microsoft.com Home   All Products  |   Support  |   Search  |   microsoft.com Home  
Microsoft

Microsoft Typography | Developer information | Windows glyph processing
Introduction | Overview | Glyph processing in detail | Conclusion and notes


Windows Glyph Processing

An overview and explication of advanced Windows text rendering, including the OpenType font format, the Windows Unicode Script Processor (Uniscribe), and the OpenType Layout Services library (OTLS).

By John Hudson, for Microsoft Typography


Introduction

In a relatively simple digital font architecture, as typified by the original TrueType format developed at Apple Computers, there is a one-to-one relationship between an encoded character and the glyph that represents it. Systems and applications that make use of such fonts do not need to make a distinction between character processing and glyph processing. In working with such fonts, it is most often convenient to think only in terms of character processing, or simply text processing: that is, the sequential rendering of glyphs representing character codes as input in logical order. When applications have needed to provide more complicated text processing for complex scripts [1] or sophisticated typography, they have generally made use of proprietary engines to shape text based on custom character sets, or have obliged users to resort to font switching to access variant glyph forms. The idiosyncratic nature of these solutions frequently results in text that cannot be exchanged outside of particular systems and applications.

The wide adoption of the Unicode Standard [2] for character encoding provides a means to make text interchangeable across different systems and between applications that implement the standard. The Unicode Standard is strictly concerned with character processing, and presumes that Unicode text strings will be input and stored in a simple sequence defined as 'logical order'. The Unicode Standard also presumes the existence of rendering systems above the Unicode text string that will, as necessary, reorder codepoints and affect sophisticated glyph processing to shape the rendering of the text through glyph substitution and positioning features. This article introduces the different elements of the Microsoft Windows implementation of Unicode character and glyph processing, and explains how they can be used by font and application developers to provide users with sophisticated typographic controls and the ability to process text in complex scripts.

This article explains three principal elements of Windows technology and their interaction: the OpenType font format, the Windows Unicode Script Processor (Uniscribe), and the OpenType Layout Services library (OTLS). The first part of the article provides an overview of Windows glyph processing, explaining the role of each of these elements and demonstrating how they render a sample string of complex script text. The second part of the article covers each of these elements in greater detail, explaining some of the internal workings of font tables, Uniscribe script shaping engines, and the interaction of OTLS with client applications. The audience for this article includes type designers and font vendors, software engineers and application developers. These groups do not always speak the same language, so I have tried to provide concise definitions, in the notes, of terminology that may be confusing for some readers; these and other notes are indicated in the text by bracketed numbers. One person's daily vocabulary is another's impenetrable jargon, and not all type designers are comfortable with terms such as API and DLL that are common currency among software engineers. Likewise, most engineers are likely to scratch their heads when typographers start speaking of nuts and mutton.


Next section: Overview


Notes

1. The term 'complex script' refers to any writing system that requires some degree of character reordering and/or glyph processing to display, print or edit. In other words, scripts for which Unicode logical order and nominal glyph rendering of codepoints do not result in acceptable text. Such scripts, examples of which are Arabic and the numerous Indic scripts descended from the Brahmi writing system, are generally identifiable by their morphographic characteristics: the changing of the shape or position of glyphs as determined by their relationship to each other. It should be noted that such processing is not optional, but is essential to correctly rendering text in these scripts. Additional glyph processing to render appropriately sophisticated typography may be desirable beyond the minimum required to make the text readable.

2. For more information about the Unicode Standard and the work of the Unicode Consortium and its technical committees, see www.unicode.org. I recommend that anyone developing Unicode applications or fonts invest in a copy of the published Unicode Standard Version 3.0 (ISBN 0-201-61633-5).


Next section: Overview



this page was last updated 7 November 2000
© 2000 Microsoft Corporation. All rights reserved. Terms of use.
comments to the MST group: how to contact us

 

Introduction | Overview | Glyph processing in detail | Conclusion and notes
Microsoft Typography | Developer information | Windows glyph processing