We study the problem of concurrently supporting multiple radios with different capabilities and interfaces on a single sensor node platform. Through a detailed experimental study on hardware multi-radio platforms, using the two representative radio technologies 802.15.4 and 802.11, we identify bottlenecks and design tradeoffs that are usually overlooked and that, as we show, have a significant impact on the sensor network”s performance and energy efficiency. Our findings are threefold. We show that a proper pairing of processor and radio is crucial for taking the full advan-tage of the energy efficiency of higher bandwidth radios. The processor/radio pairing affects the energy balance of a sensor node, thus making the design of dynamic switch-ing among multiple radios more challenging. Second, we demonstrate and quantify the impact of network traffic on energy consumption of a sensor node while varying net-work parameters, and illustrate the deficiency of existing energy-optimizing protocols. Our results in