The Complexity of Pure Nash Equilibria
- Alex Fabrikant ,
- Christos Papadimitriou ,
- Kunal Talwar
STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing |
Published by Association for Computing Machinery, Inc.
We investigate from the computational viewpoint multi-player games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLS-complete in general. We discuss implications to non-atomic congestion games, and we explore the scope of the potential function method for proving existence of pure Nash equilibria.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.