
Chapter 1

Implementing Coherent Memory

Butler W. Lampson

In the design of a shared-memory multiprocessor, there is a con
ict between the
need for a coherent memory in which every write done by one processor is imme-
diately visible to all the others, and the fact that a memory read or write that
uses only a cache local to the processor can be done more quickly than one that

communicates with a global memory or another processor. Coherent memory is
good because we know how to program with it; the incoherent memory that results
from minimizing communication is good because it is fast.

In this paper we show how to write precise speci�cations for coherent and inco-
herent memory, and how to implement coherent memory in several ways, one of
which is on top of incoherent memory. Our technique for showing the correctness of
the implementations is the abstraction function introduced by Hoare [8] to handle
abstract data types. A decade later, Lamport [1] and Lynch [10] extended Hoare's

methods to concurrent systems like the ones we treat.

We begin by giving a careful speci�cation for the coherent memory S that we
really want; it is just a function from addresses to data values. We also specify

an incoherent memory T that has fast implementations. After a brief explanation

of what it means to implement a speci�cation and how to prove the correctness
of an implementation using abstraction functions, we explore how to change T so
that it implements coherent memory with as little communication as possible. Our

�rst step is a simple idealized implementation U derived from T by strengthening

the guards. Unfortunately U is extremely non-local and therefore impractical. We
describe two ways to make U local enough to be practical. Both are based on the

idea of using locks on memory locations.

First we show how to use reader/writer locks to get a practical version of U

called a coherent cache. We do this in two stages: an ideal cache B and a concrete

cache C. The cache changes the guards on internal actions of T as well as on the
external read and write actions, so it can't be implemented simply by adding a

test before each read or write of T, but instead requires changes to the insides of

T. We complete our treatment of caches by sketching several implementations of

1

2 Butler W. Lampson

C that are used in commercial multiprocessors.

Then we show how to use locks in a di�erent way to get another practical version

of U, called E. The advantage of E is that the locking is separate from the internal

actions of the memory system, and hence E can be implemented entirely in software

on top of an incoherent memory system that only implements T. In other words,

E is a practical way to program coherent memory on a machine whose hardware

provides only incoherent memory.

All our implementations make use of a global memory that is modelled as a

function from addresses to data values; in other words, the speci�cation for the

global memory is simply S. This means that an actual implementation may have

a recursive structure, in which the top-level implementation of S using one of our

algorithms contains a global memory that is implemented with another algorithm

and contains another global memory, etc. This recursion terminates only when we
lose interest in another level of virtualization. For example,
a processor's memory may be made up of a �rst level cache plus
a global memory made up of a second level cache plus
a global memory made up of a main memory plus

a global memory made up of a local swapping disk plus
a global memory made up of a �le server

1.0.1 Notation

We write our speci�cations and implementations using state machines [9]. As
usual, a state machine consists of

� a state space, which we represent by the values of a set of named variables,
� a set of initial states, and
� a set of transitions or actions. Each action consists of:

{ a name, which may include some parameters,

{ a guard, a predicate on the state that must be true for the action to

happen, and

{ a state change, which we represent by a set of assignments of new values

to the state variables.

We write an action in the form

name = guard ! state change

Actions are atomic: each action completes before the next one is started. To
express concurrency we introduce more actions. Some of these actions may be

internal, that is, they may not involve any interaction with the client of the memory.
Internal actions usually make the state machine non-deterministic, since they can

happen whenever their guards are satis�ed, unlike external actions which require

some interaction with the environment.

Implementing Coherent Memory 3

To make our state machines easier to understand we give types for the variables,

either scalar or function types. We also give names to some state functions on the

variables. For instance, we de�ne clean = (8 p : : newp) and then use clean in

expressions exactly like a variable. Finally, we write down useful invariants of each

state machine, predicates that are true in every reachable state.

1.1 S: Coherent Memory Speci�cation

This is just what you expect. The memory is modeled as a function m from

addresses to data values, and the Read and Write actions give direct access to

the function. We write the spec in this rather fussy form only for compatibility

with the more complicated versions that follow. The actions take a processor p as
a parameter so that they have the same names as the Read and Write actions of

later systems, but in this spec they don't depend on p.

type

A Address
D Data
P Processor

variable

m : A ! D Memory
action

Read(p; a;var d) = d := m(a)
Write(p; a; d) = m(a) := d

From now on we reduce clutter in the text of the specs by:

� Dealing only with one address, dropping the a argument everywhere.
� Writing the p argument as a subscript.

With these conventions, the actions above look like this:

action

Readp(var d) = d := m

Writep(d) = m := d

1.2 T: Incoherent Memory Speci�cation

The idea of incoherent memory is that in addition to a global memory m̂ there is
a private view vp for each processor; it contains data values for some subset of the

addresses. Here is the state of T:

4 Butler W. Lampson

x

y

m̂

x

nil

va

nil

z�

vb

x

y

vc

-

FromV b(1)

x
kz

m̂

x

nil

va

nil

z

vb

x

y

vc

-

ToV a(1)

x

z

m̂

x
kz

va

nil

z

vb

x

y

vc

Figure 1.1 Some possible transitions of T with three processors

variable

m̂ : A ! D

v : P ! A ! (D j nil)

new : P ! A ! Bool

state function

livep � (vp 6= nil)
invariant

newp) livep

Processor p uses vp to do its Readp and Writep actions. Internal actions ToV p

and FromV p copy data back and forth between p's view and the global memory m̂.
An address is live in p if p's view has a value for it. To do a Readp a processor may
have to wait for an ToV p to make the address live; a processor can do a Writep
at any time. Each view also keeps track in new of the addresses for which it has
new data that hasn't yet been copied to m̂. An internal Dropp action removes a
datum that isn't new from p's view. An external Barrierp action waits until an
address is not live; this ensures that the value written by any earlier Write has

been copied to m̂ and that any later Read sees a value from m̂.

There are commercial machines whose memory systems have essentially this

speci�cation [3]. Others have explored similar speci�cations [4, 5].

Figure 1 is a simple example which shows the contents of two addresses 0 and

1 in m̂ and in three processors a, b, and c. A new value is marked with a *, and
circles mark values that have changed. Initially Readb(1) yields the new value z,

Readc(1) yields y, and Reada(1) blocks because va(1) is nil. After the FromV b

the global location m̂(1) has been updated with z. After the ToV a, Reada(1)

yields z. One way to ensure that the FromV b and ToV a actions happen before

the Reada(1) is to do Barrierb followed by Barriera between the Writeb(1) that

makes z new in vb and the Reada(1).

Here are the possible transitions of T for a given address:

Implementing Coherent Memory 5

: live live^ : new

ToV

Drop

Write Write ToM

live^ new

-

�

?

6
H
H
H
H
H
H
H
H
H
Hj

Finally, here are the actions of the speci�cation for incoherent memory:

action

Readp(var d) = livep ! d := vp
Writep(d) = vp := d, newp := true

Barrierp = : livep ! skip

internal action

ToVp = : newp ! vp := m̂

FromVp = newp ! m̂ := vp, newp := false

Dropp = : newp ! vp := nil

After aBarrierp, vp is guaranteed to agree with m̂ until the next time m̂ changes.1

Note that in general a ToV action is needed to establish the guard on Read, and a
Drop action to establish the guard onBarrier. This means that an implementation
will do something that has the e�ect of ToV when it's trying to do a Read, and
similarly for Drop and Write. A Drop in turn may require a FromV to establish

its guard.
This is the weakest shared-memory spec that seems likely to be useful in practice.

But perhaps it is too weak. Why do we introduce this messy incoherent memory
T? Wouldn't we be much better o� with the simple and familiar coherent memory
S? There are two reasons to prefer T to S.

1. An implementation of T can run faster|there is more locality and less com-
munication. As we will see in implementation E, software can batch the

communication that is needed to make a coherent memory out of E.

2. Even S is tricky to use when there are concurrent clients. Experience has

shown that it's necessary to have wizards to package it so that ordinary
programmers can use it safely. This packaging takes the form of rules for

writing concurrent programs, and procedures that encapsulate references to
shared memory. The two most common examples are:

� Mutual exclusion / critical sections / monitors, which ensure that a
number of references to shared memory can be done without inter-

ference, just as in a sequential program. Reader/writer locks are an
important variation.

1An alternative version of Barrier has the guard : livep _ (vp = m̂); this is equivalent to
the current Barrier followed by an optional ToV p. You might think that it's better because it
avoids a copy from m̂ to vp in case they already agree. But this is a spec, not an implementation,
and the change doesn't a�ect its external behavior.

6 Butler W. Lampson

� Producer-consumer bu�ers.

For the ordinary programmer only the simplicity of the package is important,

not the subtlety of its implementation. As we shall see, we need a smarter

wizard to package T, but the result is as simple to use as the packaged S.

The implementation E below shows how to use T to obtain critical sections.

1.2.1 Specifying legal histories directly

It's common in the literature to write the speci�cations S and T explicitly in terms

of legal sequences of references at each processor, rather than as state machines [3,

4]. We digress brie
y to explain this approach.

For S, there must be a total ordering of the Readp(a; d) or Writep(a; d) actions
done by the processors that

� respects the order at each p, and

� such that for each Readp(a; d) and latest preceding Writep(a; d
0), d = d0.

For T, there must be a total ordering of the Readp(a; d), Writep(a; d), and
Barrierp(a) actions done by the processors that

� respects the order of Readp(a;�), Writep(a;�), and Barrierp(a) at each p

for each a, and

� such that Read reads the data written by the latest preceding Write, as in
S.

The T spec is weaker than S because it allows references to di�erent addresses
to be ordered di�erently. Usually the barrier operation actually provided does a
Barrier for every address, and thus forces all the references preceding it at a given

processor to precede all the references following it.

It's not hard to show that these specs written in terms of ordering are almost
equivalent to S and T. Actually they are somewhat more permissive. For example,

the T spec allows the following history

� Initially x = 1; y = 1.

� Processor a reads 4 from x, then writes 8 to y.

� Processor b reads 8 from y, then writes 4 to x.

We can rule out this kind of predicting the future by observing that the processors

make their references in some total order in real time, and requiring that a suitable
ordering exist for the references in each pre�x of this real time order, not just for

the entire set of references. With this restriction, the two versions of the T spec

are equivalent.

Implementing Coherent Memory 7

1.3 Implementations

Having seen the specs for coherent and incoherent memory, we are ready to study

some implementations. We begin with a precise statement of what it means for an

implementation Y to satisfy a speci�cation X [1, 10].

X and Y are state machines. We partition their actions into external and internal

actions. A history of a machine M is a sequence of actions that M can take starting

in an initial state, and an external history of M is the subsequence of a history that

contains only the external actions.

We say Y implements X i� every external history of Y is an external history

of X.2 This expresses the idea that what it means for Y to implement X is that

the externally observable behavior of Y is a subset of the externally observable

behavior of X; thus you can't tell by observing Y that you are not observing X.

The set of all external histories is a rather complicated object and di�cult to
reason about. Fortunately, there is a general method for proving that Y implements
X without reasoning explicitly about histories in each case. It works as follows.
First, de�ne an abstraction function f from the state of Y to the state of X. Then
show that Y simulates X:

1. f maps an initial state of Y to an initial state of X.

2. For each Y-action and each state y there is a sequence of X-actions that is
the same externally, such that the diagram below commutes.

f(y)

y

f(y0)

y0

f f 0

X-actions

Y-action
-

-

6 6

A sequence of X-actions is the same externally as a Y-action if they are the

same after all internal actions are discarded. So if the Y-action is internal, all
the X-actions must be internal (there might be none at all). If the Y-action is

external, all the X-actions must be internal except one, which must be the same
as the Y-action.

Then by a straightforward induction Y implements X, because for any Y-history

we can construct an X-history that is the same externally, by using (2) to map
each Y-action into a sequence of X-actions that is the same externally. Then the

2Actually this de�nition only deals with the implementation of safety properties. Roughly
speaking, a safety property is an assertion that nothing bad happens; it is a generalization of
the notion of partial correctness for sequential programs. Speci�cations may also include liveness
properties, which roughly assert that something good eventually happens; these generalize the
notion of termination for sequential programs [1]. Liveness is beyond the scope of this paper.

8 Butler W. Lampson

sequence of Y-actions will be the same externally as the corresponding sequence of

X-actions.

In order to prove that Y simulates X we usually need to know what the reachable

states of Y are, because it won't be true that every action of Y from an arbitrary

state of Y simulates a sequence of X actions. The most convenient way to charac-

terize the reachable states of Y is by an invariant, a predicate that is true of every

reachable state. Often it's helpful to write the invariant as a conjunction, and to

refer to each conjunct as an invariant.

So the structure of a proof goes like this:

� Establish invariants to characterize the reachable states, by showing that the

invariants are true in each initial state and that each action maintains the

invariants.

� De�ne an abstraction function.

� Establish the simulation, by showing that each Y action simulates a sequence
of X actions that is the same externally.

This method works only with actions and does not require any reasoning about
histories. Furthermore, it deals with each action independently; only the invariants
connect the actions. So if we change (or add) an action, we only need to verify

that the new action maintains the invariants and simulates a sequence of S-actions
that is the same externally. In particular, strengthening a guard preserves the
\implements" relation. We will exploit this observation to evolve an obviously
correct implementation of S into some more e�cient ones.

In what follows we give only the abstraction function and the invariants; the
actual proofs of invariants and simulations are routine.

1.4 U: An impractical implementation of S

We begin by giving an implementation called U which is identical to T except

that some of the guards are stronger, in fact, strong enough that U implements
S. Therefore there's no need for Barrier in U. Unfortunately, U can't be directly

implemented itself because a practical implementation must look only at local

state, and U has variables curp and clean that are not local. However, U is easy

to understand, and it gives us a basis from which to develop a number of di�erent

implementations that are practical.

For the sake of brevity, in describing U we leave out most of the actions that

are the same in T. In order to make it easy for the reader to compare T and U,

we mark the changes by striking out text that is only in T and boxing text that is
only in U.

For this and all our other implementations of S, we use the same abstraction

function:

Implementing Coherent Memory 9

m = if clean then m̂ else (vp for some p such that newp)

This is only well-de�ned if vp is the same for every p for which newp = true. All

of our implementations maintain the invariant that newp is exclusive, that is, true

for at most one p, which ensures that the abstraction function is well-de�ned.

variable

m̂ : A ! D

v : P ! A ! (D j nil)

new : P ! A ! Bool

state function

livep � (vp 6= nil)

curp � (vp = m)
clean � 8 p . : newp

invariant

newp) livep

new is exclusive, that is, it's true for at most one processor

action

Readp(var d) = livep curp ! d := vp
Writep(d) = clean _ newp ! vp := d, newp := true

Barrier is uninteresting because every p is always current when it does a Read.

U implements S because:

� new is exclusive, so m is well-de�ned;

� Read returns m as required, Write changes m as required;
� Other actions leave m unchanged.

1.5 B and C: A cache implementation of U

We take two steps to get from U to a generic cache implementation. The �rst step
is B, which still uses non-local state functions clean and onlyp, but gets rid of curp
by maintaining a new invariant, livep) curp and strengthening the guard on Read

from curp to livep. To maintain the new invariant we also need to strengthen the
guards on Writep and ToV p.

variable

m̂ : A ! D

vp : A ! (D j nil)

newp : A ! Bool

state function

10 Butler W. Lampson

livep � (vp 6= nil)

curp � vp = m)

clean � 8 p . : newp

onlyp � 8 q 6= p . : liveq

invariant

newp) livep
new is exclusive

livep) curp

action

Readp(var d) = curp livep ! d := vp
Writep(d) = clean _ newp onlyp ! vp := d, newp := true

internal action

ToVp = : newp clean ! vp := m̂

. . .

As in U, Barrier is uninteresting because every p is always current when it does
a Read.

Now we can give C, a practical implementation of Read, Write, and ToV which
pushes the non-locality into an action Acquire that acquires a write lock, and the
state function free. The invariants imply that the new guards are as strong as the

old ones.

variable

m̂ : A ! D

v : P ! A ! (D j nil)
new : P ! A ! Bool

lock : P ! A ! Bool

state function

livep � (vp 6= nil)
curp � (vp= m)
clean � 8 p . : newp

onlyp � 8 q 6= p . : liveq

free � 8 p . : lockp

invariant

newp) livep
new is exclusive

livep) curp

newp) lockp
lockp) onlyp
lock is exclusive

Implementing Coherent Memory 11

action

Readp(var d) = livep ! d := vp
Writep(d) = onlyp lockp ! vp := d, newp := true

internal action

ToVp = clean
: newp ^

(lockp_ free)
! vp := m̂

. . .

Acquirep = free ^ onlyp ! lockp := true

Releasep = : newp ! lockp := false

1.5.1 Implementing Acquire

Now all we have to do is implement the guard of Acquire. To establish free

^ onlyp, we need:

� a way to test it, and

� a way to progress toward it by suitable Releasep and Dropp operations.

There are three general approaches to solving these problems. All three have

been used in commercial multiprocessors [2, 7].

1. Directory, usually in conjunction with a switch-based processor-memory in-
terconnect [11]:

� Keep centrally a set fp : livep _ lockpg for each address or set of ad-

dresses or \cache block". Usually this directory information is kept with
the m̂ data.

� Ask each p that holds data or a lock to give it up (by doing Dropp or

Releasep) in order to ensure progress.

2. Snoopy, usually in conjunction with a bus-based processor-memory intercon-

nect [6]:

� If you don't hold the necessary lock, broadcast a request for progress to

all processors.

� Each processor q responds with the value of lockq; \or" all the responses,
often using a \wired-or" electrical signalling scheme.

3. Hierarchical, which handles problems of scale by subdividing the problem;
either method (1) or method (2) can be used at each level of the hierarchy:

� Partition the p's into pSets

� Keep liveps and lockps variables for each pSet

12 Butler W. Lampson

� Maintain
_

p2ps

livep) liveps and
_

p2ps

lockp) lockps.

� Deal with each pSet separately. Use any of (1)-(3) to handle each pSet

and to handle the set of pSets. It's not necessary to use the same method

in each case.

1.5.2 Update protocols

There is a popular variation of the caches described by B and C called an \update

protocol". It allows data to be copied directly from one cache to another without

going through m̂ . Here is B-update; it simply adds one action to B.

internal action

VtoVpq = liveq ! vp := vq

V toV pq maintains the invariants because of the invariant livep) curp, and it
doesn't change m.

And here is C-update; we mark the changes from C, except that we show how the
guards of ToV and V toV are changed from B-update. The invariant is weaker than
C's, and the guards on ToV correspondingly stronger. The idea is that p can release

the lock, so that copies are allowed in other processors' views, without updating
m̂ and making newp false. So the guard on ToV is quite non-local, and only a
snoopy implementation is attractive. Actual implementations usually broadcast
writes to shared locations; this corresponds to doing Dropq ;Writep;V toV pq more
or less atomically, and ensuring this atomicity can be tricky.

invariant

newp) lockp
action

ToVp = clean ^ free ! vp := m̂

VtoVpq = liveq ^ free ! vp := vq

1.6 E: Programming with incoherent memory

Now for a di�erent modi�cation of U that gets us to a di�erent practical imple-
mentation, similar to C but not identical. We call this E, and we show changes

from U by the outer boxes and strikeouts, and the di�erences from C inside. The

latter are:

Implementing Coherent Memory 13

� The invariant relating live and cur is weaker:

{ C: live) cur

{ E: live ^ lock) cur

This is the crucial di�erence.

� Read has a stronger guard that includes a lock conjunct.

� ToV has a weaker guard, just : new without the lock _ free conjunct.

� Acquire has a weaker guard without only; in fact, E doesn't use only at all.

� Acquire and Release have added Barrier actions.

The critical di�erence between E and C is that the internal actions of E are the

same as those of T. This means that we can use an unmodi�ed T as the basis of E.

The Read and Write actions of E are the Read and Write actions of T preceded

by tests that lock is true. Usually this is done by con�ning all occurrences of
Read and Write to critical sections within which lock is known to be true. The
Acquire and Release operations are done at the start and end of a critical section
in the usual way. In other words, E shows how to build coherent memory on top

of incoherent memory.
Note: it's not actually necessary for Acquire and Release to be fully atomic;

the Barriers can be done separately.

variable

m̂ : A ! D

v : P ! A ! (D j nil)
new : P ! A ! Bool

lock : P ! A ! Bool

state function

livep � (vp 6= nil)
curp � (vp = m)

clean � 8 p . : newp

onlyp � 8 q 6= p . : liveq
free � 8 p . : lockp

invariant

newp) livep
new is exclusive

livep ^ lockp) curp
newp) lockp
lockp) onlyp
lock is exclusive

action

Readp(var d) = curp lockp ^ livep ! d := vp

Writep(d) = clean _ newp lockp ! vp := d, newp := true

internal action

ToVp = : newp ^ lockp _ free! vp := m̂

14 Butler W. Lampson

Acquirep = free ^ onlyp ! lockp := true ; Barrier

Releasep = : newp ! Barrier ; lockp := false

We have written E with an exclusive lock, which is the most common way to do

critical sections. It works just as well with reader/writer locks; the guard for Read

is rlockp ^ livep, the guard for Write is wlockp, and there are separate Acquire

and Release actions for the two kinds of locks.

1.6.1 Remarks

The T spec allows a multiprocessor shared memory to respond to Read and Write

actions without any interprocessor communication. Furthermore, these actions
only require communication between a processor and the global memory when a

processor reads from an address that isn't in its view. The expensive operation
in this spec is Barrier, since the sequence Writea; Barriera; Barrierb; Readb
requires the value written by a to be communicated to b. In current implemen-
tations Barrierp is even more expensive because it acts on all addresses at once.
This means that roughly speaking there must be at least enough communication

to record globally every address that p wrote before the Barrierp and to drop from
p's view every address that is globally recorded as new.

Although this isn't strictly necessary, all current implementations have addi-
tional external actions that make it easier to program mutual exclusion. These
usually take the form of some kind of atomic read-modify-write operation, for ex-
ample an atomic swap of a register value and a memory value. A currently popular

scheme is two actions: ReadLinked(a) and WriteConditional(a), with the prop-
erty that if any other processor writes to a between a ReadLinkedp(a) and the
next WriteConditionalp(a), the WriteConditional leaves the memory unchanged

and returns a failure indication. The e�ect is that once the WriteConditional

succeeds, the entire sequence is an atomic read-modify-write from the viewpoint of
another processor [3]. Of course these operations also incur communication costs,

at least if the address a is shared.

We have shown that a program that touches shared memory only inside a critical

section cannot distinguish memory that satis�es T from memory that satis�es the
serial speci�cation S. This is not the only way to use T, however. It is possible

to program other standard idioms, such as producer-consumer bu�ers, without
relying on mutual exclusion. We leave these progams as an exercise for the reader.

1.7 Conclusion

The lesson of this paper is twofold:

Implementing Coherent Memory 15

� It is possible to give simple but precise speci�cations for several kinds of

shared memory that do not depend on the intended implementations. Fur-

thermore, the essential ideas of the implementations can also be described

precisely, and it is fairly straightforward to prove that the implementations

satisfy the speci�cations. Standard methods for reasoning about concurrent

programs and their speci�cations work very well.

� Techniques for implementing serial shared memory have much more in com-

mon than you might think, even though they may use very di�erent combi-

nations of hardware and software to realize the common idea.

References

[1] Abadi, M. and Lamport, L., The existence of re�nement mappings, Theoretical Computer

Science 82 (2), 1991, 253-284.

[2] Archibald, J. and Baer, J-L., Cache coherence protocols: Evaluation using a multiprocessor
simulation model, ACM Trans. Computer Systems 4 (4), Nov. 1986, 273-298.

[3] Digital Equipment Corporation, Alpha Architecture Handbook, 1992.

[4] Gharachorloo, K., et al., Memory consistency and event ordering in scalable shared-memory
multiprocessors, Proc. 17th Symposium on Computer Architecture, 1990, 15-26.

[5] Gibbons, P. and Merritt, M., Specifying nonblocking shared memories, Proc. 4th ACM
Symposium on Parallel Algorithms and Architectures, 1992, 158-168.

[6] Goodman, J., Using cache memory to reduce processor-memory tra�c. Proc. 10th Sympo-

sium on Computer Architecture, 1983, 124-131.

[7] Hennessy, J. and Patterson, D., Computer Architecture: A Quantitative Approach, Morgan
Kaufann, 1990.

[8] Hoare, C. A. R., Proof of Correctness of Data Representation, Acta Informatica 4, 1972,
271-281.

[9] Lamport, L., A simple approach to specifying concurrent systems, Communications of the

ACM, 32 (1), 1989, 32-47.

[10] Lynch, N. and Tuttle, M., Hierarchical correctness proofs for distributed algorithms, Proc.
ACM Symposium on Principles of Distributed Computing, 1987, 137-151.

[11] Tang, C., Cache system design in the tightly coupled multiprocessor system. Proc. AFIPS
National Computer Conference, 1976, 749-753.

16

