
one is the Pearson correlation [8], which is the widely used
method for correlation mining in time series. The second
baseline is J-measure [24], which is a widely used method
for correlating event data [16]. In the rest of this section, we
brief introduce these two baseline algorithms.

4.1.1 Pearson Correlation
The Pearson correlation method is one of the most widely

used methods for measuring the correlation between two
time series. The Pearson correlation coefficient, denoted as
ρ. is calculated as follows:

ρX,Y =
cov(X,Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY

where cov is the covariance, σX is the standard deviation of
X, µX is the mean of X and E[∗] denotes the expectation.

The Pearson correlation can not be directly used in the
correlation evaluation between time series and event data.
In order to make it comparable, we transform the event E
to a time series, denoted as SE = (sE1 , s

E
2 , ..., s

E
m), where m

is the size of time series S, and sEi is calculated as:

sEi =

{
1, if t(si) ∈ TE
0, otherwise.

where t(si) and TE is the same meaning as before (see
section 2.1).

After transforming the event data to the time series form,
we directly calculate the Pearson correlation coefficient ρ
between the SE and S. As introduced in [8], due to our
application background, we assign the threshold as 0.1 (weak

correlation as in [8]). If ρ > 0.1, then E
+∼ S. And if

ρ < −0.1, then E
−∼ S. Else (|ρ| < 0.1), E and S are not

correlated.

4.1.2 J-measure Correlation
We choose the widely used event correlation method, J-

measure [24], as the second baseline. J-measure has been
used in many research efforts [16].

However, J-measure is proposed for the event correlation
and can not be used directly. Therefore, in our experiment,
we first transform each time series to an event sequence as
follows: Given a time series S = (s1, s2, ..., sm), its cor-
responding event sequence is ES = (eE1 , e

E
2 , ..., e

E
n), where

each eEi is the change point in the time series, and n is the
number of changes in the time series. In this research, we
use a widely used GLR algorithm [3] to detect changes in
time series.

After transforming each time series to its corresponding
event sequence, we can obtain a complete event sequence by
combining all the event sequences from two sets: (1) event
sequences transformed by time series, (2) event sequences
from the original data set. Then we can directly use J-
measure to evaluate the correlation between these complete
event sequences. Similar to the first baseline (Pearson cor-
relation), we assign a correlation threshold as 0.1 (weak cor-
relation in [8]). If the J-Measure is larger than 0.1, then
E ∼ S. Otherwise, E and S are not correlated. Considering
this, the Temporal Order and the Monotonic Effect Type of
the correlation can not be determined using this method.

4.2 Effectiveness Study on Simulation Datasets
In this section, we introduce the experiment on the data

from a controlled environment.

4.2.1 The Controlled Experiment
In this research, we setup a SQL environment for a con-

trolled experiment to demonstrate the mutual influencing
behavior in a system. For example, when a CPU Inten-
sive program starts, the performance counter of CPU usage
may increase. In a SQL server, database operations can
be influenced by the increase of CPU usage or memory us-
age. In the experiment, three types of programs including
Disk Intensive program, CPU Intensive program and Mem-
ory Intensive program are launched several times randomly.
Each running lasts for an interval of [5, 15] minutes. At the
same time, we query a SQL server database every second. If
the query latency exceeds the maximum latency limitation
(200ms), the query will trigger a time-out alert.

We conduct the experiment for 6 hours. The CPU Inten-
sive program run 43 times; the Memory Intensive program
run 41 times; the Disk Intensive program run 38 times ;
and 285 Query Alerts are triggered. At the same time, we
collect four system events (e.g., the starting events of each
program and query time-out alerts) and three system perfor-
mance counters (CPU usage, memory usage, and disk I/O
usage) as showed in Table 1.

Table 1: Time series and event data in the controlled experiment
Name Type Description

CPU Intensive program Event A multi-thread process, which will let the CPU Usage achieve nearly 90%
Memory Intensive program Event A process that will apply for a nearly 2G memory space

Disk Intensive program Event A copy files process which can sharply increase disk transfer rate
Query Alert Event When SQL query delay exceed the maximum limit, an alert occurrence.
CPU Usage Time Series record the CPU usage every second

Memory Usage Time Series record the Memory usage every second
Disk Transfer Rate Time Series record the Disk Transfer Rate every second

4.2.2 Result and Analysis
After obtaining the data from the controlled environment,

we run the three algorithms on this data. The results pro-
duced by the proposed algorithm and two baseline algo-
rithms are showed in Table 2.

The sub-series length k of the three time series (CPU us-
age, Memory Usage, Disk Transfer Rate) is assigned using
the first peak of the autocorrelation (as introduced in sec-
tion 3.4.1). We choose DTW distance [4] as the distance
measure in Nearest neighbors method of our algorithm.

In Table 2, we see that the correlation relationship, pro-
duced using our method, can reflect real system behavior:
the CPU Intensive program has a positive effect on the CPU
usage; the Memory Intensive program has a positive effect
on both Memory usage and CPU usage; the Disk Intensive
program has a positive effect on the Disk Transfer rate. The
Query Alert depends on the high usage of CPU and Memory.

On the other hand, in the results of the Pearson Corre-
lation Algorithm, some of the correlation relations are lost

(Memory Using Task
+→ CPU usage, and Memory Usage

+←
Query Alert). The result produced by J-Measure is very
bad, because J-Measure can only encode the occurrence be-
tween event and changes. In addition, the Temporal Order
and the Monotonic Effect of Dependencies can not be cal-
culated using J-measure. From this view, our algorithm has
great advantages compared to the baseline algorithms.

4.3 Effectiveness Study on Real Datasets
In this section, we will compare the proposed algorithm

with the baseline algorithms on two real data sets.

4.3.1 Dataset
The first real world dataset is a System Monitoring Dataset.

This dataset is collected from a large scale online service of
Microsoft. We collect 24 different kinds of time series as our
input time-series from a number of machines including per-
formance counters of Memory usage, CPU usage, Physical
Disk usage etc. The sampling interval of each time series is
5 minutes. At the same time, we also collect a set of event
sequences. Each event sequence contains the starting events
of a specific job that is automatically submitted by a timer
in the system. There are 52 different event in this dataset.
The ground truth of this data is labeled by a software engi-
neer in the product team.

The second real world dataset is the Custom Support
Dataset. In Microsoft, the customer support team is in
charge of the support requests from customers about the
above online service. Customers may send us support re-
quests when they do not know how to use the service or they
encounter some service quality issues. In this paper, we only
collect the requests caused by service issues. The requests

are grouped to different categories based on their problem
phenomena and root causes (also called support topic) by
the support team. The occurrences of requests in a single
category form an event sequence in this study, because we
try to understand what kind of service telemetry data is
related to a specific request topic. There are 57 different
events in this dataset. The time series data in this study is
collected from the runtime system. The front end of our sys-
tem is a Web Server. For every HTTP request from an end
user, we have a HTTP status code. We group the requests
from every hour based on their HTTP status code into 7
groups: “200 ∼ 300”(it means the status code is in the range
from 200 to 300.), “300 ∼ 400”, “400 ∼ 500”, “500 ∼ 600”,
“> 600”, “Exception” (it means no HTTP response, the pro-
gram throws an exception.) and “Sum” (”Sum” means all
the status code larger than “300”). Each group will form a
time series to record the number of requests hourly.

4.3.2 Evaluation Metric
The basic model of our algorithm is a hypothesis-test

model , we use the F1 score to evaluate our method, which
has been used in many research works [26] for analyzing
hypothesis-test accuracy. As introduced in [26], F1 score
can be calculated as follow:

F1 =
2 ∗ TruePositive

2 ∗ TruePositive+ FalseNegative+ FalsePositive

In the above, TruePositive = 1− FalseNegative.
Given a time series S and an event E, for the test of

dependency existence, a FalseNegative is a case where the
algorithm result shows S ∼ E, but actually S and E are not
correlated. A FalsePositive is a case where S and E are
not correlated, but the result shows that S ∼ E. For the
test of temporal ordering, a FalsePositive is a case where
the result shows S → E, while the actual temporal order is
E → S. A FalseNegative is a case where the result does
not show S → E, while the actual temporal order is S → E.
For the Monotonic Effect Problem, a FalsePositive is a case
that the result shows a positive monotonic effect while the
actual effect type is not positive. A FalseNegative is a case
that the result does not show a positive monotonic effect
while the actual effect type is positive.

4.3.3 Result Analysis
We choose three distance measures for the nearest neigh-

bor method of our algorithm, including: DTW [4] , L1 dis-
tance and L2 distance. The result is shown in Table 3.

For the different distance measures, we can see that there
is no significant difference among them. It seems that the
DTW distance has a slightly better performances than oth-
ers in the experiment on Custom Support Data. When a

Table 2: Results of the data from controlled environment

Name
Proposed Method Pearson Correlation J-Measure

CPU Memory Disk CPU Memory Disk CPU Memory Disk

CPU Intensive Program
+→ NC NC

+∼ NC 1 NC NC ∼ ∼
Memory Intensive Program

+→ +→ NC NC
+∼ NC NC ∼ ∼

Disk Intensive Program NC NC
+→ NC NC

+∼ NC ∼ ∼
Query Alert

+← +← NC
+∼ NC NC NC ∼ ∼

Table 3: Result in real data set

Data Set Methods
Existence Temporal Order Effect Type

F1 Score F1 Score F1 Score

System Monitoring Data

Correlation Mining (L1) 0.7916 0.8020 0.8016

Correlation Mining (L2) 0.8205 0.7612 0.8780

Correlation Mining (DTW) 0.7962 0.8021 0.8210

Pearson Correlation 0.6974 N/A 2 0.6732

J-Measure 0.6148 N/A N/A

Custom Support Data

Correlation Mining (L1) 0.7915 0.7659 0.7204

Correlation Mining (L2) 0.8423 0.7870 0.8334

Correlation Mining (DTW) 0.8631 0.8205 0.8532

Pearson Correlation 0.6030 N/A 0.6501

J-Measure 0.7398 N/A N/A

customer encounters a problem, s/he may not call Microsoft
immediately. Many of them often try several times to make
sure they cannot fix by themselves before they call in. Dif-
ferent customers have different delay time before their calls.
DTW distance can decrease the influence of latency values
[5].

By comparing our algorithm with the baseline algorithms
(Pearson correlation and J-Measure), we can see that our
algorithm has significant advantages.

4.4 Efficiency Study
Now, we shall study the efficiency of our algorithm. We

use synthetic datasets to evaluate the efficiency of our al-
gorithm, because we can manipulate the size of the dataset
flexibly.

In Fig. 7(a), we fix the value of sub-series length k, and
vary the event data size n. We can see that the CPU execu-
tion time increased by enlarging the data size. Because we
need to calculate the pair-wise distance among sub-series,
the computational cost is at O(n2). In Fig. 7(b), we fix the
size of event data, and vary the value of length k. Based on
the results, we can see that the running time of the program
is almost linear to the value of length k (note: we use L2 as
our distance measure in this experiment.).

4.5 Length of Sub-series
In this subsection, we study the influence caused by differ-

ent length values of sub-series k in the algorithm. We select
two event-time series pairs which are really correlated (CPU
Extensive Program and CPU usage; Memory Extensive Pro-
gram and Memory Usage). In this experiment, we use the
confidence coefficient as an indicator to evaluate the per-

1“NC” denotes not correlated
2“N/A” denotes no result.

0

10

20

30

40

50

60

70

80

90

10k 20k 30k 40k 50k 60k 70k 80k

C
P

U
 E

x
e

cu
!

o
n

 T
im

e
 (

s)

Size of Event Data

(a) Varying event data size

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80

C
P

U
 E

xe
cu

!
o

n
 T

im
e

 (
m

s)

Sub-series Length k

(b) Varying sub-series
length

Figure 7: Efficiency by varying data size and sub-
series length

formance of the analysis (as we have introduced in section
3.4.1). The results are shown in Fig. 8.

The first peak of the autocorrelation of CPU usage ap-
pears at the index of 5, as shown in Fig. 8(b). In Fig. 8(a),
the largest value of the Confidence coefficient appears just
at the index of k = 5. Similarly, in Fig. 8(d), the first peak
of the autocorrelation of Memory Usage appears is at the
index of 11. In Fig. 8(c), the value of the Confidence Coeffi-
cient is also at a peak when k = 11. From these results, we
can see that by using the first peak of the autocorrelation,
one can obtain a good configuration of the length k.

5. RELATED WORK
In this section, we briefly introduce some related research

efforts.

5.1 Correlation between Time Series Data
The correlation between two time series has been widely

studied, and some of them have been included in text books [15].
The Pearson correlation [8] is a basic correlation measure

0

10

20

30

40

50

60

70

80

1 6 11 16 21 26 31 36 41 46

C
o
n
fi
d
e
n
t
C
o
e
ffi
ci
e
n
t

Sub-series Length (k)

5

(a) Confidence Coefficient

-4

-2

0

2

4

6

8

10

1 9 17 25 33 41 49 57 65 73

A
u

to
C

o
rr

e
la

o

n

Lag

First Peak

5

(b) AutoCorrelation

0

5

10

15

20

25

30

1 7 13 19 25 31 37 43 49

C
o
n
fi
d
e
n
t
C
o
e
ffi
ci
e
n
t

Sub-series Length (k)

11

(c) Confidence Coefficient

-1000

-500

0

500

1000

1500

2000

2500

3000

1 8 15 22 29 36 43 50 57

A
u

to
C

o
rr

e
la

o

n

Lag

First Peak

11

(d) AutoCorrelation

Figure 8: The confidence coefficient value vs. sub-series length k, (a) (b):CPU intensive program and CPU
usage, (c) (d): memory intensive program and memory usage

between time series, which has been widely used in prac-
tice [32]. Some extensions of the Pearson correlation are
also widely used. For example, lagged correlation is an ex-
tension to correlate a lagged dataset with another unlagged
dataset using the Pearson product-moment method. In [31],
the author uses the lagged-correlation to estimate the lead
relationship between a set of time series. Because the Pear-
son correlation is sensitive outliers in data set, Spearman
Rank correlation and Kendall Rank correlation have been
used in some scenarios [27] to overcome the drawbacks of
Pearson correlation. In the Spearman correlation, data is
first sorted and ranked, e.g., rank 1 is assigned to the lowest
value. The Spearman Rank correlation is calculated by tak-
ing the Pearson product-moment correlation of the ranks in
the dataset. The Kendall correlation tries to measure the
similarity of the orderings in the dataset. Because there
is no ordering relationship among the different events, the
above rank based algorithms cannot be directly used in our
scenario.

5.2 Correlation between Event Data
Correlation between events have also been studied in many

works [13, 19, 25, 22, 11]. Here, correlation mainly means
the co-occurrence of different types of events. Because event
data generated in online services can naturally be regarded
as sequences, association rule mining algorithms [13] for se-
quence data can be directly used to analyze the correla-
tion among event data. For example, [19], the authors try
to construct the dependency relationships between differ-
ent system components by mining the co-occurrence among
the unconstructed log events generated from the system. In
[22], the authors add user guided information during the

event correlation mining. Therefore, this algorithm allows
users to effectively navigate the result. Correlation Mining
algorithms have also been used in some natural science. In
[25], the authors apply a correlation mining algorithm to
mine the correlation between climate events by analyzing
the historical climate data of the North Atlantic and China.

5.3 Two-sample Test
Two-sample Test is an important part of our work. For

univariate data, the classical two-sample test includes the
nonparametric Kolmogorov-Smirnov test and Mann Whit-
ney U test [21]. For multi-variant data, many methods have
been proposed in previous works [28, 10, 29]. In [28], the au-
thor uses the proportion of all r nearest neighbors in which
observations and their neighbors belong to the same sample
as a statistic. The algorithm proposed in [10] is a kernel
method for the two sample problem, this method maps the
distance between two observations into a reproducing ker-
nel Hilbert space (RKHS), and then uses Maximum Mean
Discrepancy to solve the problem. They further propose a
unifying framework by linking the two classes of statistics
(i.e., energy distances in statistics and distances between
distributions in RKHS) in [29]. In this paper, we use the
nearest neighbor based algorithm in [28] for simplicity. In
fact, the kernel based algorithms can also be applied in our
scenarios.

6. CONCLUSION AND FUTURE WORKS
In this paper, we have investigated the problem of cor-

relation mining between time series data and event data.
We have defined the correlation problem and proposed a
novel approach which is able to discover three important

aspects of event-time-series correlation: existence of cor-
relation, temporal ordering, and monotonic effect. In our
approach, we first transform the correlation problem to a
two-sample problem, use the nearest neighbors method to
solve such a two-sample problem and then evaluate the cor-
relation existence. To the best of our knowledge, this is the
first work to answer the three correlation questions between
event sequences and time series data for incident diagnosis.
The experiments on the data from a controlled environment
and two real datasets demonstrate the effectiveness and effi-
ciency of our algorithm. The proposed method has already
been implemented to an internal tool-set designed for service
problem diagnosis.

Our current method does not consider the event combi-
nation problem, that only a certain combination of multiple
events rather than a single type of event is correlated to a
time series. This problem is much more complex, and will
be a part of our future work.

7. REFERENCES
[1] Amazon’s s3 cloud service turns into a puff of smoke.

Information Week, Aug 2008.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang. Towards highly reliable
enter-prise network services via inference of multi-level
dependencies. In SIGCOMM, 2007.

[3] M. Basseville, I. V. Nikiforov, et al. Detection of
abrupt changes: theory and application, volume 104.
Prentice Hall Englewood Cliffs, 1993.

[4] D. J. Berndt and J. Clifford. Using dynamic time
warping to find patterns in time series. In Knowledge
Discovery and Data Mining, pages 359–370, 1994.

[5] Y. Chen, B. Hu, E. Keogh, and G. E. Batista. Dtw-d:
time series semi-supervised learning from a single
example. In KDD, pages 383–391. ACM, 2013.

[6] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating instrumentation data to
system states: A building block for automated
diagnosis and control. In OSDI, pages 231–244, 2004.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons,
T. Kelly, , and A. Fox. Capturing, indexing,
clustering, and retrieving system history. In Proc.
SOSP, pages 105–118, 2005.

[8] J. Cohen. Statistical power analysis for the behavioral
sciences. 1988.

[9] Q. Fu, J.-G. Lou, Q.-W. Lin, R. Ding, Z. Ye,
D. Zhang, and T. Xie. Performance issue diagnosis for
online service systems. In SRDS, October 2012.

[10] A. Gretton, K. M. Borgwardt, M. Rasch,
B. Schölkopf, and A. J. Smola. A kernel method for
the two-sample-problem. volume 19, page 513. MIT;
1998, 2007.

[11] B. Gruschke et al. Integrated event management:
Event correlation using dependency graphs. In Proc.
DSOM 98, pages 130–141, 1998.

[12] J. D. Hamilton. Time series analysis, volume 2.
Princeton university press Princeton, 1994.

[13] J. Han, M. Kamber, and J. Pei. Data mining: concepts
and techniques. Morgan kaufmann, 2006.

[14] J. N. Hoover. Outages force cloud computing users to
rethink tactics. Information Week, Aug 2008.

[15] R. A. Johnson and D. W. Wichern. Applied
multivariate statistical analysis. Pearson, 2007.

[16] S. Kandula, R. Chandra, and D. Katabi. What’s going
on? learning communication rules in edge networks.
SIGCOMM, 38(4):87–98, 2008.

[17] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal,
J. Padhye, and P. Bahl. Detailed diagnosis in
enterprise networks. In Proc. SIGCOMM, pages
243–254, 2009.

[18] J.-G. Lou, Q. Fu, Y. Wang, and J. Li. Mining
dependency in distributed systems through
unstructured logs analysis. SIGOPS Operating
Systems Review, 41(1):91–96, 2010.

[19] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu. Mining
program workflow from interleaved traces. In KDD,
pages 613–622. ACM, 2010.

[20] J.-G. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and
T. Xie. Software analytics for incident management of
online services: An experience report. In ASE. ACM,
November 2013.

[21] H. B. Mann and D. R. Whitney. On a test of whether
one of two random variables is stochastically larger
than the other. The annals of mathematical statistics,
18(1):50–60, 1947.

[22] H. R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and
B. Benatallah. Event correlation for process discovery
from web service interaction logs. VLDBJ,
20(3):417–444, 2011.

[23] J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

[24] G. Piateski and W. Frawley. Knowledge discovery in
databases. MIT press, 1991.

[25] S. C. Porter and A. Zhisheng. Correlation between
climate events in the north atlantic and china during
the last glaciation. Nature, 375:305–308, 1995.

[26] D. M. Powers. Evaluation: from precision, recall and
f-measure to roc, informedness, markedness &
correlation. JMLT, 2(1):37–63, 2011.

[27] B. Rosner. Fundamentals of biostatistics. Cengage
Learning, 2010.

[28] M. F. Schilling. Multivariate two-sample tests based
on nearest neighbors. Journal of the American
Statistical Association, 81(395):799–806, 1986.

[29] D. Sejdinovic, A. Gretton, K. Fukumizu, and B. K.
Sriperumbudur. Hypothesis testing using pairwise
distances and associated kernels. In ICML-12, pages
1111–1118, 2012.

[30] T. J. VanderWeele and J. M. Robins. Signed directed
acyclic graphs for causal inference. Journal of the
Royal Statistical Society, 72(1):111–127, 2010.

[31] D. Wu, Y. Ke, J. X. Yu, S. Y. Philip, and L. Chen.
Detecting leaders from correlated time series. In
Database Systems for Advanced Applications, pages
352–367. Springer, 2010.

[32] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real time.
In VLDB, pages 358–369. VLDB Endowment, 2002.

