A Principled Deep Random Field Model for Image Segmentation

  • Pushmeet Kohli ,
  • Anton Osokin ,
  • Stefanie Jegelka

Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on |

Published by IEEE


We discuss a model for image segmentation that is able to overcome the short-boundary bias observed in standard pairwise random field based approaches. To wit, we show that a random field with multi-layered hidden units can encode boundary preserving higher order potentials such as the ones used in the cooperative cuts model of [12] while still allowing for fast and exact MAP inference. Exact inference allows our model to outperform previous image segmentation methods, and to see the true effect of coupling graph edges. Finally, our model can be easily extended to handle segmentation instances with multiple labels, for which it yields promising results.