Hundreds of millions of users each day use web search engines to meet their information needs. Advances in web search effectiveness are therefore perhaps the most significant public outcomes of IR research. Query expansion is one such method for improving the effectiveness of ranked retrieval by adding additional terms to a query. In previous approaches to query expansion, the additional terms are selected from highly ranked documents returned from an initial retrieval run. We propose a new method of obtaining expansion terms, based on selecting terms from past user queries that are associated with documents in the collection. Our scheme is effective for query expansion for web retrieval: our results show relative improvements over unexpanded full text retrieval of 26%–29%, and 18%–20% over an optimised, conventional expansion approach.