In the news | Github Blog
Code completion remains the most widely used GitHub Copilot feature, helping millions of developers stay in the flow every day. Our team has continuously iterated on the custom models powering the completions experience in GitHub Copilot driven by developer feedback.…
编者按:随着大语言模型(LLMs)推理能力的不断提升,如何在训练过程中保持稳定的优化效率与可验证性,成为强化学习研究的重要方向。由微软亚洲研究院与清华大学联合提出的 VL Norm 方法,针对可验证奖励强化学习(RLVR)中因输出长度波动导致的梯度方差过大问题,给出了理论上无偏且方差最小的解决方案。在多种任务和模型规模上,VL Norm 均显著提升了收敛速度与训练稳定性,展现出了强化学习优化的新范...
| Hussein Mozannar, Matheus Kunzler Maldaner, Maya Murad, Jingya Chen, Gagan Bansal, Rafah Hosn, and Adam Fourney
SentinelStep enables AI agents to handle monitoring tasks that run for hours or days, like watching for emails or tracking prices. It works by managing when agents should check and their context, avoiding wasted resources and missed updates.
In the news | FuturIA
At a time when artificial intelligence poses ethical dilemmas, people are deciding to use this instrument to generate a positive impact on society. In this context, a few days ago, an expert in artificial intelligence visited Argentina and presented his…
编者按:当大模型的规模不断突破极限,AI 训练的算力需求也在以指数级攀升。传统 GPU 已难以兼顾性能与能效,异构 AI 芯片逐渐成为新趋势。但如何让不同计算单元“协同作战”,仍是编译领域的一大难题。北京大学、微软亚洲研究院、帝国理工学院与上海交通大学联合团队研发的 PipeThreader 系统,旨在解决这一核心挑战。PipeThreader 首次提出“流水线导向编译”理念,让编译器能够像“流水...
编者按:量化投资正迎来由人工走向智能的深刻变革。随着大语言模型(LLMs)与多智能体系统在金融研究中的快速发展,如何让 AI 真正融入量化投研流程、实现从假设生成到策略回测的全链路自动化,成为学术界与产业界共同关注的前沿问题。 继开源通用自动化研发框架 R&D-Agent 之后,微软亚洲研究院进一步推出面向量化金融领域的专项版本 R&D-Agent-Quant(R&D-Ag...
In the news | infobae
Juan M. Lavista Ferres, Corporate Vice President and Chief Data Scientist of the AI for Good Lab at Microsoft Corporation, presented his book Artificial Intelligence for Good. AI for Good: Applications in Sustainability, Humanitarian Action, and Health, together with Editorial TAEDA and within the framework of…
In the news | What will AI Mean for Humanity?
E. Glen Weyl appeared on a panel at Harvard University about the implications of AI for the human soul.
| Eric Horvitz, Bruce Wittmann, and James Diggans
In the fall of 2023, breakthroughs in generative AI had researchers proclaiming a new era for medicine and healthcare.