Learning to be a depth camera for close-range human capture and interaction

Established: July 14, 2014




We present a machine learning technique for estimating absolute, per-pixel depth using any conventional monocular 2D camera, with minor hardware modifications. Our approach targets close-range human capture and interaction where dense 3D estimation of hands and faces is desired. We use hybrid classification-regression forests to learn how to map from near infrared intensity images to absolute, metric depth in real-time. We demonstrate a variety of human computer interaction scenarios.