In the news | Microsoft Source Asia
今天,微软宣布在新加坡成立微软亚洲研究院(新加坡),这是微软在东南亚设立的首个研究实验室,得到了新加坡经济发展局的大力支持。新加坡实验室旨在推动人工智能领域的前沿研究,携手合作伙伴共创面向关键行业的 AI 解决方案,并培养新一代 AI 人才。 新加坡人力部长兼贸工部主管能源与科技部长陈诗龙(Tan See Leng)与微软全球资深副总裁、微软研究院院长、微软全球研究与创新孵化负责人 Peter L...
编者按:当人工智能浪潮席卷全球,算法如何突破实验室围墙,在真实世界中创造价值?微软亚洲研究院(新加坡)首席研究员徐新兴博士用十年求索给出了自己的答案。从南洋理工大学的学术研究,到新加坡科技研究局的跨领域实践,再到成为微软亚洲研究院在新加坡的首位研究员,他始终在“算法研究”与“产业实践”的交汇中寻找创新的突破口。 尽管近年来人工智能持续快速发展,但始终面临一个难题:如何将算法模型从理论实验推向产业落...
Xinxing Xu is helping shape the work of Microsoft Research Asia – Singapore by turning advanced AI research into real-world solutions. Learn how he collaborates across sectors and disciplines to drive responsible innovation throughout Southeast Asia.
| Amber Hoak, David Tittsworth, Kate Lytvynets, Scott Counts, Weiwei Yang, Ben Cutler, and Jonathan McLean
Semantic Telemetry helps LLMs run efficiently, reliably, and in near real-time. Learn about the engineering behind that system, including the trade-offs and lessons learned along the way—from batching strategies to token optimization and orchestration.
Given a language model, can we tell whether it is truly reasoning, or if its performance owes only to pattern recognition and memorization?
编者按:大语言模型(LLMs)在语言生成与基础推理中已展现出强大的能力,但它们在数学解题上的能力仍存在明显短板,尤其是难以兼顾复杂计算与定理证明。这背后的关键原因在于,现有模型普遍依赖于单一的推理范式(如自然语言、代码或符号推理),缺乏人类思考问题时那种灵活的推理能力。 为此,微软亚洲研究院与清华大学联合提出了“推理链”(Chain-of-Reasoning, CoR)框架,引入了自然语言、代码与...
| Kathleen Sullivan and Amanda Craig Deckard
In the series finale, Amanda Craig Deckard returns to examine what Microsoft has learned about testing as a governance tool. She also explores the roles of rigor, standardization, and interpretability in testing and what’s next for Microsoft’s AI governance work.