
An open operating system for a single-user machine

Butler W. Lampson

Xerox Research Center
Palo Alto, California 94304

Robert F. Sproull

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

The file system and modularization of a single-user
operating system are described. The main points of
interest are the openness of the system, which establishes
no sharp boundary between itself and the user's programs,
and the techniques used to make the system robust.

1. Introduction

In the last few years a certain way of thinking about
operating systems has come to be widely accepted.
According to this view, the function of an operating system
is to provide a kind of womb (or, if you like, a virtual
machine) within which the user or her program can live
and develop, safely insulated from the harsh realities o f
the outside world [2, 5, 13]. One of the authors, in fact,
was an early advocate of such "closed" systems [12]. They
have a number of attractive features:

when the hardware is too dreadful for ordinary mortals
to look upon, concealment is a kindness, if not a
necessity;

useful and popular facilities can be made available in a
uniform manner, with the name binding and storage
allocation required to implement them kept out o f the
way;

the system can protect itself from the users without
having to make any assumptions about what they do
(aside from those implicit in the definition of the virtual
machine);

a more robust facility can perhaps be provided if all o f
the underlying structure is concealed.

On the other hand, a good deal may be lost by putting too
much distance between the user and the hardware [4],
especially if she needs to deal with unconventional input-
output devices. Furthermore, a-lot of flexibility is given

Permission to copy without lee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM0-89791-O09-5/79/1200/0098 $00.75

up by the flat, all-or-nothing style of these systems, and it
is extremely difficult for a user to extend or modify the
system because of the sharp line which is drawn between
the two.

In this paper we explore a different, more "open"
approach: the system is thought of as offering a variety o f
facilities, any of which the user may reject, accept, modify
or extend. In many cases a facility may become a
component out of which other facilities are built up: for
example, files are built out of disk pages. When this
happens, we try as far as possible to make the small
components accessible to the user as well as the large ones.
The success of such a design depends on the extent to
which we can exploit the flexibility of the small
components without destroying the larger ones. In
particular, we must pay a great deal o f attention to the
robustness of the system, i.e., recovery from crashes and
resistance to misuse.

Another aspect of our system is that the file system and
communications are standardized at a level below any of
the software in the operating system. In fact, it is the
representation of files on the disk and of packets on the
network that are standardized. This has permitted
programs written in radically different languages (BCPL
[14], Mesa [8], Lisp [7] and Smalltalk [10]; the former came
first, and is the host language of the software described in
this paper) and executed using radically different
instruction sets (implemented in writeable microcode) to
share the same file system and remote facilities. In doing
so, they do not give up any storage to an operating system
written in a foreign langtiage, or any cycles in switching
from one programming environment and instruction set to
another at every access to disk storage or communications.

The price paid for this flexibility is that any change in
these representations requires changing several pieces of
code, written in several languages and maintained by
several different people; the cost of this rewriting is so
high that it is effectively impossible to make such changes.
Thus the approach cannot be recommended when
processor speed and memory are ample; standardization at
a higher level is preferable in this case. In our situation,
however, the policy has made many major applications of
the machine possible which would otherwise have been
completely infeasible. Futhermore, we have found that
these restrictions have caused few practical problems, in
spite of the fact that the range of uses of the system has
been far greater than was initially anticipated.

98

In a multi-user system, of course, there must be
compulsory protection mechanisms which ensure equitable
and safe sharing of the hardware resources, and this
consideration sets limits to the openness which can be
achieved. Within these limits, however, much can be
done, and indeed the facilities discussed below can be
provided in a protected way without any great changes,
although this paper avoids an explicit analysis of the
problem by confining itself to a single-user system.

To describe an entire system in this way would be a
substantial undertaking. We will confine ourselves here to
the disk file system, the method of doing world swapping,
and the way in which the system is constructed out of
packages.

2. Background

The operating system from which the examples in this
paper are drawn was written for a small computer called
the Alto [16], which has a 16-bit processor, 64k words of
800 ns memory, and one or two moving-head disk drives,
each of which caa store 2.5 megabytes on a single
removable pack and can transfer 64k words in about one
second. The machine and system can also support
another disk with about twice the size and performance.
The machine has no virtual memory hardware. The
processor executes an instruction set that supports BCPL,
including special instructions to for procedure calls and
retu rns.

The system is written almost entirely in BCPL, and in fact
this language is considered to be one o f the standard ways
of programming the machine. The compiler generates
ordinary machine instructions, and uses no runtime
support routines except for a small body of code that
extends the instruction set slightly.

Only one user at a time is supported, and peripheral
equipment other than the disk and terminal is infrequently
used. As a result, the current version of the system has
only two processes, one of which puts keyboard input
characters into a buffer, while the other does all the
interesting work. The keyboard process is interrupt-driven
and has no critical sections; hence there are no
synchronization primitives and no scheduler other than the
hardware interrupt system. As a result, the system does
not control processor allocation, and in fact gets control
only when some system facility is called by a user
program. It does control storage allocation to some extent,
both in main memory and on the disk, in order to make it
possible for the user's programs to coexist and to call each
other.

Thus the system can reasonably be viewed as a collection
of procedures which implement various potentially useful
abstract objects. There is no significant difference between
these system procedures and a set of procedures which the
user might write to implement his own abstract objects. In
fact, the system code is made available as a set o f
independent subroutine packages, each implementing one
of the objects, and these packages have received a great
deal of independent use, in applications which do not need
all the services of the system and cannot afford its costs.

There are several kinds of abstract object: input-output
streams, files, storage zones, physical disks. All of these
objects are implemented in such a way that they can be
values of ordinary variables; since BCPL is a typeless
language this means that each object can be represented by
a 16-bit machine word. In many cases, of course, this
word will be a pointer to something bigger.

The streams are copied wholesale from Stoy and Strachey's
OS6 system [15], as are many aspects of the file system.
We give a summary description here for completeness. A
stream is an object which can produce or consume items.
Items can be arbitrary BCPL objects: bytes, words, vectors,
other streams etc. There is a standard set of operations
defined on every stream:

Get an item from the stream;

Put an item into the stream (normally only one of these
is defined);
Reset, which puts the stream into some standard initial
state (the exact meaning of this operation depends on
the type of the stream);

Test for end of input;

and a few others. These operations are invoked by
ordinary BCPL procedure calls.

A stream is thus something like a Simula class [6]. It
differs from a class in that the procedures which
implement the operations are not the same for all streams,
and indeed can change from time to time, even for a
particular stream. A stream is represented by a record
(actually a BCPL vector) whose first few components
contain procedures which provide that stream's
implementation of the standard operations. The rest of
the record holds state information, which may vary from
stream to stream (e.g. word counts, pointers to buffers,
disk addresses, or whatever is appropriate). The size of the
record is not fixed, but rather is determined entirely by the
procedure which creates the stream.

It is also possible for the record to contain procedures
which implement non-standard operations (e.g. set buffer
size, read position in a disk file, etc.). Alternatively,
arbitrary procedures can be written which perform such
operations on certain types of stream. In both cases the
procedure receives the record which represents the stream
as an argument, and can store any permanent state
information in that record. Of course, a program which
uses a non-standard operation sacrifices compatibility,
since it will only work with streams for which that
operation is implemented.

This scheme for providing abstract objects with multiple
implementations is used throughout the system. Each
abstract object is defined by the operations which can be
invoked on it; the semantics of each operation are defined
(more or less rigorously). Any number of concrete
implementations are possible, each providing a concrete
procedure for each of the abstract operations. Hierarchical
structures can be built up in this way. For instance, the
procedure to create a stream object of concrete type "disk
file stream" takes as parafneters two other objects: a disk
object which implements operations to access the storage
on which the file resides, and a zone object which is used
to acquire and release working storage for the stream.

99

3. Pages and files

The system organizes long-term storage (on disk) into files,
each of which is a sequence of fixed-size pages; every page
is represented by a single disk sector. Although a file is
sufficient unto itself, one normally wants to be able to
attach a string name to it, and for this purpose an auxiliary
directory facility is provided. Since the integrity o f long-
term storage is of paramount importance to the user, a
scavenging procedure is provided to reconstruct the state
of the file system from whatever fragmented state it may
have fallen into. The requirements of this procedure
govern much of the system design. The remainder of this
section expands on the outline just given.

3.1 Pages

The simplest object which can be used for long-term
storage is a page. It consists of:

an address-one word which uniquely specifies a
physical disk location (H);

a label, which consists of:
F: a file identifier-two words (A);
V: a version n u m b e r - o n e word (A);
PN: a page n u m b e r - o n e word (A);
L: a length (the number of bytes in this page that

contain da ta) -one word (A);
a next l i nk -one word (H); NL:

PL: a previous l i nk -one word (H);

a value- 256 data words (A).

The information which makes up a page is of two kinds:
absolutes (A) and hints (H). The page is completely
defined by the absolutes. The hints, therefore, are present
solely to improve the efficiency of the implementation,
Whenever a hint is used, it is checked against some
absolute to confirm its continued validity. Furthermore,
there is a recovery operation which reconstructs all the
hints from the absolutes.

Thus a page has a unique absolute name, which is the file
identifier, version number and page number (represented
by (FV, n), where n is the page number and FV is the file
identifier and version), and it has a hint name, which is the
address. The ful l name (FN) of a page is the pair (absolute
name, hint name). The links of the page (FV, n) are the
addresses of the pages whose absolute names are (FV,
n - 1) and (FV, n+ 1), or NIL if no such pages exist. The
basic operations on a page are to read and write the data,
and to read the links, given the full name. Note that it is
easy to go from the full name of a page to the full names
of the next and previous pages.

3.2 Files

A file is a set of pages with absolute names (FV, 0), (FV,
1),...,(FV, n). The name of page (FV, 0) is also the name
of the file. The basic operations on files are

create a new, empty file;
add a page to the end of a file;
delete one or more pages from the end;
delete the entire file.

Thus, if page (FV, n) exists, pages (FV, /) exist for all i
between 0 and n. Hence, if the address of one page o f a

file is known, every page can be found by following the
links. If (FV, n) is the last page o f the file, then pages
(FV, 0 for i<n have L=512 (i.e., they are full o f data), and
the last page has L<512.

The data bytes of the file are contained in pages 1 through
n. Page 0 is called the leader page, and contains all the
properties of the file other than its length and its data:

dates o f creation, last write, and last read (A);
a string called the leader name, discussed in section 3.5
(A);
the page number and disk address of the last page (H);
a maybe consecutive flag (H).

3.3 Representation o f pages

The physical representation of a page on the disk is called
a sector, and consists of three parts:

a header, which contains the disk pack number
(different for each removable pack) and the disk
address;

a label, which contains the seven words specified in
Section 3.1;

a value, which contains the 256 data words.

A single disk operation can perform read, check or write
actions independently on each of these parts, with the
restriction that once a write is begun, it must continue
through the rest of the sector. A check action compares
data on the disk with corresponding data taken from
memory, word by word, and aborts the entire operation if
they don't match. If a memory word is 0, however, it is
replaced by the corresponding disk word, so that a check
action is a simple kind of pattern match.

The system uses these facilities to make the disk a rather
robust storage medium. Disk pages are always accessed by
their full names. The label of a sector is always checked
before it is written, and is written on only three occasions:

When the page is f reed- I t s full name must be given,
and the check is that the label is the right one. Then
ones are written into label and value, to ensure that any
attempt to treat the page as part of a file will fail with a
label check error;

The first time the page is written after it has been
al located-the check is that the page is free. Then the
proper label for the page is written.

In order to change the length of the f i l e -The label of
the last page is read and checked. Then it is rewritten,
possibly with new values of L and NL.

This scheme costs a disk revolution each time a page is
allocated or freed, but it makes accidental overwriting o f a
page quite unlikely. On any other write the label is
checked, at no cost in time. The check action is
distinguished from a read so that a subsequent write
operation can be aborted before anything is written,
without taking an extra revolution. The label is also
checked on reads, of course. If the checks succeed, it is
certain that the hint (address) used to access a disk page
actually leads to the page specified by tile absolute part o f
the full name. As we shall see below, it is also possible to

100

find a page from the absoliate name alone (though not very
efficiently) and to reconstruct all the hint names from the
absolute names.

A disk contains a file called the disk descriptor with a
standard name and disk address. In it are:

the allocation map, a bit table indicating which pages
are free (H);

the disk shape, i.e., number of tracks, surfaces, and
other information needed to parameterize the disk
routines for a particular model of disk (A);

the name of the root directory (H).

Note that the allocation map is a hint because the absolute
information about which pages are free is contained in the
labels. If the map says that a page is free, the allocator
marks it busy when allocating it, and when the label check
described above fails, the allocator is called again to obtain
another page. Thus a page improperly marked free in the
map results in a little extra one-time disk activity. A page
improperly marked busy will never be allocated; such lost
pages are recovered by the Scavenger described in Section
3.5.

Our implementation of the disk descriptor is slightly
different from the description above. The main directory
has a standard name and disk address, and points to the
disk descriptor file. This scheme arose because the disk
descriptor was added to the file system data structure when
it became apparent that the disk shape must be recorded
in some way. The description given above reflects the
logical relationship between the disk descriptor and the
main directory (i.e., that's how we should have done it).

3.4 Directories

So far we have constructed a data storage facility based on
pages, and an allocation facility based on files. Allocation
is not provided at the page level because losing track o f
pages is too easy, which in turn is because a page, being of
fixed size, cannot be a logical unit of storage. A file, on
the other hand, can be of arbitrary size and hence is a
suitable receptacle for a collection of data which the user
views as a unit (as long as it isn't too small). Since a file is
a logical unit, moreover, it should have a logical name, i.e.,
a string name, as well as its unique file identifier, and the
name should be interpreted in some context, so that names
can be assigned independently without fear of conflict.

This is the familiar line of reasoning which leads to a tree-
structured directory hierarchy [5]. Our system takes a
somewhat different tack (following OS6) because of our
desire to treat files as independent objects in their own
right. We take the view that any operation on a file can be
performed with no more than a knowledge of its full name
(which is the full name of its first page), and that a
separate mechanism exists for associating names with files.
This is done by a file called a directory, which contains a
set of pairs (string, full name). A file may appear in any
number of directories. Since there is nothing special about
a directory from the point of view of the file system, it is
possible to have a tree, or indeed an arbitrary directed
graph, of directories. We do need to be able to identify all
the directories for the scavenging procedure described
below, and to this end we reserve a subset of the file
identifiers for directory files.

A further "implication (and here we part company with
OS6) is that it must be possible to recover some logical
name from the file itself, so that the file can survive even if
the directory entries for it are lost or scrambled. This is
the purpose of the leader name in the leader page; its
significance should be apparent from the roles which it
plays in scavenging. The information in the leader page is
considered to be absolute, since this is a name by which
the file can be located even if all the directory entries for it
are destroyed. Directory entries, by contrast, are taken less
seriously, although they are not entirely redundant and
hence cannot be treated as pure hints. I f a directory is
destroyed, we don't lose any files, but we do lose some
information, namely the information that a certain set of
files was referenced from that directory by a certain set o f
names.

3.5 Scavenging

By reading all the labels on the disk, we can check that all
the links are correct (reconstructing any that prove faulty),
obtain full names for all existing files, and produce a list of
free pages. To do this, all we have to do is create a list of
all the labels not marked free and sort it by absolute name.
If there is enough main storage to hold a table with 48 bits
per sector, a suitable choice of data structure allows this
processing to be done without any auxiliary storage. This
is in fact the case for the machine's standard disks. Larger
disks require this list to be written on a specially reserved
section of the disk.

We can then read all the directories and verify that each
entry points to page 0 of an existing file, fixing up the
address if necessary and detecting entries which point
elsewhere. If any file remains unaccounted for by
directory entries, we can make a new entry for it in the
mail directory, using its leader name. This is the sole
function of the leader name.

This entire process is called scavenging, and it takes about
a minute for a 2.5 megabyte disk. When it is complete, all
hints have been recomputed from absolutes, and any
inconsistencies (incomplete files, null directory entries,
nameless files, etc.) have been detected. The question of
what to do with the inconsistencies is beyond the scope of
this paper. During scavenging any permanently bad pages
are marked in the label with a special value so that they
will never be used again.

As we have noted, scavenging cannot fully reconstruct lost
directories. This could be accomplished by writing a
journal of all changes to directories and taking an
occasional snapshot of all the directories. By applying the
changes in the journal to the snapshot we would get back
the current state. This is of course a standard technique by
which the integrity of any data base may be safeguarded.
For the reasons already mentioned, we do not consider our
directories important enough to warrant such attentions. If
the user disagrees, he is free to modify the system-
provided procedures for managing directories, or to write
his own.

We have also written a more elaborate scavenger which
does an in-place permutation of the file pages on the disk
so that the pages of each file are i n consecutive sectors.
This arrangement typically increases the speed with which
the files can be read sequentially by an order of magnitude
over what is possible if the pages have become scattered.

101

3.6 Using hints

The purpose of hints is to increase performance. For
example, if a program possesses the full name (FV,/) of a
file page and the hint address, it can access the page
directly without going through a directory lookup and
without scanning down the chain of data blocks. If this
direct access fails (i.e., the page at that hint address turns
out not to be (FV, 0), the program has several options:

It may have a full name for some other portion o f the
file (typically, the leader page) which is correct. Then it
can follow links from that page, still avoiding the
directory lookup. Hint addresses can also be kept for
every kth page of the file to reduce the number o f links
which must be followed.

If this fails, it may look up the FV in a directory to
obtain the proper disk address.

I f this fails, it may look up the string name of the file in
a directory to obtain a new FV and disk address.

Finally, it may invoke the Scavenger to reconstruct the
entire file system and all the directories, and then retry
one of the earlier steps.

Note that such a hint can be expanded to name a
particular byte within the file system, simply by
augmenting a full name with a byte position within the
page.

The hint mechanism can also be used advantageously for
files that are thought to be allocated consecutively. A
program is free to assume that a file is consecutive and,
knowing the address a i of page i, to compute the address
of page j as ai+ j - i. The label check will prevent any
incorrect overwriting of data, and will inform the program
whether the disk access succeeds.

Many programs use a collection o f auxiliary files to which
they need rapid access. The editor, for example, uses two
scratch files, a journal file, a file of messages etc. When
these programs are "installed", they create the necessary
files and store hints for them in a data structure that is
then written onto a stale file. Subsequently the program
can start up, read the state file, and access all its auxiliary
files at maximum disk speed. I f a hint fails, e.g. because a
scratch file got deleted or moved, the program must repeat
the installation phase. It doesn't matter where hints are
stored, and the system makes no effort to keep them up to
date. It simply insures that when a hint fails, no damage is
done, and the program using the hint is informed so that it
can take corrective action.

4. Communication between programs

A key objective of most operating systems is to foster
communication between separate programs, often written
in different programming languages or environments. But
how can communication be provided by an open operating
system that allows the programmer to reject all facilities of
the system? The most conservative solution is to allow
communication only through disk files, since the file
structure must be observed by all programs. For example,
a command scanner may write the command string typed
by the user on a file with a standard name, and may then
invoke a program that will execute the command.
Ordinary disk files can be used in this way to pass data

from one program to another. The disk file structure must
also serve as a way to invoke an arbitrary program, that is,
to "transfer control" from one program to another.
Because of the openness of the operating system, the called
and calling programs may have little or nothing in
common.

These transfers of control are achieved by defining a
convention for restoring the entire state of the machine
from a disk file; this allows an arbitrary program to take
control of the machine. The files that describe the
machine state can be used to implement several control
disciplines. A coroutine structure is commonly used: a

program first records its state on one disk file, and then
restores the machine state from a second file. The original
program resumes execution when the machine state is
restored from the first file.

The interprogram communication mechanism has found
many uses. Examples are:

- Bootstrapping. A hardware bootstrap button causes
the state of the machine to be restored from a disk file
whose first page is kept at a fixed location on the disk.
This boot file may be written by a linker that writes
programs and data in the file, arranged so that they will
constitute a running program when the machine state is
restored from the file. Alternatively, the file may have
been written by saving the state of a running program
that will be resumed each time the machine is
bootstrapped,

- Debugging. When a breakpoint is encountered or
when the user strikes a special DEBUG key on the
keyboard, the state o f the machine is written on a disk
file, and the machine state is restored from a file that
contains the debugger. The debugging program may
examine or alter the state of the faulty program by
reading or writing portions of the file that was written
as a result o f the breakpoint. The debugger can later
resume execution of the original program by restoring
the machine state from the file. The original program
and the debugger thus operate as coroutines.

- Checkpointing. A program may occasionally save its
state on a disk file. It may then be interrupted, either
by a processor malfunction or by user action (e.g.,
bootstrapping the machine). The computation may be
resumed later by restoring the machine state from the
checkpoint file.

- Activity switching. The coroutine structure is used
to switch between several tasks that are part of a single
application. One example is a printing server, a
program that accepts files from a local communications
network and prints them. The program is divided into
two tasks: a spooler, which reads files from the network
and queues them in a disk file; and a printer that
removes entries from the queue and controls the
hardware that prints them. Because each of these tasks
has considerable internal state and operates in a
different environment, they communicate with the state
save/restore mechanism. Whenever the spooler is idle
but the queue is not empty, it saves its state and calls
the printer. Whenever the printer is finished or detects
incoming network traffic, it stops the printer hardware,
saves its state, and invokes the spooler. This scheme
easily allows printing to he interrupted in order to
respond quickly to incoming files.

102

In many systems, state-restoring mechanisms would be
extremely dangerous, as they could lead to severely
damaged disk file structures. This may happen if a
program is saved when it contains copies in memory of
parts of the disk data structure (e.g., parts of a directory, or
an allocation map that indicates free blocks) and it is never
restored, or fails to update this information to reflect the
actual disk state after it is restored. The label-checking
machinery described in section 3.3 prevents catastrophic
damage if the information is incorrectly updated.
Moreover, hints that are saved and restored are usually still
valid, and can be used to re-read quickly whatever disk
data may have been cached in main memory.

4.1 InLoad and OutLoad

Two procedures, InLoad and OutLoad, are the ones most
commonly used to operate on disk files containing
machine states. Each routine takes as argument the full
name of a disk file, and requires about a second to
complete its operation:

(written, message) : = OutLoad(OutFN)
lnLoad(lnFN, message)

OutLoad writes the current machine state on the file, and
returns with the written flag true. Note that the program
counter saved on the output file is inside the OutLoad
procedure itself. The lnLoad procedure restores the state'
of the machine from the given file, and passes a message
(about 20 words) to the restored program. The effect is
that OutLoad returns again, this time with written false and
with the message that was provided in the InLoad call.
Code for a coroutine linkage thus looks like:

messageToPartner : = paramete rs to pass in corou t ine call;
(written, messageFromPartner) : = OutLoad(myStateFN);
if written then InLoad(partnerStateFN, messageToPartner);
messageFromPartner contains paramete rs passed to me;

If the parameters in the coroutine call will not fit in the
small message vector, the vector is used to pass the full
name of a place on the disk where the parameters have
been written. Often the message contains a return address,
that is, the full name of a file to restore upon return. In
the example above, a return address can be provided by
copying myStateFN into messageToPartner before the
lnLoad call.

The InLoad and OutLoad procedures, although quite
small (about 900 words), are nevertheless subject to
obliteration by a sufficiently errant program• For linkage
to debuggers, it would be preferable if these routines were
protected in some way. Machines without memory
protection hardware should probably implement the
procedures in read-only memory (or in processor
microcode that cannot be damaged)• We fashioned a
partial solution to this problem with a special emergency
bootstrap program, containing only the OutLoad
procedure, that writes most of the machine state onto a
disk file. Unfortunately, this method could not preserve
some of the most vital state (e.g., processor registers).

5. Organization of the open system

The operating system is a collection of commonly-used
subroutine packages that are normally present in memory
for the convenience of user programs. The system
provides streams for disk files, keyboard input, and display
output; routines for reading and writing disk pages
directly; the OutLoad and lnLoad procedures; a free-
storage allocator; BCPL runtime routines; and storage for
a good deal of handy data, such as hints for frequently-
used files, the user's name and password, etc. The
subroutine packages are written almost entirely in BCPL,
with consistent conventions for storage allocation and for
object invocation.

5.1 [nvok&g programs

The system includes a procedure for invoking BCPL
programs that execute under the operating system. Code
for the program is read from a disk stream and loaded into
low memory addresses. All references to operating-system
procedures are bound, using a fixup table contained in the
code file• Finally, the program is invoked by calling a
single entry routine. The program may terminate either by
calling the program loader to read in another program and
thus overlay the first program, or by returning from the
main procedure• If the program returns, the system loads
and runs a standard Executive program. The Executive
accepts user commands from the keyboard and executes
them, often by calling the loader to invoke a program the
user has requested.

Programs that run under the operating system may also be
invoked from an entirely different programming
environment. The InLoad procedure is invoked on the file
that contains the operating-system state, which causes the
system to be loaded and initialized. The message vector
passed to InLoad may contain the name of a file
containing the program to be invoked. A stream is opened
on this file, and the program is loaded and run.

5.2 Junta

The packages that form the operating system are organized
to support its openness. A program that prefers not to use
the standard procedures provided by the system, or that
needs to use the memory space occupied by them, may
request that some or all system procedures be deleted from
memory. The procedure that removes procedures is called
Junta because it forcibly takes over the machine. When a
program terminates, a Counter Junta procedure is called to
restore the standard procedures from the InLoad/OutLoad
context for the operating system.

The system is organized into several levels of services, so
that a program may select the procedures it wishes to
retain. Procedures are arranged so that the lowest level,
which contains the most commonly used services, is at the
very top of memory. Less ubiquitous services are in levels
with higher numbers, located lower in memory. The
highest level number to be retained is passed as an
argument to Junta, which removes all higher-numbered
levels and frees the storage they occupy. The
Counter Junta procedure restores all levels that were
removed, and reinitializes any data structures they contain.

103

The facilities in each level are summarized below:

1. OutLoad/InLoad, Counter Junta.
2. Keyboard input buffer.
3. Hints for important files.
4. BCPL runtime procedures (e.g., stack frame

allocator)~
5,6. Disks (code and data for the disk object for the

standard disk).
7. Zones (code for the standard flee-storage object).
8. Disk streams (code for standard disk stream

objects).
9. Disk directories.
10. Keyboard streams (code for standard keyboard

stream object).
11. Display streams (code for standard display stream

objects).
12. The program loader and Junta procedure.
13. System free storage, including room for default

display stream, disk streams, etc.

The keyboard input buffer is present nearly always, so that
any characters typed ahead by the user when running one
program are saved for interpretation by the next.

The Junta and CounterJunta procedures give the
programmer simple but precise control over the operating-
system facilities retained in memory. Unlike more
elaborate mechanisms such as swapping code segments,
this scheme guarantees the performance of the resident
system.

There is no distinction between procedures and data of the
user and those of the system. The storage allocator, for
example, will build zone objects to allocate any part of
memory, whether in the system free storage region or not.
The routine that creates a disk stream object requires two
other objects as parameters: a zone to allocate space for
the stream data structure (defaulted to the system free
storage zone), and a disk object used to invoke disk
transfers (defaulted to the "standard disk"). It is common
for a program using a large non-standard disk to include a
package that implements only the disk object for the
special disk hardware, and to open streams on files using
the standard operating system disk stream implementation.

A programmer desiring even more flexibility is encouraged
to remove most of the system with Junta and to
incorporate copies of the standard packages in his own
program, placed wherever he wants. A common reason
for this approach is that scarce memory space forces the
programmer to overlay program structures. For example,
a file server program that uses only the non-standard big
disk nevertheless uses the standard disk stream package,
organized in overlays. The display, keyboard, and storage-
allocation packages have been assembled to form an
operating system for use without a disk, used to support
diagnostics or other programs that depend on network
communications rather than on local disk storage.

The success of the operating system as a collection of
subroutine packages depends primarily on the design of
the packages. Retaining common procedures in memory
simply saves disk space by reducing the size of many
programs. Retaining common data structures in memory
saves initialization time. The Junta procedure is a
convenience, but not a necessity. It is the considerable
effort that was devoted to refining the subroutine packages

that makes them useful both as a cohesive operating
system and as separate packages. Like any language
design, this is a non-trivial undertaking whose difficulty is
belied by the apparant simplicity of the result.

6. Conclusion

We have described the design of three major parts of a
small operating system. In each case considerable trouble
has been taken to make all the facilities accessible to users,
in the sense that they can build up their own macro-
operations from the primitives in the system if those
provided by the system prove unsatisfactory. In the
treatment of files we emphasized the methods used to
minimize the probability that data will be destroyed, and
to pe~xnit full automatic recovery after a crash. The
program communication facilities emphasize reasonable
communication between programs which take over the
entire machine and organize it in different ways. The
organization into levels accommodates programs which
don't go quite so far, but still need a great deal of control
over their own destiny; here proper design of the packages
which make up the system to permit stand-alone operation
is crucial.

The measures taken to make the file system robust, in
which the label checking is crucial, have worked extremely
well. Many thousands of file systems currently exist,
running on hundreds of machines without any centralized
maintenance. The incidence of complaints about lost
information is negligible. The hint schemes have also
worked well in making it possible to obtain high
performance from the system. Because of inadequate
explanation of the proper use of hints, however, many
programmers did not understand exactly what was a hint
and what was absolute, or how to recover properly from
failure of a hint. As a result, it is more common than it
should be for a program to crash with the message "Hint
failed, please reinstall," rather than automatically invoking
the proper recovery procedure.

The open character of the system has also been successful,
and has fostered a large number of different programming
environments which work together quite harmoniously.
The Junta has been used frequently to remove standard
handlers for human input/output that simulate a teletype
terminal, so that experimental programs can control
interaction very carefully, or in novel ways.

The disadvantages of openness are about what one would
expect. Since it is not possible to virtualize the system,
there is no practical way to change the representation or
functionality of the file system or communications.
Furthermore, there is no way to intercept all accesses to
the file system, display or whatever and direct them to
some other device, such as a remote file system. This
could be done only by changing the machine's microcode.

Acknowledgements

Many of the facilities described above were first
implemented by Gene McDaniel. The current
implementation was done by the authors, and has since
been improved by David Boggs. The original
implementations of Inload/OutLoad and of the Scavenger
are due to Jim Morris.

104

References

1. Bensoussan, A. et al, "The Multics virtual memory,"
Comn~ ACM 15, 5 (May 1972).

2. Bobrow, D. G. et al, "Tenex, a paged time sharing
system for the PDP-10," Comm. ACM 15, 3 (March
1972).

3. Bobrow, D. G. and B. Wegbreit, "A model and stack
implementation of multiple environments," Comm.
ACM 16, 10 (Oct 1973).

4. Brinch Hansen, P., Operating Systems Principles,
Prentice-Hall, New York, 1973.

5. Corbato, F. J. et al, "An introduction and overview of
the Multics system," Proc AFIPS Conf. 27 (1965
FJCC).

6. Dahl, O-J. and C. A. R. Hoare, "Hierarchical program
structures," in Structured Programming, Academic
Press, New York, 1972.

7. Deutsch, L.P., "Experience with a microprogrammed
Interlisp system," IEEE Trans. Computers, C-28, 10
(Oct 1979).

8. Geschke, C.M., J.H. Morris Jr., and E.H.
Satterthwaite, "Early experience with Mesa," Comm
ACM 20, 8 (Aug 1977).

9. Hoare, C. A. R. and R. M. McKeag, "A survey of
store management techniques," in Operating Systems
Techniques, Academic Press, New York, 1972.

10. Ingalls, D., "The Smalltalk-76 programming system:
Design and implementation," Conf. Rec. of the Fifth
ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, Jan 1978.

11. Knuth, D. E. The Art of Computer Programming, vol
1, Addison-Wesley, Reading, Mass., 1968.

12. Lampson, B. W. et al, "A user machine in a time-
sharing system," Proc IEEE 54, 12 (Dec 1966).

13. Meyer, P. A. and L. H. Seawright, "A virtual machine
time-sharing system," IBM Systems Journal 9, 3 (July
1970).

14. Richards, M., "BCPL: A tool for compiler writing and
system programming," Proe. AFIPS Conf. 35 (1969
SJCC).

15. Stoy, J. E. and C. Strachey, "OS6-An experimental
operating system for a small computer," Computer
Journal 15, 2 and 3.

16. Thacker, C.P. et. al., "Alto: A personal computer," to
appear in Computer Structures: Readings and
Examples, Sieworek, Bell and Newetl, eds., McGraw-
Hill, 1979.

105

