Plotkin has advocated the combination of linear lambda calculus, polymorphism and fixed point recursion as an expressive semantic metalanguage. We study its expressive power from an operational point of view. We show that the naturally call-by-value operators of linear lambda calculus can be given a call-by-name semantics without affecting termination at exponential types and hence without affecting ground contextual equivalence. This result is used to prove properties of a logical relation that provides a new extensional characterisation of ground contextual equivalence and relational parametricity properties of polymorphic types.