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Abstract 

The file system and modularization of  a single-user 
operating system are described. The main points of  
interest are the openness of  the system, which establishes 
no sharp boundary between itself and the user's programs, 
and the techniques used to make the system robust. 

1. Introduction 

In the last few years a certain way of  thinking about 
operating systems has come to be widely accepted. 
According to this view, the function of  an operating system 
is to provide a kind of  womb (or, if you like, a virtual 
machine) within which the user or her program can live 
and develop, safely insulated from the harsh realities o f  
the outside world [2, 5, 13]. One of  the authors, in fact, 
was an early advocate of  such "closed" systems [12]. They 
have a number of  attractive features: 

when the hardware is too dreadful for ordinary mortals 
to look upon, concealment is a kindness, if not a 
necessity; 

useful and popular facilities can be made available in a 
uniform manner, with the name binding and storage 
allocation required to implement them kept out o f  the 
way; 

the system can protect itself from the users without 
having to make any assumptions about what they do 
(aside from those implicit in the definition of  the virtual 
machine); 

a more robust facility can perhaps be provided if all o f  
the underlying structure is concealed. 

On the other hand, a good deal may be lost by putting too 
much distance between the user and the hardware [4], 
especially if she needs to deal with unconventional input- 
output devices. Furthermore, a-lot of  flexibility is given 
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up by the flat, all-or-nothing style of  these systems, and it 
is extremely difficult for a user to extend or modify the 
system because of  the sharp line which is drawn between 
the two. 

In this paper we explore a different, more "open" 
approach: the system is thought of  as offering a variety o f  
facilities, any of  which the user may reject, accept, modify 
or extend. In many cases a facility may become a 
component out of  which other facilities are built up: for 
example, files are built out of  disk pages. When this 
happens, we try as far as possible to make the small 
components accessible to the user as well as the large ones. 
The success of  such a design depends on the extent to 
which we can exploit the flexibility of  the small 
components without destroying the larger ones. In 
particular, we must pay a great deal o f  attention to the 
robustness of  the system, i.e., recovery from crashes and 
resistance to misuse. 

Another aspect of  our system is that the file system and 
communications are standardized at a level below any of  
the software in the operating system. In fact, it is the 
representation of  files on the disk and of  packets on the 
network that are standardized. This has permitted 
programs written in radically different languages (BCPL 
[14], Mesa [8], Lisp [7] and Smalltalk [10]; the former came 
first, and is the host language of  the software described in 
this paper) and executed using radically different 
instruction sets (implemented in writeable microcode) to 
share the same file system and remote facilities. In doing 
so, they do not give up any storage to an operating system 
written in a foreign langtiage, or any cycles in switching 
from one programming environment and instruction set to 
another at every access to disk storage or communications. 

The price paid for this flexibility is that any change in 
these representations requires changing several pieces of  
code, written in several languages and maintained by 
several different people; the cost of  this rewriting is so 
high that it is effectively impossible to make such changes. 
Thus the approach cannot be recommended when 
processor speed and memory are ample; standardization at 
a higher level is preferable in this case. In our situation, 
however, the policy has made many major applications of  
the machine possible which would otherwise have been 
completely infeasible. Futhermore, we have found that 
these restrictions have caused few practical problems, in 
spite of  the fact that the range of  uses of  the system has 
been far greater than was initially anticipated. 
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In a multi-user system, of  course, there must be 
compulsory protection mechanisms which ensure equitable 
and safe sharing of  the hardware resources, and this 
consideration sets limits to the openness which can be 
achieved. Within these limits, however, much can be 
done, and indeed the facilities discussed below can be 
provided in a protected way without any great changes, 
although this paper avoids an explicit analysis of  the 
problem by confining itself to a single-user system. 

To describe an entire system in this way would be a 
substantial undertaking. We will confine ourselves here to 
the disk file system, the method of  doing world swapping, 
and the way in which the system is constructed out of  
packages. 

2. Background 

The operating system from which the examples in this 
paper are drawn was written for a small computer called 
the Alto [16], which has a 16-bit processor, 64k words of  
800 ns memory, and one or two moving-head disk drives, 
each of which caa store 2.5 megabytes on a single 
removable pack and can transfer 64k words in about one 
second. The machine and system can also support 
another disk with about twice the size and performance. 
The machine has no virtual memory hardware. The 
processor executes an instruction set that supports BCPL, 
including special instructions to for procedure calls and 
retu rns. 

The system is written almost entirely in BCPL, and in fact 
this language is considered to be one o f  the standard ways 
of  programming the machine. The compiler generates 
ordinary machine instructions, and uses no runtime 
support routines except for a small body of  code that 
extends the instruction set slightly. 

Only one user at a time is supported, and peripheral 
equipment other than the disk and terminal is infrequently 
used. As a result, the current version of  the system has 
only two processes, one of  which puts keyboard input 
characters into a buffer, while the other does all the 
interesting work. The keyboard process is interrupt-driven 
and has no critical sections; hence there are no 
synchronization primitives and no scheduler other than the 
hardware interrupt system. As a result, the system does 
not control processor allocation, and in fact gets control 
only when some system facility is called by a user 
program. It does control storage allocation to some extent, 
both in main memory and on the disk, in order to make it 
possible for the user's programs to coexist and to call each 
other. 

Thus the system can reasonably be viewed as a collection 
of  procedures which implement various potentially useful 
abstract objects. There is no significant difference between 
these system procedures and a set of  procedures which the 
user might write to implement his own abstract objects. In 
fact, the system code is made available as a set o f  
independent subroutine packages, each implementing one 
of  the objects, and these packages have received a great 
deal of  independent use, in applications which do not need 
all the services of  the system and cannot afford its costs. 

There are several kinds of  abstract object: input-output 
streams, files, storage zones, physical disks. All of  these 
objects are implemented in such a way that they can be 
values of  ordinary variables; since BCPL is a typeless 
language this means that each object can be represented by 
a 16-bit machine word. In many cases, of  course, this 
word will be a pointer to something bigger. 

The streams are copied wholesale from Stoy and Strachey's 
OS6 system [15], as are many aspects of  the file system. 
We give a summary description here for completeness. A 
stream is an object which can produce or consume items. 
Items can be arbitrary BCPL objects: bytes, words, vectors, 
other streams etc. There is a standard set of  operations 
defined on every stream: 

Get an item from the stream; 

Put an item into the stream (normally only one of  these 
is defined); 
Reset, which puts the stream into some standard initial 
state (the exact meaning of this operation depends on 
the type of  the stream); 

Test for end of  input; 

and a few others. These operations are invoked by 
ordinary BCPL procedure calls. 

A stream is thus something like a Simula class [6]. It 
differs from a class in that the procedures which 
implement the operations are not the same for all streams, 
and indeed can change from time to time, even for a 
particular stream. A stream is represented by a record 
(actually a BCPL vector) whose first few components 
contain procedures which provide that stream's 
implementation of  the standard operations. The rest of  
the record holds state information, which may vary from 
stream to stream (e.g. word counts, pointers to buffers, 
disk addresses, or whatever is appropriate). The size of  the 
record is not fixed, but rather is determined entirely by the 
procedure which creates the stream. 

It is also possible for the record to contain procedures 
which implement non-standard operations (e.g. set buffer 
size, read position in a disk file, etc.). Alternatively, 
arbitrary procedures can be written which perform such 
operations on certain types of  stream. In both cases the 
procedure receives the record which represents the stream 
as an argument, and can store any permanent state 
information in that record. Of course, a program which 
uses a non-standard operation sacrifices compatibility, 
since it will only work with streams for which that 
operation is implemented. 

This scheme for providing abstract objects with multiple 
implementations is used throughout the system. Each 
abstract object is defined by the operations which can be 
invoked on it; the semantics of  each operation are defined 
(more or less rigorously). Any number of  concrete 
implementations are possible, each providing a concrete 
procedure for each of  the abstract operations. Hierarchical 
structures can be built up in this way. For instance, the 
procedure to create a stream object of  concrete type "disk 
file stream" takes as parafneters two other objects: a disk 
object which implements operations to access the storage 
on which the file resides, and a zone object which is used 
to acquire and release working storage for the stream. 
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3. Pages and files 

The system organizes long-term storage (on disk) into files, 
each of  which is a sequence of  fixed-size pages; every page 
is represented by a single disk sector. Although a file is 
sufficient unto itself, one normally wants to be able to 
attach a string name to it, and for this purpose an auxiliary 
directory facility is provided. Since the integrity o f  long- 
term storage is of  paramount importance to the user, a 
scavenging procedure is provided to reconstruct the state 
of  the file system from whatever fragmented state it may 
have fallen into. The requirements of  this procedure 
govern much of  the system design. The remainder of  this 
section expands on the outline just given. 

3.1 Pages 

The simplest object which can be used for long-term 
storage is a page. It consists of: 

an address-one word which uniquely specifies a 
physical disk location (H); 

a label, which consists of: 
F: a file identifier-two words (A); 
V: a version n u m b e r - o n e  word (A); 
PN: a page n u m b e r - o n e  word (A); 
L: a length (the number of  bytes in this page that 

contain da ta ) -one  word (A); 
a next l i nk -one  word (H); NL: 

PL: a previous l i nk -one  word (H); 

a value-  256 data words (A). 

The information which makes up a page is of  two kinds: 
absolutes (A) and hints (H). The page is completely 
defined by the absolutes. The hints, therefore, are present 
solely to improve the efficiency of  the implementation, 
Whenever a hint is used, it is checked against some 
absolute to confirm its continued validity. Furthermore, 
there is a recovery operation which reconstructs all the 
hints from the absolutes. 

Thus a page has a unique absolute name, which is the file 
identifier, version number and page number (represented 
by (FV, n), where n is the page number and FV is the file 
identifier and version), and it has a hint name, which is the 
address. The ful l  name (FN) of  a page is the pair (absolute 
name, hint name). The links of  the page (FV, n) are the 
addresses of  the pages whose absolute names are (FV, 
n - 1 )  and (FV, n+  1), or NIL if no such pages exist. The 
basic operations on a page are to read and write the data, 
and to read the links, given the full name. Note that it is 
easy to go from the full name of  a page to the full names 
of  the next and previous pages. 

3.2 Files 

A file is a set of  pages with absolute names (FV, 0), (FV, 
1),...,(FV, n). The name of  page (FV, 0) is also the name 
of  the file. The basic operations on files are 

create a new, empty file; 
add a page to the end of  a file; 
delete one or more pages from the end; 
delete the entire file. 

Thus, if page (FV, n) exists, pages (FV, /) exist for all i 
between 0 and n. Hence, if the address of  one page o f  a 

file is known, every page can be found by following the 
links. If  (FV, n) is the last page o f  the file, then pages 
(FV, 0 for i<n have L=512 (i.e., they are full o f  data), and 
the last page has L<512. 

The data bytes of  the file are contained in pages 1 through 
n. Page 0 is called the leader page, and contains all the 
properties of the file other than its length and its data: 

dates o f  creation, last write, and last read (A); 
a string called the leader name, discussed in section 3.5 
(A); 
the page number and disk address of  the last page (H); 
a maybe consecutive flag (H). 

3.3 Representation o f  pages 

The physical representation of  a page on the disk is called 
a sector, and consists of  three parts: 

a header, which contains the disk pack number 
(different for each removable pack) and the disk 
address; 

a label, which contains the seven words specified in 
Section 3.1; 

a value, which contains the 256 data words. 

A single disk operation can perform read, check or write 
actions independently on each of  these parts, with the 
restriction that once a write is begun, it must continue 
through the rest of  the sector. A check action compares 
data on the disk with corresponding data taken from 
memory, word by word, and aborts the entire operation if 
they don't  match. If  a memory word is 0, however, it is 
replaced by the corresponding disk word, so that a check 
action is a simple kind of  pattern match. 

The system uses these facilities to make the disk a rather 
robust storage medium. Disk pages are always accessed by 
their full names. The label of  a sector is always checked 
before it is written, and is written on only three occasions: 

When the page is f reed- I t s  full name must be given, 
and the check is that the label is the right one. Then 
ones are written into label and value, to ensure that any 
attempt to treat the page as part of  a file will fail with a 
label check error; 

The first time the page is written after it has been 
al located-the check is that the page is free. Then the 
proper label for the page is written. 

In order to change the length of  the f i l e -The  label of  
the last page is read and checked. Then it is rewritten, 
possibly with new values of  L and NL. 

This scheme costs a disk revolution each time a page is 
allocated or freed, but it makes accidental overwriting o f  a 
page quite unlikely. On any other write the label is 
checked, at no cost in time. The check action is 
distinguished from a read so that a subsequent write 
operation can be aborted before anything is written, 
without taking an extra revolution. The label is also 
checked on reads, of  course. If  the checks succeed, it is 
certain that the hint (address) used to access a disk page 
actually leads to the page specified by tile absolute part o f  
the full name. As we shall see below, it is also possible to 
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find a page from the absoliate name alone (though not very 
efficiently) and to reconstruct all the hint names from the 
absolute names. 

A disk contains a file called the disk descriptor with a 
standard name and disk address. In it are: 

the allocation map, a bit table indicating which pages 
are free (H); 

the disk shape, i.e., number of  tracks, surfaces, and 
other information needed to parameterize the disk 
routines for a particular model of  disk (A); 

the name of  the root directory (H). 

Note that the allocation map is a hint because the absolute 
information about which pages are free is contained in the 
labels. If  the map says that a page is free, the allocator 
marks it busy when allocating it, and when the label check 
described above fails, the allocator is called again to obtain 
another page. Thus a page improperly marked free in the 
map results in a little extra one-time disk activity. A page 
improperly marked busy will never be allocated; such lost 
pages are recovered by the Scavenger described in Section 
3.5. 

Our implementation of  the disk descriptor is slightly 
different from the description above. The main directory 
has a standard name and disk address, and points to the 
disk descriptor file. This scheme arose because the disk 
descriptor was added to the file system data structure when 
it became apparent that the disk shape must be recorded 
in some way. The description given above reflects the 
logical relationship between the disk descriptor and the 
main directory (i.e., that's how we should have done it). 

3.4 Directories 

So far we have constructed a data storage facility based on 
pages, and an allocation facility based on files. Allocation 
is not provided at the page level because losing track o f  
pages is too easy, which in turn is because a page, being of  
fixed size, cannot be a logical unit of  storage. A file, on 
the other hand, can be of  arbitrary size and hence is a 
suitable receptacle for a collection of  data which the user 
views as a unit (as long as it isn't too small). Since a file is 
a logical unit, moreover, it should have a logical name, i.e., 
a string name, as well as its unique file identifier, and the 
name should be interpreted in some context, so that names 
can be assigned independently without fear of  conflict. 

This is the familiar line of  reasoning which leads to a tree- 
structured directory hierarchy [5]. Our system takes a 
somewhat different tack (following OS6) because of  our 
desire to treat files as independent objects in their own 
right. We take the view that any operation on a file can be 
performed with no more than a knowledge of  its full name 
(which is the full name of  its first page), and that a 
separate mechanism exists for associating names with files. 
This is done by a file called a directory, which contains a 
set of  pairs (string, full name). A file may appear in any 
number of  directories. Since there is nothing special about 
a directory from the point of  view of  the file system, it is 
possible to have a tree, or indeed an arbitrary directed 
graph, of directories. We do need to be able to identify all 
the directories for the scavenging procedure described 
below, and to this end we reserve a subset of  the file 
identifiers for directory files. 

A further "implication (and here we part company with 
OS6) is that it must be possible to recover some logical 
name from the file itself, so that the file can survive even if  
the directory entries for it are lost or scrambled. This is 
the purpose of the leader name in the leader page; its 
significance should be apparent from the roles which it 
plays in scavenging. The information in the leader page is 
considered to be absolute, since this is a name by which 
the file can be located even if all the directory entries for it 
are destroyed. Directory entries, by contrast, are taken less 
seriously, although they are not entirely redundant and 
hence cannot be treated as pure hints. I f  a directory is 
destroyed, we don't  lose any files, but  we do lose some 
information, namely the information that a certain set of  
files was referenced from that directory by a certain set o f  
names. 

3.5 Scavenging 

By reading all the labels on the disk, we can check that all 
the links are correct (reconstructing any that prove faulty), 
obtain full names for all existing files, and produce a list of  
free pages. To do this, all we have to do is create a list of  
all the labels not marked free and sort it by absolute name. 
If there is enough main storage to hold a table with 48 bits 
per sector, a suitable choice of  data structure allows this 
processing to be done without any auxiliary storage. This 
is in fact the case for the machine's standard disks. Larger 
disks require this list to be written on a specially reserved 
section of  the disk. 

We can then read all the directories and verify that each 
entry points to page 0 of  an existing file, fixing up the 
address if necessary and detecting entries which point 
elsewhere. If any file remains unaccounted for by 
directory entries, we can make a new entry for it in the 
mail directory, using its leader name. This is the sole 
function of  the leader name. 

This entire process is called scavenging, and it takes about 
a minute for a 2.5 megabyte disk. When it is complete, all 
hints have been recomputed from absolutes, and any 
inconsistencies (incomplete files, null directory entries, 
nameless files, etc.) have been detected. The question of  
what to do with the inconsistencies is beyond the scope of  
this paper. During scavenging any permanently bad pages 
are marked in the label with a special value so that they 
will never be used again. 

As we have noted, scavenging cannot fully reconstruct lost 
directories. This could be accomplished by writing a 
journal of  all changes to directories and taking an 
occasional snapshot of  all the directories. By applying the 
changes in the journal to the snapshot we would get back 
the current state. This is of  course a standard technique by 
which the integrity of  any data base may be safeguarded. 
For  the reasons already mentioned, we do not consider our 
directories important enough to warrant such attentions. If  
the user disagrees, he is free to modify the system- 
provided procedures for managing directories, or to write 
his own. 

We have also written a more elaborate scavenger which 
does an in-place permutation of  the file pages on the disk 
so that the pages of  each file are i n  consecutive sectors. 
This arrangement typically increases the speed with which 
the files can be read sequentially by an order of  magnitude 
over what is possible if the pages have become scattered. 
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3.6 Using hints 

The purpose of  hints is to increase performance. For 
example, if a program possesses the full name (FV,/)  of  a 
file page and the hint address, it can access the page 
directly without going through a directory lookup and 
without scanning down the chain of  data blocks. If  this 
direct access fails (i.e., the page at that hint address turns 
out not to be (FV, 0), the program has several options: 

It may have a full name for some other portion o f  the 
file (typically, the leader page) which is correct. Then it 
can follow links from that page, still avoiding the 
directory lookup. Hint addresses can also be kept for 
every kth page of  the file to reduce the number o f  links 
which must be followed. 

If  this fails, it may look up the FV in a directory to 
obtain the proper disk address. 

I f  this fails, it may look up the string name of  the file in 
a directory to obtain a new FV and disk address. 

Finally, it may invoke the Scavenger to reconstruct the 
entire file system and all the directories, and then retry 
one of the earlier steps. 

Note that such a hint can be expanded to name a 
particular byte within the file system, simply by 
augmenting a full name with a byte position within the 
page. 

The hint mechanism can also be used advantageously for 
files that are thought to be allocated consecutively. A 
program is free to assume that a file is consecutive and, 
knowing the address a i of  page i, to compute the address 
of  page j as ai+ j -  i. The label check will prevent any 
incorrect overwriting of  data, and will inform the program 
whether the disk access succeeds. 

Many programs use a collection o f  auxiliary files to which 
they need rapid access. The editor, for example, uses two 
scratch files, a journal file, a file of  messages etc. When 
these programs are "installed", they create the necessary 
files and store hints for them in a data structure that is 
then written onto a stale file. Subsequently the program 
can start up, read the state file, and access all its auxiliary 
files at maximum disk speed. I f  a hint fails, e.g. because a 
scratch file got deleted or moved, the program must repeat 
the installation phase. It doesn't matter where hints are 
stored, and the system makes no effort to keep them up to 
date. It simply insures that when a hint fails, no damage is 
done, and the program using the hint is informed so that it 
can take corrective action. 

4. Communication between programs 

A key objective of  most operating systems is to foster 
communication between separate programs, often written 
in different programming languages or environments. But 
how can communication be provided by an open operating 
system that allows the programmer to reject all facilities of  
the system? The most conservative solution is to allow 
communication only through disk files, since the file 
structure must be observed by all programs. For example, 
a command scanner may write the command string typed 
by the user on a file with a standard name, and may then 
invoke a program that will execute the command. 
Ordinary disk files can be used in this way to pass data 

from one program to another. The disk file structure must 
also serve as a way to invoke an arbitrary program, that is, 
to "transfer control" from one program to another. 
Because of  the openness of  the operating system, the called 
and calling programs may have little or nothing in 
common. 

These transfers of  control are achieved by defining a 
convention for restoring the entire state of the machine 
from a disk file; this allows an arbitrary program to take 
control of  the machine. The files that describe the 
machine state can be used to implement several control 
disciplines. A coroutine structure is commonly used: a 

program first records its state on one disk file, and then 
restores the machine state from a second file. The original 
program resumes execution when the machine state is 
restored from the first file. 

The interprogram communication mechanism has found 
many uses. Examples are: 

- Bootstrapping. A hardware bootstrap button causes 
the state of  the machine to be restored from a disk file 
whose first page is kept at a fixed location on the disk. 
This boot file may be written by a linker that writes 
programs and data in the file, arranged so that they will 
constitute a running program when the machine state is 
restored from the file. Alternatively, the file may have 
been written by saving the state of  a running program 
that will be resumed each time the machine is 
bootstrapped, 

- Debugging. When a breakpoint is encountered or 
when the user strikes a special DEBUG key on the 
keyboard, the state o f  the machine is written on a disk 
file, and the machine state is restored from a file that 
contains the debugger. The debugging program may 
examine or alter the state of  the faulty program by 
reading or writing portions of  the file that was written 
as a result o f  the breakpoint. The debugger can later 
resume execution of  the original program by restoring 
the machine state from the file. The original program 
and the debugger thus operate as coroutines. 

- Checkpointing. A program may occasionally save its 
state on a disk file. It may then be interrupted, either 
by a processor malfunction or by user action (e.g., 
bootstrapping the machine). The computation may be 
resumed later by restoring the machine state from the 
checkpoint file. 

- Activity switching. The coroutine structure is used 
to switch between several tasks that are part of  a single 
application. One example is a printing server, a 
program that accepts files from a local communications 
network and prints them. The program is divided into 
two tasks: a spooler, which reads files from the network 
and queues them in a disk file; and a printer that 
removes entries from the queue and controls the 
hardware that prints them. Because each of  these tasks 
has considerable internal state and operates in a 
different environment, they communicate with the state 
save/restore mechanism. Whenever the spooler is idle 
but the queue is not empty, it saves its state and calls 
the printer. Whenever the printer is finished or detects 
incoming network traffic, it stops the printer hardware, 
saves its state, and invokes the spooler. This scheme 
easily allows printing to he interrupted in order to 
respond quickly to incoming files. 
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In many systems, state-restoring mechanisms would be 
extremely dangerous, as they could lead to severely 
damaged disk file structures. This may happen if a 
program is saved when it contains copies in memory of  
parts of  the disk data structure (e.g., parts of  a directory, or 
an allocation map that indicates free blocks) and it is never 
restored, or fails to update this information to reflect the 
actual disk state after it is restored. The label-checking 
machinery described in section 3.3 prevents catastrophic 
damage if the information is incorrectly updated. 
Moreover, hints that are saved and restored are usually still 
valid, and can be used to re-read quickly whatever disk 
data may have been cached in main memory. 

4.1 InLoad and OutLoad 

Two procedures, InLoad and OutLoad, are the ones most 
commonly used to operate on disk files containing 
machine states. Each routine takes as argument the full 
name of  a disk file, and requires about a second to 
complete its operation: 

(written, message) : = OutLoad( OutFN) 
lnLoad( lnFN, message) 

OutLoad writes the current machine state on the file, and 
returns with the written flag true. Note that the program 
counter saved on the output file is inside the OutLoad 
procedure itself. The lnLoad procedure restores the state' 
of  the machine from the given file, and passes a message 
(about 20 words) to the restored program. The effect is 
that OutLoad returns again, this time with written false and 
with the message that was provided in the InLoad call. 
Code for a coroutine linkage thus looks like: 

messageToPartner : = paramete rs  to pass in corou t ine  call; 
(written, messageFromPartner) : =  OutLoad(myStateFN); 
if written then InLoad(partnerStateFN, messageToPartner); 
messageFromPartner contains  paramete rs  passed to me;  

If  the parameters in the coroutine call will not fit in the 
small message vector, the vector is used to pass the full 
name of  a place on the disk where the parameters have 
been written. Often the message contains a return address, 
that is, the full name of  a file to restore upon return. In 
the example above, a return address can be provided by 
copying myStateFN into messageToPartner before the 
lnLoad call. 

The InLoad and OutLoad procedures, although quite 
small (about 900 words), are nevertheless subject to 
obliteration by a sufficiently errant program• For linkage 
to debuggers, it would be preferable if these routines were 
protected in some way. Machines without memory 
protection hardware should probably implement the 
procedures in read-only memory (or in processor 
microcode that cannot be damaged)• We fashioned a 
partial solution to this problem with a special emergency 
bootstrap program, containing only the OutLoad 
procedure, that writes most of  the machine state onto a 
disk file. Unfortunately, this method could not preserve 
some of the most vital state (e.g., processor registers). 

5. Organization of the open system 

The operating system is a collection of  commonly-used 
subroutine packages that are normally present in memory 
for the convenience of  user programs. The system 
provides streams for disk files, keyboard input, and display 
output; routines for reading and writing disk pages 
directly; the OutLoad and lnLoad procedures; a free- 
storage allocator; BCPL runtime routines; and storage for 
a good deal of  handy data, such as hints for frequently- 
used files, the user's name and password, etc. The 
subroutine packages are written almost entirely in BCPL, 
with consistent conventions for storage allocation and for 
object invocation. 

5.1 [nvok&g programs 

The system includes a procedure for invoking BCPL 
programs that execute under the operating system. Code 
for the program is read from a disk stream and loaded into 
low memory addresses. All references to operating-system 
procedures are bound, using a fixup table contained in the 
code file• Finally, the program is invoked by calling a 
single entry routine. The program may terminate either by 
calling the program loader to read in another program and 
thus overlay the first program, or by returning from the 
main procedure• If  the program returns, the system loads 
and runs a standard Executive program. The Executive 
accepts user commands from the keyboard and executes 
them, often by calling the loader to invoke a program the 
user has requested. 

Programs that run under the operating system may also be 
invoked from an entirely different programming 
environment. The InLoad procedure is invoked on the file 
that contains the operating-system state, which causes the 
system to be loaded and initialized. The message vector 
passed to InLoad may contain the name of  a file 
containing the program to be invoked. A stream is opened 
on this file, and the program is loaded and run. 

5.2 Junta 

The packages that form the operating system are organized 
to support its openness. A program that prefers not to use 
the standard procedures provided by the system, or that 
needs to use the memory space occupied by them, may 
request that some or all system procedures be deleted from 
memory. The procedure that removes procedures is called 
Junta because it forcibly takes over the machine. When a 
program terminates, a Counter Junta procedure is called to 
restore the standard procedures from the InLoad/OutLoad 
context for the operating system. 

The system is organized into several levels of  services, so 
that a program may select the procedures it wishes to 
retain. Procedures are arranged so that the lowest level, 
which contains the most commonly used services, is at the 
very top of  memory. Less ubiquitous services are in levels 
with higher numbers, located lower in memory. The 
highest level number to be retained is passed as an 
argument to Junta, which removes all higher-numbered 
levels and frees the storage they occupy. The 
Counter Junta procedure restores all levels that were 
removed, and reinitializes any data structures they contain. 
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The facilities in each level are summarized below: 

1. OutLoad/InLoad, Counter Junta. 
2. Keyboard input buffer. 
3. Hints for important files. 
4. BCPL runtime procedures (e.g., stack frame 

allocator)~ 
5,6. Disks (code and data for the disk object for the 

standard disk). 
7. Zones (code for the standard flee-storage object). 
8. Disk streams (code for standard disk stream 

objects). 
9. Disk directories. 
10. Keyboard streams (code for standard keyboard 

stream object). 
11. Display streams (code for standard display stream 

objects). 
12. The program loader and Junta procedure. 
13. System free storage, including room for default 

display stream, disk streams, etc. 

The keyboard input buffer is present nearly always, so that 
any characters typed ahead by the user when running one 
program are saved for interpretation by the next. 

The Junta and CounterJunta procedures give the 
programmer simple but precise control over the operating- 
system facilities retained in memory. Unlike more 
elaborate mechanisms such as swapping code segments, 
this scheme guarantees the performance of the resident 
system. 

There is no distinction between procedures and data of the 
user and those of the system. The storage allocator, for 
example, will build zone objects to allocate any part of 
memory, whether in the system free storage region or not. 
The routine that creates a disk stream object requires two 
other objects as parameters: a zone to allocate space for 
the stream data structure (defaulted to the system free 
storage zone), and a disk object used to invoke disk 
transfers (defaulted to the "standard disk"). It is common 
for a program using a large non-standard disk to include a 
package that implements only the disk object for the 
special disk hardware, and to open streams on files using 
the standard operating system disk stream implementation. 

A programmer desiring even more flexibility is encouraged 
to remove most of the system with Junta and to 
incorporate copies of the standard packages in his own 
program, placed wherever he wants. A common reason 
for this approach is that scarce memory space forces the 
programmer to overlay program structures. For example, 
a file server program that uses only the non-standard big 
disk nevertheless uses the standard disk stream package, 
organized in overlays. The display, keyboard, and storage- 
allocation packages have been assembled to form an 
operating system for use without a disk, used to support 
diagnostics or other programs that depend on network 
communications rather than on local disk storage. 

The success of the operating system as a collection of 
subroutine packages depends primarily on the design of 
the packages. Retaining common procedures in memory 
simply saves disk space by reducing the size of many 
programs. Retaining common data structures in memory 
saves initialization time. The Junta procedure is a 
convenience, but not a necessity. It is the considerable 
effort that was devoted to refining the subroutine packages 

that makes them useful both as a cohesive operating 
system and as separate packages. Like any language 
design, this is a non-trivial undertaking whose difficulty is 
belied by the apparant simplicity of the result. 

6. Conclusion 

We have described the design of three major parts of a 
small operating system. In each case considerable trouble 
has been taken to make all the facilities accessible to users, 
in the sense that they can build up their own macro- 
operations from the primitives in the system if those 
provided by the system prove unsatisfactory. In the 
treatment of files we emphasized the methods used to 
minimize the probability that data will be destroyed, and 
to pe~xnit full automatic recovery after a crash. The 
program communication facilities emphasize reasonable 
communication between programs which take over the 
entire machine and organize it in different ways. The 
organization into levels accommodates programs which 
don't go quite so far, but still need a great deal of control 
over their own destiny; here proper design of the packages 
which make up the system to permit stand-alone operation 
is crucial. 

The measures taken to make the file system robust, in 
which the label checking is crucial, have worked extremely 
well. Many thousands of file systems currently exist, 
running on hundreds of machines without any centralized 
maintenance. The incidence of complaints about lost 
information is negligible. The hint schemes have also 
worked well in making it possible to obtain high 
performance from the system. Because of inadequate 
explanation of the proper use of hints, however, many 
programmers did not understand exactly what was a hint 
and what was absolute, or how to recover properly from 
failure of a hint. As a result, it is more common than it 
should be for a program to crash with the message "Hint 
failed, please reinstall," rather than automatically invoking 
the proper recovery procedure. 

The open character of the system has also been successful, 
and has fostered a large number of different programming 
environments which work together quite harmoniously. 
The Junta has been used frequently to remove standard 
handlers for human input/output that simulate a teletype 
terminal, so that experimental programs can control 
interaction very carefully, or in novel ways. 

The disadvantages of openness are about what one would 
expect. Since it is not possible to virtualize the system, 
there is no practical way to change the representation or 
functionality of the file system or communications. 
Furthermore, there is no way to intercept all accesses to 
the file system, display or whatever and direct them to 
some other device, such as a remote file system. This 
could be done only by changing the machine's microcode. 
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