
Intermedia: The ConceDt and
the Construction of a
Seamless Information

Environment
Nicole Yankelovich, Bernard J. Haan, Norman K. Meyrowitz, and Steven M. Drucker

Brown University

ntermedia, a tool designed to support
both teaching and research in a uni-
versity environment, contains multi-

ple applications and mechanisms to link
the contents of documents created with
those applications. The system was devel-
oped at Brown University’s Institute for
Research in Information and Scholarship
(IRIS).

A hypermedia system expressly devel-
oped for use in a university setting,
Intermedia provides a framework for
object-oriented, direct manipulation edi-
tors and applications. With it, instructors
can construct exploratory environments
for their students as well as use applica-
tions for day-to-day work, research, and
writing. Intermedia is also an environment
in which programmers can develop consis-
tent applications, using object-oriented
programming techniques and reusable
building blocks.

Hypertext and hypermedia. Although
only recently popularized by products like
Apple’s Hypercard and Owl’s Guide,
hypertext and hypermedia have been the
subject of research, writing, and
experimentation for more than 20 years.
(Examples of early hypertext systems and
existing hypermedia systems may be found

January 1988

This multi-application
hypermedia system

provides linking
capabilities integrated

into a desktop user
environment. To

promote consistency,
the applications were
built with an object-
oriented framework.

in Conklin’ and Yankelovich.’) Interme-
dia is a direct descendent of ideas devel-
oped by such prominent researchers as
Theodor Nelson, Douglas Engelbart, and
Andries van Dam. Nelson coined the term
hypertext in the early 1960s to describe the
idea of “non-sequential writing.” He

00l8-9162/8S/Ol00-0081$01 .oO 01988 IEEE

expanded on that theme in a book he wrote
entitled Literary Machines.

In essence, a hypertext system allows
authors or groups of authors to link infor-
mation together, create paths through a
body of related material, annotate existing
texts, and create notes that direct readers
to either bibliographic data or the body of
the referenced text. Using a computer-
based hypertext system, students and
researchers can quickly follow trails of
footnotes and related materials without
losing their original context; thus, they are
not obliged to search through library
stacks to look up referenced books and
articles. Explicit connections-links-
allow readers to travel from one document
to another, effectively automating the
process of following references in an ency-
clopedia. In addition, hypertext systems
that support multiple users allow
researchers, professors, and students to
communicate and collaborate with one
another within the context of a body of
scholarly material.

Hypermedia is simply an extension of
hypertext that incorporates other media in
addition to text. With a hypermedia sys-
tem, authors can create a linked body of
material that includes text, static graphics,
animated graphics, video, and sound.

81

Intermedia:
the concepts

according to user-defined styles. Like a
charting package, the display of the data
is determined by a modifiable set of

ent parameters for all types of data in the
system.

Related to the use of styles is the fre-
parameters.

Figure 1 illustrates an example of
materials from a linked Intermedia corpus
(collection of documents) called Context
32: A Web of Englkh Literature, designed
by Brown University English professor
George Landow.

Intermedia is both an author’s tool and
a reader’s tool. The system, in fact, makes
no distinction between types of users,
provided they have appropriate access
rights to the material they wish to edit,
explore, or annotate. Creating new
materials and making and following links
are all integrated into a single seamless,
multiuser environment. User interface. Several user-interface

Applications. The system, which runs
on a network of Unix-based workstations,
currently contains five integrated applica-
tions: a text editor (InterText), agraphia
editor (InterDraw), a scanned image
viewer (Interpix), a three-dimensional
object viewer (InterSpect), and a timeline
editor (Interval). These applications con-
form to Macintosh/Microsoft Windows
interface standards. Any number of docu-
ments of different types, along with the
folders containing these documents, may
be open on the desktop at one time.

The InterText word processing applica-
tion resembles Apple’s Macwrite, with the
addition of style sheets for formatting
rather than MacWrite style rulers. Using
style sheets, the user can define a set of
styles for a particular document (such as
paragraph, title, subtitle, indented quote,
and numbered point) and apply those
styles to an entity-the text contained
between two carriage returns.

When the user edits the definition of a
style, all the entities to which that style are
applied reformat accordingly.

With InterDraw, a structured graphics
editor similar to Apple’s MacDraw, users
can create two-dimensional illustrations by
selecting tools from a palette attached to
each InterDraw window.

InterPix displays bit-map images
entered into the system using a digitizing
scanner. These images can be cropped,
copied, and pasted into InterDraw
documents.

The InterSpect viewer converts files
containing three-dimensional data points
into three-dimensional representations of
that data. Users can manipulate three-
dimensional images of cells, for example,
by rotating them, zooming in or out, or
hiding parts of the model.

The fifth application, Interval, pro-
vides interactive editing features for creat-
ing chronological timelines. As the user
enters pairs of dates and labels,the appli-
cation formats them on a vertical timeline

concepts stressed throughout Intermedia
enable users to learn new applications
quickly and predict the behavior of fea-
tures they have never used before. In a sys-
tem that encourages rapid transitions
between applications, it is essential to limit
the amount a browser must learn in order
to successfully use the system and capital-
ize on those conventions with which he or
she may be already familiar. Like the copy
and paste operations in Macintosh and
Smalltalk programs, some operations in
the Intermedia system behave identically
across all applications. The linking func-
tionality described below is a prime
example.

All applications also provide direct
manipulation interfaces. To change the
displayed information, the user first selects
one or more of the displayed objects and
then issues a command through a key-
board or menu interface. Likewise, other
system features, while not exactly identi-
cal to one another, are conceptually simi-
lar. Most applications, for instance, allow
users to control the format or the display
characteristics of data. We designed the
interface techniques for conceptually simi-
lar operations to capitalize on the like-
nesses.

The style paradigm3 is one example.
Styles are sets of properties or characteris-
tics that govern the appearance of data
within a document. Users can define or
modify a style by editing a form called a
style sheet (sometimes referred to as a
property sheet). Both the InterText appli-
cation and the Interval application con-
tain style sheets to specify different text
formats such as paragraphs, indented
quotes, lists, and titles, or different time-
line formats such as the position of dates
relative to tick marks and the position of
labels relative to dates. In the graphics edi-
tor, different styles may be applied to
shapes such as line width, pen style, or fill
style. By storing all presentation
parameters in style sheets, you can substi-
tute styles with the same name but differ-

quent use of palettes-sets of controls
attached as a pane to a document window.
Along with style sheet dialogs, palettes
provide a means for defining and applying
styles. In InterText, for example, all the
styles defined for a particular document
are viewed in a style palette (see Figure I).
Two mouse clicks will change the style of
an existing text entity or change the style
from one style to another before beginning
a new entity. With a large screen and the
capacity for 30 or 40 open windows at one
time, it is essential that all the tools needed
for common operations be close at hand
rather than in the pull-down menus. When
not needed, all palettes can be hidden from
view to unclutter the screen and improve
the way material is presented to a person
browsing through the system.

The use of “infinite” undo and redo
commands-made possible in a worksta-
tion environment with virtual memory
capabilities-provides another example of
a standard user-interface concept that
permeates the system. Instead of retract-
ing only the last action performed, the user
can incrementally undo the effects of all
actions performed since the last time a
document was saved. Any single action or
set of actions the user has undone can then
be incrementally redone. This capability
fosters a sense of security in users and ena-
bles them to experiment freely with their
documents.

Hypermedia functionality. In Interme-
dia, the hypermedia functionality is inte-
grated into each application so that the
actions of creating and traversing links can
be interspersed with the actions of creat-
ing and editing documents. (The screens in
the “Sample session” illustrate the oper-
ation of Intermedia, highlighting the
hypermedia functionality.)

In an effort to fit the link-making pro-
cess into a conceptual model already fa-
miliar to users, the act of making links
between Intermedia documents was
modeled as closely as possible on the
Smalltalk/Macintosh copy/paste para-
digm4 If links are to be made frequently,
they must be a seamless part of the user
interface. In any document, users can
specify a selection region and choose the
Start Link command from the menu. In
any other document, regardless of type,
users can define another selection region
and choose one of the Complete Link
commands.

82 COMPUTER

history

ea
ALEXANDER POPE

1 6 a s 1 m

uellglon I-I

Figure 1. Two InterText documents (top right), two Interval documents (bottom left), and two InterDraw documents (top left
and bottom right) open on the screen. Both InterDraw documents contain scanned images cropped, copied, and pasted from
InterPix documents.

Likewise, to follow a link, a user explor-
ing a linked set of documents can select a
marker icon in any type of document and
choose the Follow command from a
menu. As a short cut, a user can double-
click on a marker icon to initiate the fol-
low, just as he or she might double-click on
an icon in a folder to open a document.
Since following a link usually entails open-
ing a document, we anticipated that users
would expect to be able to follow a link by
double-clicking on the marker icon.

Unlike some other hypertext or
hypermedia systems that only allow links
to entire documents,’ Intermedia allows
users to create bidirectional links from a
specific location in one document to a spe-
cific location in another document. These
“anchor points” in the documents are
called blocks. One of our design goals, in

designing the Intermedia linking function-
ality, was to allow the user to designate any
selection region as a block that might stand
alone or serve as an anchor for one or more
links. The size of a block, therefore, may
range from an entire document to an inser-
tion point, depending on the selection
region a user identifies as the block’s
extent.

For example, in an InterText document,
a block might consist of an insertion point,
a single character, a word, or two para-
graphs. Small marker icons placed near the
source and destination blocks indicate the
existence of a link. As a user edits a docu-
ment, the blocks “stick” to the selection
they are associated with, preserving the
context of the concection. If a document
containing links is deleted, the links to that
document are also deleted; however, the

block markers at the other ends of the links
remain intact, reminding users of the loca-
tion of link anchors.

To help manage a large corpus of linked
documents, links and blocks are assigned
descriptive properties. Some of these, like
user I.D. and creation time, are assigned
automatically, while other properties are
user-defined. Users access and edit link
and block property information through
property sheet dialog boxes. These dialog
boxes allow users to enter a one-line
“explainer,” similar to the subject field in
an electronic mail message. Link
explainers are particularly important from
a reader’s perspective. If more than one
link emanates from a single block, users
choose the path they wish to follow from

(Continued on p. 90)

January 1988 83

Sample session
To illustrate Intermedia's user-

interface features and linking
function a I i t y, this si de bar w i I I
take you on a system walkthrough
designed to simulate the interac-
tion that takes place during a
hands-on lntermedia session. The
screen illustrations should help
you visualize the system, while
the text should supply the action.

The example is taken from Bio
106: Cell Biology in Context,
designed by Brown University
biology professor Peter Heywood.
Students in Heywood's plant cell
biology course use Intermedia's
editors, utilities, and linking func-
tionality to write term papers and
explore materials about the cell
and its processes.

The scenario will take you
through a sample session from
the perspective of the biology
professor in the midst of creating
course materials.

Screen 1. As you can see, the
lntermedia desktop includes a
window manager, a graphical
folder system, a menu bar, and a
mouse interface. The contents of
the folders reflect the underlying
hierarchical structure of the file
system.

dia does not store application
icons in the same folders with
documents. Instead, application
icons are stored with several
other special-purpose tools in an
application, or New, window that
you can see in the upper right cor-
ner of the screen. The reason for
this is twofold. First, users do not
have to search through folders to
find the applications. Even i f the
New window is hidden from view
by overlapping windows, selecting
the New command from the File
menu will reveal it. Second, in a
networked environment, it is best
to have a single set of applica-
tions in an agreed-upon place that
can be maintained and updated
by a system administrator.

Unlike the Macintosh, Interme-

Screen 1

Screen 2

84

__

Screen 3

Screen 4

1 P”

Before we browse through the
documents contained in the
folders, follow links, or create
them, we must first define a con-
text by opening an existing web or
by creating a new one. If a web is
not open, we can still open and
edit the documents even though
no link and block information will
be visible. Rather than beginning
a new web, we select the icon
titled “Bio 106” and choose the
Open command (not pictured)
from the File menu.

Screen 2. After opening the
web, indicated by an empty local
tracking map window (described
below), we open a folder con-
tained in the “Bio” folder called
“Simple Cell.” The icons in this
cell folder represent a folder plus
a number of different types of
documents (one InterSpect, nine
InterPix, two Interval, five
InterDraw, and three InterText).
Any of these document icons can
be selected, opened, and edited.
We select and double-click on the
InterSpect document called
“Micromonas 3D” to open it.

Screen 3. When the InterSpect
document opens, the application
displays the entire Micromonas
cell in a three-dimensional view
(above left) and a single section of
the cell in a two-dimensional view
(below left). Students can use the
tools in the palette to rotate the
3D reconstruction, to highlight
the location of the 2D section cur-
rently displayed in the bottom
view, and to scroll through all the
2D sections associated with the
cell. Menu commands allow you
to selectively hide and display
different components of the cell
and/or the labels.

The local tracking niap, empty
in the previous screen, now shows
the currently active document and
the links that emanate from it.
Local maps are analogous to
detailed street maps. They show
you your current location and
what location you can travel to
the immediate vicinity. As you

January 1988 85

change locations, you require a
new local map as a guide. In
Intermedia, when the user acti-
vates a different document, either
by following a link or by opening
one from a folder, the local map
updates or tracks the user's prog-
ress to display the new current
document and its direct predeces-
sor and successor links.

Screen 4. When we last worked
on the Micromonas 3D document,
we created a number of links con-
necting the plasma membrane to
five different InterDraw docu-
ments, each containing a scanned
photograph of one of the sections
of the Micromonas cell used as
data for the 3D reconstruction.
Before we connect the plasma
membrane to the remaining pho-
tographs, we decide to connect
the nucleus to general informa-
tion about nuclei. The first step in
creating a link involves defining a
block to serve as the anchor for
the link. We select the label
"Nucleus" as the source block of
the new link (the selection is indi-
cated by a rectangular box) and
choose the Start Link command
from the menu. While a link is
pending, we can perform any
number of other actions unrelated
to link-making. Like the Copy
operation common to all
Macintosh-like applications, the
Start Link operation is completely
modeless.

Screen 5. Before completing
the pending link, we browse
through the folders and locate
and open an already existing
InterText document called
"Nucleus Outline." Once the text
is displayed, we select the word
"nucleus" in the first sentence of
the document to serve as the des-
tination block of the link and
choose Complete Relation from
the menu. You will notice two
different complete commands in
the menu. These are similar in
function, but each creates a
different type of link. The Com-
plete Relation command that we

Screen 5

Screen 6

The Nudsus

mrmbnnr htcnn *fth the pcrlpherd
ImIna7 C o n i l L r t h r c dlmcnilmd

<..-- /--sb

The b k u s b compared ol the %ear Malm (W) VIc ~x~c lcar
Rvclopc (NE). DNA, RNA, nucleolus

Screen 7 (The illustration of the nucleus was originally published in Molecular
Biology of the Cell by Bruce Alberts et al. and is reprinted with the permission of
Garland Publishing, Inc.)

...- .."--I-

Screen 8

chose indicates a primary path,
whereas the Complete Reference
command signifies a secondary
path, in much the same way as a
footnote or a "see also. . ." refer-
ence. Notice that the local track-
ing map has been updated to
show the links that emanate from
"Nucleus Outline," since it is the
currently active document.

Screen 6. Once the link is
established, both ends are indi-
cated with markers (arrows
enclosed in rectangular boxes)
and the new link is added to the
local tracking map. To find other
relevant material to connect to the
nucleus in the InterSpect docu-
ment, we enlarge the lnteirext win-
dow and read through the text.
Since pores are important when
studying simple cells such as the
Micromonas cell, we select the
link marker above the words
"nuclear pores" and choose the
Follow command from the menu
to traverse the link.

Screen 7. Following the link
causes an InterDraw document
containing a diagram of the
nucleus to open. Notice that
when a link is traversed, Interme-
dia automatically highlights the
extent of the block at the other
end of the link, indicating a partic-
ular scope of information to the
reader. In this case, our attention
is drawn to the label "Nuclear
pore" and its associated label
line.

The illustration on the screen
was entered into the system using
a scanner. The bit map was then
displayed by the Interpix applica-
tion, cropped, and pasted into this
InterDraw document, and the text
and lines were added to complete
the diagram.

Before we continue making new
links, we decide to change the
default "viewing specification"
for link creation to "verbose" (not
pictured). With the verbose option,
lntermedia automatically presents
a property sheet for each new link
as it is created.

January 1988 87

Screen 8. We activate the Inter-
Spect document by clicking once
in the window and select the
nucleus. This time we decide to
select the component itself rather
than the label. When students fol-
low the link from the InterDraw
diagram to the three-dimensional
representation, their attention will
be drawn to the nucleus (the
source block) in both the 2D and
3D views. As in Screen 4, we
select the Start Link command to
initiate a new link.

Screen 9. Next, we reactivate
the "Nucleus Diagram," select
the title of the diagram and the
scanned illustration as the desti-
nation block for the link, and
choose Complete Relation from
the menu (not pictured). After we
issue the complete command, a
link property dialog box appears,
allowing us to fill in descriptive
information about the link. We
replace the default text, "Link 35,"
with the more meaningful
explainer shown in Screen 9.

Screen 10. Now we will skip
ahead a few steps. After creating
the link from the nucleus in
"Micromonas 3D" to the InterDraw
diagram, we reactivated the Inter-
Spect document and used the
bottom tool in the palette to scroll
to the next two-dimensional sec-
tion. Since the label "Plasma
Membrane" has already been
defined as a block for another
link, we decided to select the
existing marker as the source
point for our new link.

Before we are ready to com-
plete the link, we have to create a
new document. We return to the
"Simple Cell" folder, open an
Interpix document (bottom left)
containing a photograph that cor-
responds to the section currently
displayed in the InterSpect docu-
ment window, and crop and copy
a portion of the photograph into

Screen 9

Screen 10 (The electronmicrograph of Micromonas was originally published in
The Journal of Phycology and is reprinted with the permission of the editor.)

Screen 11

u s u s
n q B O

n e e n
n e e n
n m B O

Screen 12

the clipboard. We paste this
image into a new InterDraw docu.
ment, created by double-clicking
on the draw icon in the New win-
dow. Finally we add some text to
accompany the photograph (bot-
tom right).

Screen 11. Here, we have com-
pleted editing the new InterDraw
document and have hidden the
palettes to unclutter the screen.
We have also completed the pend-
ing link, using the text "Micromonas
Electronmicrograph Section 6" as
the destination block of the link.
After the link was established, we
double-clicked on the marker
associated with "Plasma Mem-
brane" in the InterSpect docu-
ment to traverse the new link.
Since more than one link is
associated with the selected
block, lntermedia presents a dia-
log box containing the explainers
for each link. We select the link
we just created and click on
"OK." Since the document at the
other end of the link is already
open on the screen, following the
link will simply activate the docu-
ment and highlight the extent of
the destination block (not
pictured).

Screen 12. Before ending our
session, we save and close the
new InterDraw document, select
its icon, and choose the Access
Rights command from the menu.
The dialog that appears allows us
to add or subtract access rights
for different groups of users. For
this document, we decide to add
Annotate rights for all users of the
system. This means that any user
may create links to or from the
document but may not edit its
content. Before exiting the sys-
tem, we save and close the open
InterSpect document and the Bio
106 web.

January 1988

-

89

(Continued from p . 83)

a list of link explainers presented in a dia-
log box.

Property sheets also allow users to add
keywords. Although still under develop-
ment, these keywords, along with the
default information assigned to links and
blocks, will provide users with a mecha-
nism for searching the document corpus.
A keyword search will yield a list of
explainers associated with all the blocks or
links meeting the search criteria. Each item
in the resultant list will be automatically
linked to its corresponding block or, in the
case of links, to the corresponding source
block of each link. For example, a student
could search for all links containing the
keywords “Pope” and “Heroic Couplet”
that were created by the professor after a
certain date.

Link and block properties help manage
complexity within the Intermedia environ-
ment, but the notion of context is even
more crucial. In some systems, links are
global-all links are available at all times
to all users. In such systems, links become
an integral part of the documents. In
Intermedia, block and link information is
not stored within individual documents
but is superimposed on them. Webs main-
tain the block and link information, allow-
ing one or more users to work within their
own context undistracted by blocks and
links created by others sharing the same
computing resources. Most importantly,
users do not see hypermedia as an alterna-
tive to their desktop environment; rather,
they see it as an integral technique tying
together documents in that environment.

Currently, opening a web imposes a par-
ticular set of blocks and links on a set of
documents while that web is open. Thus,
webs allow different users to impose their
own links on the same document set.
Although only one context can be viewed
at a time, users can easily switch contexts
by closing one web and opening another.
In the future, webs will also serve as the
focus for keyword searching operations.

Intermedia differs from most other
hypermedia systems in that it allows mul-
tiple users to both follow and create links
concurrently in the same web. Intermedia
incorporates a system of user access rights
that helps manage multiple users sharing
large bodies of connected material. Due to
the hypermedia functionality of Interme-
dia, the access rights scheme builds on the
protection mechanisms offered in most file
systems where users either have “read”
permission or “write” permission to files

and directories. Intermedia adds “anno-
tation” permission to the other two forms
of access rights. This allows users to add
links to a document that they are not
allowed to edit.

Intermedia:
the construction

Intermedia not only provides a rich
environment for authors and browsers but
also for developers, furnishing a set of
tools that facilitate the creation of new
applications adhering to the Intermedia
paradigms.

In designing the Intermedia system, we
believed that consistency among applica-
tions was crucial, since the system
encourages quick transitions from one
application to another. User-interface
consistency is not always easy to achieve,
however.s In part, this may result from
carelessness. But, more often, interface
inconsistencies result from not quite iden-
tical implementations of features already
implemented elsewhere in a system. The
Apple Macintosh represents a prime exam-
ple. The system has clearly defined user-
interface paradigms, and new programs
almost always use a number of the same
functions that exist in hundreds of other
Macintosh programs. Even so, software
developers must reimplement most of the
“standards” (selection, resizing, dragging,
etc.) from scratch because the Macintosh
Toolbox provides the mechanisms for
building them but not the implementa-
tions. Often these programmers miss an
important feature or user-interface detail
that users immediately notice.

To build Intermedia, we needed a devel-
opment environment that would help
programmers create a multiuser system
with consistent, direct-manipulation appli-
cations, plus the ability to link together the
contents of documents created with those
applications. Faced with the task of
developing a relatively large, interactive
system in an ambitiously short timeframe,
we needed a set of development tools that
would help us

remove the burden of user-interface
consistency from the application pro-
grammer
adopt an existing user-interface
standard
allow small groups of programmers
to work on different parts of the sys-
tem in parallel
facilitate the integration of modules
developed by different groups
avoid as much duplication of effort as

90

possible, and
create a system that would be exten-
sible and suitable for prototyping new
applications.

We created such an environment by
building some of the pieces ourselves and
adapting and integrating tools developed
by others. This resulted in a layered set of
tools that allows programmers to develop
applications conforming to the user-
interface standards.

In particular, we started with CadMac,
Cadmus Computer’s implementation of
the Macintosh toolbox under the 4.2 BSD
Unix operating system; supplemented it
with an object-oriented programming lan-
guage called Inheritance C (developed at
Bolt Beranek and Newman); and added a
C version of Apple’s MacApp-a set of
classes for creating “generic” Macintosh-
like applications. On this, we superim-
posed several crucial building blocks from
which any number of end-user applica-
tions and utilities can be constructed. The
Proceedings of the I986 Conference on
Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA)6
provides a detailed technical description of
the architecture of the development envi-
ronment that we summarize below.

Object-oriented programming. The
technique of object-oriented program-
ming has gained a great deal of recognition
as a superior approach to programming
tasks. Studies have shown significant
reductions in both development time and
size of source code when such techniques
were used,’ with a significant increase in
the amount of reusable code. One criticism
of programs written using object-oriented
programming techniques is that they tend
to be slower than comparable conven-
tional programs. First, much of this view
relates to historical speed problems in early
versions of Smalltalk where object-
oriented code was interpreted rather than
compiled. With the advent of object-
oriented compilers and optimization tech-
niques, speed is no longer an insurmount-
able problem. Second, if you use an
appropriate object-oriented system,’ you
can carefully write and optimize reusable
chunks of code.

We selected an object-oriented pro-
gramming language for the Intermedia
project partly because of the reduction in
development time it promised, but mostly
for the benefits it affords to a group-
development effort. A team of developers
can agree on a shared set of parent classes
and their corresponding abstract methods.

COMPUTER

The use of abstract methods-or
templates-clarifies the behaviors an
application programmer must implement.
Then, working individually, the
developers can create appropriate
subclasses-defining one class of objects
in terms of other classes-that will respond
to a single set of messages and that can be
easily integrated into one program. When
a programming task is divided, one mem-
ber of the team can implement the code
that will coordinate the sending of mes-
sages to objects while the other members

of the team work on defining and refining
the object classes.

The applications framework. While an
object-oriented programming language
provides a number of features that facili-
tate team efforts, supplementing those fea-
tures with a set of classes that define
common behaviors-an applications
framework-insures a greater degree of
user-interface consistency in the system
under development.

Our choice, Apple’s MacApp,

represents such a companion to an object-
oriented programming language and pro-
vides a framework for constructing
Macintosh application^.'.'^ MacApp
defines classes with a combination of
abstract and nonabstract methods that
encapsulate the behavior of the Macintosh
user interface. A tiny program (on the
order of 10 to 20 lines) bound with
MacApp suffices to create a skeletal
Macintosh-like application with menus;
blank windows that can bemoved, resized,
and scrolled; data that can be stored and

Review of object-oriented programming principles
Not surprisingly, the fundamental notion in object-oriented

programming is that of objects. An object-oriented program is
a system of interacting objects. Objects encapsulate data and
the algorithms that specify the behavior of that data. Opera
tions on an object can take place only through a well-defined
interface to the object’s behavior; the actual implementation
of the behavior is hidden from everyone but the designer.

The data structure components of an object are known as
its fields or slots. The routines that can act upon an object of
a particular type are called methods. These methods are the
primary means through which the fields within an object may
be manipulated or modified. Other objects invoke an object’s
method by sending a message to the object. Then, the object
interprets the message and the appropriate method is per-
formed.

Classes (also known as object types) are templates defined
by programmers that describe the properties and behaviors of
a set of common objects. An object is actually an instance of
a class template, typically created as a program is running.
Each object is a copy of the class template. Thus, each object
has the same number and types of fields, and only differs
from other objects in the class in the data in those fields. Al l
objects in a class share the same methods, typically by point-
ing to a common method table or dictionary. While class tem-
plates provide a basis for modularity, subclassing-the ability
to define one class of objects in terms of other classes-is
one of the object-oriented programming concepts from which
much leverage is gained.

tor classes. An object in a subclass contains all the same
field types and methods as an object in the parent class. In
defining a subclass, a programmer can add fields and
methods or redefine methods that one of its superclasses
originally implemented. A redefined method can implement a
behavior completely different from the original method, or it
can merely slightly modify or extend the behavior of its parent.

Refining, or overriding, a method of a class makes it possi-
ble to considerably reduce the amount of code that an appli-
cation programmer needs to write; the only code necessary is
that which explains how a method differs from the parent
method. The programmer is guaranteed that the methods he
or she did not override will respond properly to any messages
sent to the object. This process of redefining and extending a
class of objects in terms of another class is important

Subclasses inherit the characteristics of higher-level ances-

because it enables programmers to use and modify existing
parts of a system without having to understand the details of
their implementation.

objects that are instances of this class will have two Point
fields (the topleft and the bottom-right corners of the rectan-
gle). The class will have methods for calculating area and
drawing the rectangle. If we wish to draw a rectangle on the
screen, we first create a Rectangle object and then send a
message to invoke the Draw method. To create a more special-
ized object that draws a rectangle and prints text inside the
rectangle, we would define a subclass of Rectangle, called
TextRect. No existing code has to be rewritten. Instead, in the
definition of the TextRect class we can add a character string
field, override the Draw method inherited from the parent
class, refine its behavior to do what its parent did, and draw
the text. Like Rectangle objects, TextRect objects will respond
to FindArea messages, even though we did not add any code
for calculating area in the TextRect class.

In the above example, the Rectangle class served as a tem-
plate for the subclass TextRect. However, it often helps to
define less specific templates than the Rectangle class. For
instance, a parent class of Rectangle called Shape might have
been created with two abstract methods, Draw and FindArea.
An abstract method contains no code; it exists only for the
purpose of being overridden. To create a new shape, a pro-
grammer would subclass Shape, add appropriate fields, and
override the Draw and FindArea methods.

Likewise, a program that displays many different shapes on
the screen might contain a list defined to point to objects of
class Shape or any subclass of Shape. Each object in the list
inherits the Draw method from the Shape superclass, but has
overridden i t with code appropriate for drawing the specific
object. Since all shapes are guaranteed to understand the
same message protocol, we can display a whole screenful of
shapes by merely sending the same draw message to each
object in the list without knowing exactly what type of shape
objects are in the list.

Objects descending from the same parent class are essen-
tially “plug compatible;” each understands the same mes-
sages as the others, yet each performs the task in its own way.
This modularity allows the transparent creation and insertion
of new subclasses into the program.

For example, say we define a class called Rectangle. All the

January 1988 91

retrieved; and views that can be automat-
ically laser printed. This default program,
however, has a blank view. To write an
application with views that render some-
thing in the windows, the programmer
must subclass several base classes provided
by MacApp. The most important of these
classes are

The Object class, which manages the
freeing of memory and the cloning of
new objects. It is the parent of all
other classes.
The Application class, which contains
methods for launching an applica-
tion, displaying the menu bar,
managing the main event loop, and
creating and initializing appropriate
document objects.
The Document class, which main-
tains the data model for the program.
Document objects contain all the
basic information for saving and
restoring the data and managing
several other objects-such as Win-
dow objects, Frame objects, and
View objects-involved in viewing
the information contained in the
document.
The Window class, which manages all
the operations pertaining to windows,
including opening, closing, resizing,
moving, activating, and redrawing.
The View class, which manages the
rendering of the data contained in the
document and passes on mouse
events to the appropriate objects
within the view.
The Command class, which is the
template from which command
objects are generated to respond to
outside actions from the menu, the
mouse, or the keyboard. Since com-
mand objects can be maintained on a
stack, multilevel undo and redo are
easily implemented.

By subclassing these and other MacApp
classes, a programmer builds a model for
the data in an application, creates the win-
dows and frames in which the information
will be viewed, and describes how the user
can interact with that information.

The Application class has perhaps the
greatest impact on the developer. This
class contains the methods necessary for
an application’s most basic behavior. For
example, it includes methods for launch-
ing an application, running the main event
loop, dispatching events to the appropri-
ate event handler, and creating, closing,
and deleting documents. In the case of a
user selecting a command from a menu,

IItvo building blocks
were initially

implemented. Later, it
was discovered a third

building block
was needed.

the Application object interprets the
mouse press and sends a message to the
currently selected object’s DoMenuCom-
mand method. A programmer does not
have to consider flow-of-control issues
since an Application object handles all
user-initiated events, such as mouse
presses, keystrokes, and menu selections,
and dispatches those events to the appro-
priate target object.

As an applications framework,
MacApp promotes consistency in a multi-
application environment by eliminating
the need for programmers to reimplement
any of the user-interface features required
for the shell of a Macintosh-like applica-
tion. The framework insures that each
application will have windows, menus,
dialog boxes, and other basic components
that look and behave the same way as all
others in the system.

Building blocks. While object-oriented
programming provides the structure and
methodology for cooperative develop-
ment, and MacApp provides a set of base
classes from which to build an application,
these two components alone are not
enough to create a fully functional devel-
opment environment for a group of
cooperative developers.

Still missing is a component that helps
developers render and manipulate the data
for their particular application. To this
end, we have implemented several build-
ing blocks-sets of reusable classes that
implement basic functions common to
multiple applications.

The philosophy behind the building
blocks is that they should encapsulate
important end-user functionality-both
input and output components-and pro-
vide both a user interface and a program-
mer interface. Instances of these building
blocks can be incorporated directly into an
application; the application programmer
can use part or all of a building block’s

functionality as it exists or modify the
functionality to suit a specific application.
To support the development of applica-
tions within Intermedia, we initially imple-
mented two building blocks-a Text
Building Block and a Graphics Building
Block-and later found the need f J r a
third-a Table Building Block.

The Text Building Block permits the
inclusion of text anywhere within an appli-
cation. It makes it possible to provide
exactly the same interface for displaying,
editing, and formatting multifont text
throughout the system. An entire applica-
tion, such as a text editor, or some part of
an application, such as the input field of
a palette, can be based on the Text Build-
ing Block.

Just as the Text Building Block allows
the inclusion of text anywhere within an
application, the Table Building Block
facilitates the incorporation of tabular
data. A programmer can use the Table
Building Block as the backbone of a
spreadsheet program or a database inter-
face, or to integrate one or more tables into
any other type of application. For exam-
ple, Release 3.0 of Intermedia will include
a videodisc application with tables for
storing data such as frame numbers,
sequence names, and playing times of
video images.

The Graphics Building Block (GBB) lets
programmers incorporate graphics, such
as lines, rectangles, circles, icons, and
polygons, into their applications. This
building block defines a number of shape
classes with methods for drawing, high-
lighting, selecting, resizing, and moving.
The GBB also subclasses MacApp’s View
class so that the subclassed graphics
GView contains a list of all objects to be
rendered on the screen. To illustrate how
building blocks are used in general, we will
focus on the GBB.

Programmers can take advantage of a
building block such as the GBB in one of
four ways. First, a programmer can use the
building block functionality in its entirety.
For example, to create a structured
graphics editor similar to Apple’s Mac-
Draw in which users can draw a variety of
different shapes on the screen, rearrange
them, group them, and perform various
other editing operations, a programmer
could use most of the GBB’s shape classes,
subclassing where necessary, and then add
application-specific user-interface features
such as alignment, tool palettes, and style
palettes.

In the second case, a programmer can
eliminate functions inherited from a build-

92 COMPUTER

ing block. For example, one method
associated with polygon objects in the
GBB allows users to move polygons by
clicking on them and dragging. In Inter-
Spect, data files-not users-govern the
placement of each polygon relative to
other polygons in a three-dimensional
object, so the developers override GPoly-
gon’s Move method to eliminate the drag-
ging functionality. In all other respects,
polygons behave in InterSpect as defined
in the GBB.

Third, you can override methods to add
increased functionality to building block
classes. The use of icons in Intermedia’s
desktop application illustrates the addition
of functionality to a building block’s
method. The desktop application sub-
classes GBB icons-simple bit maps-and
overrides the Draw method so that a text
string, representing a document’s name,
always appears below the icon (see Screen
1 in the sidebar, “Sample session”).

In the fourth case, a programmer can
override methods to change the behavior
of building block classes. An example in
InterSpect clearly illustrates this. To indi-
cate that an object has been selected, the
GBB uses “handles” to indicate highlight-
ing. In InterSpect, however, the GBB’s
GSelection method is overridden to substi-
tute bold outlines as a highlighting
method.

With these four options available, appli-
cation developers have enough flexibility
to create innovative interfaces, but are not
burdened with the implementation of
functions that should behave identically
across applications. The building blocks
complement MacApp by providing a
means of achieving internal as well as
external consistency among applications.

Adding shared functionality. By using
the tools described above-an object-
oriented programming language,
MacApp, and building blocks-a pro-
grammer could create applications that
adhere to the Macintosh-style user-
interface paradigms. In our requirements
for Intermedia, however, we identified the
need to run multiple applications on the
desktop as well as the need to link the con-
tents of documents together. These two
requirements made it necessary for us to
extend, and in some cases alter, the exist-
ing Macintosh user-interface paradigms.
To this end, we kept MacApp as the first
layer of our system and then subclassed
most of the MacApp classes to create an
Intermedia layer. The way the Intermedia
layer extends the functionality of MacApp

Running multiple
desktop applications

and linking document
contents were
identified as

requirements.

illustrates the ease with which features
shared by many applications can be imple-
mented using our object-oriented develop-
ment base.

Briefly, the type of additional function-
ality the Intermedia layer supports
includes the creation of links between a
selection in a source document and a selec-
tion in a destination document. To attain
the desired consistency, the Intermedia
layer subclasses MacApp’s Document,
View, and Application classes. In
MacApp, the Document class manages the
reading and writing of an application’s
data model while the View class manages
the rendering of that model. IntDoc and
IntView, the Intermedia layer’s document
and view classes, extend the MacApp func-
tionality to include the reading and writ-
ing of link information to a relational
database and the rendering of the links.
The Intermedia layer’s application class,
IntAppl, adds the functionality necessary
to interface with Intermedia’s folder
system.

Like MacApp, the Intermedia applica-
tion framework “calls” the applications
through the use of abstract methods. By
defining an abstract method, the frame-
work indicates t o the application
developers that it is the responsibility of a
building block or an application to provide
a concrete implementation of that method.
For example, IntView provides abstract
methods for displaying block markers
concretely implemented by the various
building blocks.

The linking functionality is imple-
mented largely in the Block class that exists
at the Intermedia layer and inherits from
MacApp’s Object class. Since there must
be a block at either end of a link, blocks are
created each time a link is made, unless the
user attaches one end of the link to an
already existing block. A Block object
keeps track of all links that emanate from
it by pointing to a Link Array object that,

in turn, points to the appropriate Link
objects. Therefore, users can access a link
through a block to follow the link or view
its properties.

The methods of the Blocks include ones
for starting links, completing links, fol-
lowing links, viewing properties, and
several others. Certain appropriate menu
items become available when a BlockMar-
ker is selected. The menu items for show-
ing the extent of the block, starting a link,
deleting the block, and viewing the block
properties are enabled if the block to which
the Block object points has no links. If that
Block has at least one link, all of the previ-
ously mentioned options are available,
along with following, viewing of link
properties, and deleting the link. All of
these actions are done using Block
methods that themselves may use fields as
well as methods of the associated Link
objects.

This portion of the linking functional-
ity is shared in its entirety by all Interme-
dia applications, leaving only a few details
for the developer to implement in order to
integrate linking into a new application.
With a non-object-oriented development
base, each application programmer would
have been forced to identify and call proce-
dures from appropriate subroutine librar-
ies for saving, restoring, creating, deleting,
and viewing links, and to do all this in the
appropriate order with the correct
parameters. Using the Intermedia layer
augmenting MacApp, the applications
framework essentially alerts the program-
mer, who must implement only those
methods that are specific to his or her
application. All other functionality is
shared as standard fare by all developers.
Larry Rosenstein of Apple Computer has
whimsically labelled this a “don’t call us,
we’ll call you” programming meth-
odology.

Building an application. While the
Block methods in the Intermedia layer
handle the core of the linking functional-
ity, the methods of the individual applica-
tion’s View objects handle the way blocks
are displayed in different applications. The
display methods include the creation and
display of marker icons, scrolling to a
block after a follow, and highlighting the
extent of a block. In the GBB, these
methods, defined at the Intermedia layer
as abstract methods of IntView , are imple-
mented in the subclass GView. An appli-
cation that, in turn, subclasses GView
inherits a whole hierarchy of functional-
ity, part of which includes the display of

January 1988 93

P i
-I-

-
Gnphlcm Bulldlnv
Block Lmyu

Figure 2. Inheritance hierarchy for the InterSpect unit.

blocks (see Figure 2). The application
developer then subclasses GView and the
associated GObject, and uses the Dialog,
Control, List, and other classes to create
a customized application.

Every application added to the Interme-
dia environment has a number of features,
like zooming and rotation in InterSpect,
that differ from functions implemented at
the MacApp, Intermedia, or building
block layers. In this case, the programmer
creates new objects that are simply sub-
classes of MacApp’s generic Command or
Object classes. While the development
tools do not directly simplify the imple-
mentation of these features, general
object-oriented techniques help structure

the thinking of programmers about their
applicati Jn-specific problems.

Developing in parallel. When building
applications such as InterSpect in parallel
with other applications that run in the
same environment, we initially consider
each application as a separate entity.
Programmers build and debug their pro-
grams as independent applications, each
taking advantage of the inheritance hier-
archy provided by the development tools.
The extreme modularity of the object-
oriented environment makes it possible to
take applications developed separately
and, without requiring recompilation,
integrate them into a single system.

For application integration, the
Intermedia system contains a Framework
application. When programmers develop
an application, they compile the code for
each application object separately from
the code for all other objects. The com-
piled code minus the application object is
called a unit. For example, InterSpect has
an application object, called SpectAppl,
that is a subclass of the Intermedia layer’s
application object, IntAppl. The Spect-
Appl object contains a method called
DoMakeDocument exclusively for creat-
ing InterSpect document objects. To test
InterSpect, the programmer binds the
InterSpect unit to the SpectAppl object.
When ready to integrate InterSpect into

94 COMPUTER

the Intermedia system, the programmer
instead relies on the framework’s applica-
tion object (FrameworkAppl, also a sub-
class of IntAppl), which contains a
DoMakeDocument method for creating
not just InterSpect documents, but many
different document types. When integrat-
ing InterSpect into the Intermedia system,
the programmer adds InterSpect to the list
of document types specified in Framework-
Appl’s DoMakeDocument method and
then binds InterSpect and all other appli-
cation units with the FrameworkAppl
object rather than the SpectAppl object,
without ever having to recompile the Inter-
Spect unit.

The capability to reuse the same units
without recompilation for independent
testing and for creating an integrated sys-
tem was instrumental in the success of our
parallel development effort. Developers
could work on their portions of the proj-
ect independently, knowing that the effort
of integration would be minimal as long as
they worked within the structure provided
by the building block and the Intermedia
application framework. In particular,
developers could count on inheriting all
the linking functionality as soon as their
application was bound and run with the
FrameworkAppl object.

Measuring success

The concept. To assess the power and
utility of hypermedia, IRIS is conducting
a series of experiments at Brown that intro-
duce Intermedia into existing courses and
work settings. To date, Intermedia-based
materials and applications have been used
in a plant cell biology course and an Eng-
lish literature course involving about eight
users who might be classified as authors
and 80 students who primarily used the
system as browsers (although many
experimented with creating their own
documents).

As evidence that users appreciated the
multiple applications provided by the
Intermedia framework, two substantial
linked bodies of material (approximately
850 English-related documents and 200
biology-related documents) were created
that included documents of all available
types.

Authors and browsers alike learned to
use the system with almost no training.
Even though experienced Macintosh users
learned more quickly than others, no user
required more than a week or two to feel
comfortable using Intermedia and all its

available applications. The approximately
3,000 links created by the eight authors
seems to indicate that link-making as well
as link-following posed little or no diffi-
culty to the users. Although there is no
empirical evidence to show that con-
sistency among applications is related to
ease of use, we believe it is a strong factor.
In fact, we believe the consistent applica-
tion framework with seamless inclusion of
linking allows users to ponder new appli-
cations, taking for granted that linking will
be incorporated into those applications as
a standard feature.

An examination of the course materials
created by the instructors in this study indi-
cated that each used Intermedia success-
fully (measured by a substantial increase
in the critical thinking skills of the
students”), despite the fact that each
instructor used the system in a fundamen-
tally different way. We believe this study
points to the potential value of multiuser
hypermedia systems across a wide range of
academic disciplines.

The construction. With the generic
MacApp layer, the Intermedia layer, and
three crucial building blocks in place, we
can now build and integrate new applica-
tions into the Intermedia environment in
a matter of weeks. By systematically
implementing abstract methods and over-
riding other methods found in layers above
the application layer, developers can cre-
ate applications guaranteed to have com-
mon functionality consistent with all other
applications. While it is, of course, possi-
ble to institute inconsistencies, it takes
more effort to be inconsistent than con-
sistent.

We can directly attribute the successful
and rapid development of the Intermedia
environment to object-oriented program-
ming techniques. These techniques, in
combination with other factors, enabled
us to attain each of our goals for the proj-
ect. We were able to remove the burden of
user-interface consistency from the appli-
cation developer, adopt an existing user-
interface definition, allow groups of
programmers to work in parallel, integrate
separate modules without recompilation,
avoid considerable duplication of effort,
and create anextensible system suitable for
the rapid development of new applica-
tions. The Proceedings of OOPSLA 866
provides a more detailed description of the
specific measures we used as a basis for
these conclusions.

Despite the substantial benefits of our
development base, as with every system,

we encountered problems and drawbacks.
Our most serious problem stemmed from
working in an extremely layered environ-
ment. Although inheritance certainly saves
programmers an enormous amount of
work, it can prove quite time-consuming
in an environment that does not support
incremental compilation. When working
with a Unix system using the C program-
ming language and an object-oriented
preprocessor, changes in one layer are not
automatically propagated to other lower-
level layers. In our case, when we changed
fields and methods in a parent class such
as IntView, we had to recompile all layers
inheriting from that class. These often
required 45 minutes or longer. Although
we attempted to minimize the number of
recompilations, they were often unavoid-
able during the period we worked on all
layers of the system simultaneously. We
did manage to structure the working envi-
ronment so the recompilations would not
prevent other people from working, but
this scheme added the expense of keeping
duplicate copies of the source code and
producing new releases of the system every
week. Even though we used a source code
control system to facilitate release track-
ing, we still had to be extremely careful to
include the most up-to-date versions of
every layer in each release.

hrough the use of abstract
methods, object-oriented pro- T gramming provided us with a

concrete structure that could be shared by
each of the applications in the system.
With object-oriented programming and
MacApp, we could structure the whole
system in such a way that each part could
be worked on independently with the guar-
antee that integration would be easily
accomplished and common functions
would behave identically in each of the
applications.

As we look toward the future, we plan
to expand Intermedia, both from a user’s
and a programmer’s point of view. Devel-
opment of new applications and system
features are under way to provide links to
and from video and audio, more complex
filtering and information retrieval, better
visualizations of connections between
documents, and support for capturing and
replaying paths through a web. On the
development side, we plan to implement
building blocks for handling controls such
as sliders and scrollbars, for abstracting
menus, for providing MIDI music record-
ing and replay, and for providing more
sophisticated text-editing features. More

January 1988 95

‘importantly, we hope to persuade the soft-
ware development community that (1)
application development will be most
fruitful when that community at large
embraces object-oriented building blocks
and frameworks and (2) hypermedia will
only be readily accessible when a common
linking protocol is adhered to by all third-
party software creators. 0

Acknowledgments
Intermedia is the culmination of two years of

intense effort by a large team of developers led
by Norman Meyrowitz. We would like to thank
Tim Catlin, Helen DeAndrade, Page Elmore,
Charlie Evett, Matt Evett, Nan Garrett, Allan
Gold, Ed Grossman, Karen Smith, Tom Stam-
baugh, Ken Utting, Dave Bundy, Dan Stone,
Steve Williams, Bill Shipp, Marty Michel, and
Andy van Dam for their tireless contributions
to developing the system. We would also like to
thank Peter Heywood, Scott Buchanon, and
Chris Scott for the many hours they spent con-
structing the biology materials, and George
Landow, David Cody, Glenn Everett, Rob Sul-
livan, Katherine Stockton, and Suzanne Keen
Morley for producing the enormous corpus,
Context 32: A Web of English Literature.

The work described in this paper was spon-
sored in part by a joint study contract with IBM,
a grant from the Annenberg/CPB Project, and
a research agreement with Apple Computer.

VICE PRESIDENT FOR 1
Adelphi University a

Vice President for Information

vsystemsandehnology;
establishment of policy and
guidance of operations for educa-
t i l technology and computing.
High pr!ority will be given to
acadermcneedswithemphaslson
enhancement d faculty and stu-
dent utiliition.

References
1. J. Conklin, “Hypertext: An Introduction

and Survey,” Computer, Sept. 1987, pp.
17-41.

2. N. Yankelovich, M. Meyrowitz, and A. van
Dam, “Reading and Writing the Electronic
Book,” Computer, Oct. 1985, pp. 15-30.

3. D.C. Smith et al., “Designing the Star User
Interface,” Byte, Byte Publications Inc.,
Apr. 1982, pp. 243-281.

4. A. Goldberg, Smalltalk-80: The Interactive
Programming Environment, Addison-
Wesley Publishing Co. Inc., Reading,
Mass., 1984.

5 . B. Shneiderman, Designing the User Inter-
face: Strategies for Effective Human-
Computer Interaction, Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1987.

6. N. Meyrowitz, “Intermedia: The Architec-
ture and Construction of an Object-
Oriented Hypermedia System and Applica-
tions Framework,” Proc. OOPSLA 86,
Sept., 1986, pp. 186-201.

7. B. Cox, “Message/Object Programming:
An Evolutionary Change in Programming
Technology, ’ ’ IEEE So f f ware, Jan. 1984,
pp. 50-61.

8. B. Stroustrup, The C + + Programming
Language, Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1986.

9. K. Schmucker, Objeet-OrientedProgram-
ming for thekfacintosh, Hayden Book Co.,
Hasbrouck Heights, N.J. , 1986.

10. L. Tesler, “An Introduction to MacApp
0.1,” Apple Computer, Inc., Cupertino,
Calif., Feb. 14, 1985.

11. W.O. Beeman et al., Intermedia: A Case
Study of Innovation in Higher Education,
assessment report prepared for the Annen-
berg/Corp. for Public Broadcasting Proj-
ect, Oct. 1987.

Nicole Yankelovich, a founding member of
Brown University’s Institute for Research in
Information and Scholarship (IRIS), is project
coordinator at the Institute. She is responsible
for overseeing a number of projects, including
experiments to introduce Intermedia into Brown
University courses. She has participated in the
design and development of Intermedia from its
inception, contributing most heavily to the user-
interface specifications.

Yankelovich holds the BA degree from
Brown University in political science and is a
member of the Computer Society of the IEEE,
the ACM, and a number of educational com-
puting organizations.

Readers may write to the authors at IRIS, PO
Box 1946, Brown University, Providence, RI
02912.

Bernard J. Haan, a research software engineer
at the Institute for Research in Information and
Scholarship at Brown University, is one of the
original members of the Intermedia project
team. As project leader of the programming
team developing Intermedia’s linking capabil-
ities, he has been involved in all phases of the
program’s development, from design to imple-
mentation.

Haan is agraduate of Brown University, with
degrees in computer science and French litera-
ture. He is a member of the ACM.

Norman K. Meyrowitz, associate director of the
Institute for Research in Information and
Scholarship at Brown University, has directed
the Institute’s hypertext and multimedia
research program since he helped found IRIS in
1983. Most recently, Meyrowitz has managed
and has been the principal architect of the
Intermedia project. His major research interests
are in the areas of multimedia documents, text
processing, user-interface design, and object-
oriented programming.

Meyrowitz graduated from Brown University
in 1981 with a degree in computer science. He
is a member of the Computer Society of the
IEEE, the ACM, and Sigma Xi.

Steven M. Drucker is a PhD candidate in the
Brain and Cognitive Sciences Dept. at the Mas-
sachussetts Institute of Technology, studying
robotics, tactile sensing, and machine learning
as a Poitras fellow at MIT’s Whitaker College.
Previously, he spent two years at the Institute
for Research in Information and Scholarship at
Brown University, working first on an Interme-
dia prototype and later on the framework for the
current version of Intermedia.

Drucker received the ScB in neurosciences,
summa cum laude, from Brown University.

COMPUTER

