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Abstract 
Under-display camera is of great interest in the display industry 
potentially eliminating the display bezel and camera notch/hole in 
mobile devices. However, display panels cause complex signal 
modulation in the camera aperture which results in obscuration, 
attenuation and diffraction of the incident light. We propose a 
learning-based image restoration approach to enable a camera to 
operate underneath the display without affecting the display 
contrast and color gamut. 
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1. Introduction 
There has long been an interest in locating imaging systems behind 
or underneath displays. Transparent displays based-on LCD and 
OLED have been released, albeit with low resolution and reduced 
display contrast and color gamut [1, 2, 3]. Recently a smartphone 
vendor showed an under-display selfie camera with a customized 
low-resolution and transparent display region centered on the 
camera location [4]. Optical fingerprint sensors under a 
smartphone’s OLED display have been demonstrated but these are 
not capable of high-resolution, color imaging [5]. We present the 
combination of high resolution and color imaging through a high-
quality display.  

Placing a camera under a display conflicts with the needs of high-
quality camera imaging which conventionally requires a clear 
aperture to receive enough uninterrupted light from the scene. The 
display panel in front of the camera prevents fulfillment of the 
imaging requirements by modulating the incident light due to the 
display’s 3D structure. The display panel is typically composed of 
stacked optical layers such as polarizers, pixel structures, and a 
substrate. The pixel structure is purely opaque in metal TFTs whose 
lateral design determines the display’s pixel layout, resolution, 
light attenuation and resulting diffraction for camera imaging. 
Ideally a favorable display structure could be designed; however, 
the technology constraints in the display design limit what can be 
achieved.  Furthermore, the display and camera industries are so 
separated that we were motivated to investigate these imaging 
problems and construct solutions with existing display panels and 
cameras. 

Computationally, image deconvolution is well-established to 
reconstruct the original object from the blurred image [6, 
7]. Deconvolution is the inverse process of convolution and 
recovers the original signal from the point-spread-function (PSF)-
convolved image. The fidelity of the deconvolution process is 
dependent on the space-invariance of the PSF over the image field-
of-view (FOV) and on a low condition number for the inverse of 
the PSF [8]. For strongly non-delta-function-like PSFs such as 
those encountered when imaging through a display, the value of 
condition number can be large. For such PSFs an additional 

denoising step may be essential.  
In contrast, learning-based methods are in essence a complex fitting 
process which is decoupled from the above mathematical 
formalism. The high numerical flexibility in these methods also 
permits that the pre-defined PSF is space-dependent. In this paper, 
we propose a UNet architecture which is a U-shaped neural 
network composed of 3×3 convolutional layers and activation 
functions in the contraction and expansion paths [9]. The U-Net 
model preserves the local feature in the contraction path and 
transfers it to the expansion path. The learnable parameters are 
designed by the model structure and the parameter values are 
determined by data training. 

This paper covers the full scope of problem definition, system 
characterization, and learning-based image restoration. The major 
factors of image degradation are addressed by the 3D structure of 
display panel. The performance of our proposed method is 
characterized by measuring the modulation transfer function 
(MTF) using a slanted-edge test and the signal-to-noise ratio 
(SNR), enabling us to define a system resolution and noise-power 
budget. The system budget clearly shows what we can achieve 
now, and what may be achievable in the future. The learning-based 
method is discussed in terms of the model design and the data 
collection. Finally, we demonstrated the effectiveness of this 
approach by recovering complex test images. 

 

2. System Characteristics 
Two types of display panels are discussed for our case study as 
shown in Figure 1. One is a transparent OLED (tOLED) for a large-
scale 4K display with a pixel pitch of 315 micron; the transmittance 
is 18.5% with 20% open area on a clear substrate. The other is a 
Pentile OLED (pOLED) for mobile device. The Pentile structure is 
evidently more complex than the stripe structure of tOLED. The 
transmittance is only 3% with 23% open area and there is 
attenuation and color shift due to the yellow polyimide substrate.   

 

(a) tOLED           (b) pOLED 

Figure 1. Two samples of display panels: (a) tOLED and (b) 

pOLED 
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(a) tOLED   (b) pOLED 

Figure 2. Point-spread functions through the two display 
panels: (a) tOLED and (b) pOLED 

 

Image degradation mainly arises from contrast reduction resulting 
from diffraction from the pixel pattern, and signal attenuation from 
the stacked layers in the display panel. Figure 2 shows PSFs 
measured through tOLED and pOLED samples using a HeNe laser 
at 633nm. The rectangular slits of the tOLED screen act like an 
amplitude diffraction grating and produce six strong side lobes only 
a few pixels away from the main lobe. However, the complex 
structure of the pOLED screen diffracts light into many sparse side 
lobes, each of which is relatively weaker than those of the tOLED. 

To evaluate the image degradation and restoration, we used the 
slant edge method that measures the spatial frequency response as 
an approximation of the modulation transfer function [10, 11, 12]. 
In the test, a tilted square pattern is captured through the display 
samples and the raw image is recovered by our image restoration 
method (Figure 3). In the tOLED case, light attenuation occurs due 
to the 18.5% sample transmission and the edge sharpness falls 
strongly owing to the diffracted PSF. In the pOLED case, light 
attenuation and color shift occur due to the 3% transmission and 
yellow polyimide substrate. Although the noise impact is very 
strong in the pOLED, the overall subjective loss in sharpness is not 
very bad compared to that of the tOLED. In both cases, the 
recovered images are subjectively comparable to the original 
image. 

To quantitatively analyze the image data, we used a linear integral 
over the frequency response, although other single-figure image 
quality metrics could be used.  

Linear Integral = MTF(f) df 

 

(a) tOLED 

 

(b) pOLED 

Figure 3. Slant edge test for (a) tOLED and (b) pOLED: 
original, raw, and recovered images 

 
(a) tOLED  (b) pOLED 

Figure 4. MTFs for (a) tOLED and (b) pOLED 

 

The tOLED test resulted in integrated contrasts for the original 
(0.147), raw (0.043), and recovered (0.133) images. In the same 
manner, the pOLED test resulted in integrated contrasts for the 
original (0.138), raw (0.024), and recovered (0.124) images. The 
image restoration recovered 90% contrasts for both the tOLED and 
pOLED samples in Figure 4.   

 

The system performance is summarized by tabulating the 
characteristics of the original, raw, and recovered images in terms 
of MTF and signal-to-noise ratio (SNR) as shown in Table 1 and 2. 
Note that the Neural Network (NN) gain indicates the image 
improvement produced by the NN in the contexts. The MTF table 
shows the NN gain from the blurry raw image to the sharp recovery. 
The tOLED and pOLED show the NN gains of 3 and 5.29 resulting 
in 90% contrasts in the recovery. The SNR table shows how the 
NN gain recovers the noisy image. The tOLED and pOLED show 
the NN gains of 2 dB and 10 dB resulting in -5.0 dB and -5.2 dB 
SNR loss. The SNR was obtained by using a selected region of 100 
by 200 pixels in the image data. Therefore, the learning-based 
method mainly focused on deblurring to improve the contrast and 
denoising to improve the SNR in the samples. This performance 
trend is determined by the data training dependent with the display 
samples. The MTF performance is fixed by both the panel design 
and the NN gain, however, the SNR performance could be 
improved by increasing the number of measurements.  

 

Table 1. MTF budget for tOLED and pOLED 

Camera under tOLED Camera under pOLED 

 Fraction  Fraction 

Contrast 0.3 Contrast 0.17 

NN gain 3 NN gain 5.29 
Total Loss 0.9 Total Loss 0.9 

 

Table 2. SNR budget for tOLED and pOLED 

Camera under tOLED Camera under pOLED 

 Fraction dB  Fraction dB 

Transmission 0.2 -7.0 Transmission 0.03 -15.2 

NN gain 1.58 2.0 NN gain 10 10.0 

Total Loss 0.32 -5.0 Total Loss 0.3 -5.2 
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Figure 5. Network structure for Unet

3. Learning-based Image Restoration 
The degraded measurement 𝑦 is formulated by the convolution of 
the original image 𝑥 and the PSF adding the noise 𝑛. The PSF 
represents the blur kernel resulted from diffraction. The image 
reconstruction 𝑥 is modeled by solving the maximum a posteriori 
(MAP) problem composed of the least squares term and the 
regularization term [13].   

𝑥 = argmin
1

2𝜎
‖𝑦 − 𝑦‖ + 𝜆Φ(𝑥), 

Where 𝜎 is the noise level and Φ(𝑥) is the regularization term. The 
objective function of the L-1 loss ℒ (Θ) is applied to train the 
model for image reconstruction. The reconstruction ℱ(𝕪  ;  Θ)  is 
estimated by the observation of degraded image 𝕪  and the 
learnable network parameters Θ, and it is compared to the original 
image 𝕩  to calculate the loss. The network parameters Θ are 
defined by the model structure and they are learned within a 
training batch of images.   

ℒ (Θ) =
1

𝑁
ℱ(𝕪  ;  Θ) − 𝕩 , 

Where 𝑁 is the total number of images inside a training batch. A 
UNet structure was used to train the image restoration model which 
splits the encoder into two sub-encoders. One sub-encoder stores 
residual details for the decoding process and the other learns 
contents from encoding the degraded image. The proposed model 
takes a 4-channel raw 16-bit image (y) and returns a RGB 8-bit 
recovery (x) as shown in Figure 5. 

 

A display-camera imaging system was designed to collect a set of 
training dataset degraded by display samples. A 4K LCD display 
showed the training dataset images sequentially. A 12 MP Point-
Grey camera with on-camera image binning producing 2 MP 
images was used to image the display at a distance of 30 cm. The 
camera lens of aperture F/1.8 was focused on the 4K LCD’s 
content. The camera operates at 8 FPS, 125 ms shutter speed, and 
data is output using raw 16-bit image format. The low frame rate 
and long exposure time resulted from the light attenuation via the 
tOLED and pOLED display samples. Furthermore, the camera gain 
was set to 6 dB for tOLED sample and to 25 dB for pOLED to 
compensate the different level of light attenuation. The same 
camera conditions are also used in the tOLED and pOLED 
reconstruction steps. The overall setup for data collection was 
enclosed by a black box to avoid any impact from ambient 
illumination. 

To adjust the monitor gamma, 2.2 Transform is set during the data 
collection. The data captures with and without the display sample 
are well-aligned to each other, typically within one or two pixels; 
however, any small image shifts caused by the display sample are 
adjusted by off-line image registration. Unet requires the power of 
2 training size and only central region of (1024, 2048) pixels is 
cropped from original 2 MP of (1040, 2048) pixels for NN training. 
The collected data image set was split as 200 training, 40 
validation, and 60 testing. This number of images is relatively 
small, but the images are themselves relatively large compared to 
the number of free parameters in the network. Increasing the 
number of images did not result in discernible improvement in 
image quality of the final trained images.  We trained the model 
using the Adam optimizer with a learning rate of 1e-4 and a decay 
factor of 0.5 after 200 epochs. The training stopped at epoch 400 
and the best validation performance was selected. 

 

The results of image restoration trained on the pair-wise data are 
shown in Figure 6. The recovered images are sharper and less noisy 
for both the tOLED and pOLED cases although some of image 
features are lost from the original images. The recovery differently 
improved the sharpness and the noise for the two samples. The 
quantitative results are also reported by the peak signal-to-noise 
ratio (PSNR) which is the difference between the recovered image 
and the original image. In the tOLED the PSNR increased from the 
raw image of 28.8 dB to the recovered image of 36.7 dB by the gain 
of 7.9 dB. In the pOLED the PSNR increased from the raw image 
of 15.4 dB to the recovered image of 30.5 dB by the gain of 15.1 
dB. The tOLED has the higher PSNR value in the recovered images 
but the pOLED has the higher PSNR gain. 

 

4. Conclusion and Discussion 
The performance of an under-display camera is optically defined 
and characterized by MTF and SNR in two types of display 
samples. A pairwise data collection method between training data 
and display-degraded data is implemented using a high-resolution 
LCD display. A learning-based model is designed and trained to 
deal with both diffraction blur and noise in the image degradation. 
However, the inherent low SNR issue is not fully solved by this 
implementation of the learning-based method. In conclusion, we 
hope that this paper motivates the display industry to consider the 
needs of under-display cameras when designing future pixel 
structure. 
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(a) tOLED      (b) pOLED 

Figure 6. Image restoration for (a) tOLED and (b) pOLED. 
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