Abstract

We describe a framework for training-oriented simulation of temporal bone surgery. Bone dissection is simulated visually and haptically, using a hybrid data representation that allows smooth surfaces to be maintained for graphic rendering while volumetric data is used for haptic feedback. Novel sources of feedback are incorporated into the simulation platform, including synthetic drill sounds based on experimental data and simulated monitoring of virtual nerve bundles. Realistic behavior is modeled for a variety of surgical drill burrs, rendering the environment suitable for training low-level drilling skills. The system allows two users to independently observe and manipulate a common model, and allows one user to experience the forces generated by the other’s contact with the bone surface. This permits an instructor to remotely observe a trainee and provide real-time feedback and demonstration.