Detecting Doctored Images Using Camera Response Normality and Consistency
- Zhouchen Lin ,
- Rongrong Wang ,
- Xiaoou Tang ,
- Heung-Yeung Shum
Published by Association for Computing Machinery, Inc.
The advance in image/video editing techniques has facilitated people in synthesizing realistic images/videos that may hard to be distinguished from real ones by visual examination. This poses a problem: how to differentiate real images/videos from doctored ones? This is a serious problem because some legal issues may occur if there is no reliable way for doctored image/video detection when human inspection fails. Digital watermarking cannot solve this problem completely. We propose an approach that computes the response functions of the camera by selecting appropriate patches in different ways. An image may be doctored if the response functions are abnormal or inconsistent to each other. The normality of the response functions is classified by a trained support vector machine (SVM). Experiments show that our method is effective for high-contrast images with many textureless edges.
Copyright © 2004 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library -http://www.acm.org/dl/.