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Abstract. Lamport showed that a replicated deterministic state machine is a
general way to implement a highly available system, given a consensus algo-
rithm that the replicas can use to agree on each input. His Paxos algorithm is the
most fault-tolerant way to get consensus without real-time guarantees. Because
general consensus is expensive, practical systems reserve it for emergencies and
use leases (locks that time out) for most of the computing. This paper explains
the general scheme for efficient highly available computing, gives a general
method for understanding concurrent and fault-tolerant programs, and derives
the Paxos algorithm as an example of the method.

1 Introduction

A system is available if it provides service promptly on demand. The only way to
make a highly available system out of less available components is to use redundancy,
so the system can work even when some of its parts are broken. The simplest kind of
redundancy is replication: make several copies or ‘replicas’ of each part.

This paper explains how to build efficient highly available systems out of replicas,
and it gives a careful specification and an informal correctness proof for the key algo-
rithm. Nearly all of the ideas are due to Leslie Lamport: replicated state machines [5],
the Paxos consensus algorithm [7], and the methods of specifying and analyzing con-
current systems [6]. I wrote the paper because after I had read Lamport’s papers, it still
took me a long time to understand these methods and how to use them effectively.
Surprisingly few people seem to know about them in spite of their elegance and power.

In the next section we explain how to build a replicated state machine that is both
efficient and highly available, given a fault-tolerant algorithm for consensus. Section 3
gives some background on the consensus problem and its applications. Section 4 re-
views the method we use for writing specifications and uses it to give a precise speci-
fication for consensus in several forms. In section 5 we introduce the basic idea behind
the Paxos algorithm for consensus and derive the algorithm from this idea and the
specification. Finally we explain some important optimizations and summarize our
conclusions.

                                                          
1 Email: blampson@microsoft.com. This paper is at http://www.research.microsoft.com.

WDAG 1996: Workshop on Distributed Algorithms, Bologna, Italy



Lampson 2

2 Replicated State Machines

Redundancy is not enough; to be useful it must be coordinated. The simplest way to do
this is to make each non-faulty replica do the same thing. Then any non-faulty replica
can provide the outputs; if the replicas are not fail-stop, requiring the same output from
f replicas will tolerate f – 1 faults. More complicated kinds of redundancy (such as
error-correcting codes) are cheaper, but they depend on special properties of the serv-
ice being provided.

In this section we explain how to coordinate the replicas in a fully general and
highly fault tolerant way. Then we explore an optimization called ‘leases’ that makes
the coordination very efficient in nearly all cases.

2.1 Coordinating the Replicas

How can we arrange for each replica to do the same thing? Adopting a scheme first
proposed by Lamport [5], we build each replica as a deterministic state machine; this
means that the transition relation is a function from (state, input) to (new state, output).
It is customary to call one of these replicas a ‘process’. Several processes that start in
the same state and see the same sequence of inputs will do the same thing, that is, end
up in the same state and produce the same outputs. So all we need for high availability
is to ensure that all the non-faulty processes see the same inputs. The technical term
for this is ‘consensus’ (sometimes called ‘agreement’ or ‘reliable broadcast’). Infor-
mally, we say that several processes achieve consensus if they all agree on some value;
we give a formal definition later on.

So if several processes are implementing the same deterministic state machine and
achieve consensus on the values and order of the inputs, they will do the same thing. In
this way it’s possible to replicate an arbitrary computation and thus make it highly
available. Of course we can make the order a part of the input value by defining some
total order on the set of inputs, for instance by numbering them 1, 2, 3, ...

In many applications the inputs are requests from clients to the replicated service.
For example, a replicated storage service might have Read(a) and Write(a, d) inputs,
and an airplane flight control system might have ReadInstrument(i) and RaiseFlaps(d)
inputs. Different clients usually generate their requests independently, so it’s necessary
to agree not only on what the requests are, but also on the order in which to serve
them. The simplest way to do this is to number them with consecutive integers, start-
ing at 1. This is done in ‘primary copy’ replication, since it’s easy for one process (the
primary) to assign consecutive numbers. So the storage service will agree on Input 1 =
Write(x, 3) and Input 2 = Read(x).

There are many other schemes for achieving consensus on the order of requests
when their total order is not derived from consecutive integers; see Schneider’s survey
[11]. These schemes label each input with some value from a totally ordered set (for
instance, (client UID, timestamp) pairs) and then devise a way to be certain that you
have seen all the inputs that can ever exist with labels smaller than a given value. This
is complicated, and practical systems usually use a primary to sequence the inputs
instead.
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2.2 Leases: Efficient Highly Available Computing

Fault-tolerant consensus is expensive. Exclusive access by a single process (also
known as locking) is cheap, but it is not fault-tolerant—if a process fails while it is
holding a lock, no one else can access the resource. Adding a timeout to a lock makes
a fault-tolerant lock or ‘lease’. Thus a process holds a lease on a state component or
‘resource’ until an expiration time; we say that the process is the ‘master’ for the re-
source while it holds the lease. No other process will touch the resource until the lease
expires. For this to work, of course, the processes must have synchronized clocks.
More precisely, if the maximum skew between the clocks of two processes is ε and
process P’s lease expires at time t, then P knows that no other process will touch the
resource before time t – ε on P’s clock.

While it holds the lease the master can read and write the resource freely. Writes
must take bounded time, so that they can be guaranteed either to fail or to precede any
operation that starts after the lease expires; this can be a serious problem for a resource
such as a SCSI disk, which has weak ordering guarantees and a long upper bound on
the time a write can take.

Locks in transaction processing systems are usually leases; if they expire the trans-
action is aborted, which means that its writes are undone and the transaction is
equivalent to skip. A process that uses leases outside the scope of a transaction must
take care to provide whatever atomicity is necessary, for example, by ensuring that the
resource is in a good state after every atomic write (this is called ‘careful writes’), or
by using standard redo or undo methods based on logs [4]. The latter is almost cer-
tainly necessary if the resource being leased is itself replicated.

A process can keep control of a resource by renewing its lease before it expires. It
can also release its lease, perhaps on demand. If you can’t talk to the process that holds
the lease, however (perhaps because it has failed), you have to wait for the lease to
expire before touching its resource. So there is a tradeoff between the cost of renewing
a lease and the time you have to wait for the lease to expire after a (possible) failure. A
short lease means a short wait during recovery but a higher cost to renew the lease. A
long lease means a long wait during recovery but a lower cost to renew.

A lease is most often used to give a process the right to cache some part of the
state, for instance the contents of a cache line or of a file, knowing that it can’t change.
Since a lease is a kind of lock, it can have a ‘mode’ which determines what operations
its holder can do. If the lease is exclusive, then its process can change the leased state
freely. This is like ‘owner’ access to a cache line or ownership of a multi-ported disk.

2.3 Hierarchical Leases

In a fault-tolerant system leases must be granted and renewed by running consensus. If
this much use of consensus is still too expensive, the solution is hierarchical leases.
Run consensus once to elect a czar C and give C a lease on a large part of the state.
Now C gives out sub-leases on x and y to masters. Each master controls its own re-
sources. The masters renew their sub-leases with the czar. This is cheap since it
doesn’t require any coordination. The czar renews its lease by consensus. This costs
more, but there’s only one czar lease. Also, the czar can be simple and less likely to
fail, so a longer lease may be acceptable.

Hierarchical leases are commonly used in replicated file systems and in clusters.
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By combining the ideas of consensus, leases, and hierarchy, it’s possible to build
highly available systems that are also highly efficient.

3 Consensus

Several processes achieve consensus if they all agree on some allowed value called the
‘outcome’ (if they could agree on any value the solution would be trivial: always agree
on 0). Thus the interface to consensus has two actions: allow a value, and read the
outcome. A consensus algorithm terminates when all non-faulty processes know the
outcome.

There are a number of specialized applications for consensus in addition to general
replicated state machines. Three popular ones are:

Distributed transactions, where all the processes need to agree on whether a trans-
action commits or aborts. Each transaction needs a separate consensus on its out-
come.

Membership, where a group of processes cooperating to provide a highly available
service need to agree on which processes are currently functioning as members of
the group. Every time a process fails or starts working again there must be a new
consensus.

Electing a leader of a group of processes without knowing exactly what the mem-
bers are.

Consensus is easy if there are no faults. Here is a simple implementation. Have a
fixed leader process. It gets all the Allow actions, chooses the outcome, and tells eve-
ryone. If it were to fail, you would be out of luck. Standard two-phase commit works
this way: the allowed value is commit if all participants are prepared, and abort if at
least one has failed. If the leader fails the outcome may be unknown.

Another simple implementation is to have a set of processes, each choosing a
value. If a majority choose the same value, that is the outcome (the possible majorities
are subsets with the property that any two majorities have a non-empty intersection). If
the processes choose so that there is no majority for a value, there is no outcome. If
some members of the majority were to fail the outcome would be unknown.

Consensus is tricky when there are faults. In an asynchronous system (in which a
non-faulty process can take an arbitrary amount of time to make a transition) with
perfect links and even one faulty process, there is no algorithm for consensus that is
guaranteed to terminate [3]. In a synchronous system consensus is possible even with
processes that have arbitrary or malicious faults (Byzantine agreement), but it is ex-
pensive in messages sent and in time [9].

4 Specifications

We are studying systems with a state which is an element of some (not necessarily
finite) state space, and a set of actions (not necessarily deterministic) that take the
system from one state to another. Data abstractions, concurrent programs, distributed
systems, and fault-tolerant systems can all be modeled in this way. Usually we de-
scribe the state spaces as the Cartesian product of smaller spaces called ‘variables’.
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4.1 How to Specify a System with State

In specifying such a system, we designate some of the actions or variables as ‘exter-
nal’ and the rest as ‘internal’. What we care about is the sequence of external actions
(or equivalently, the sequence of values of external variables), because we assume that
you can’t observe internal actions or variables from outside the system. We call such a
sequence a ‘trace’ of the system. A specification is a set of traces, or equivalently a
predicate on traces. Such a set is called a ‘property’.

We can define two special kinds of property. Informally, a ‘safety’ property asserts
that nothing bad ever happens; it is the generalization of partial correctness for se-
quential programs. A ‘liveness’ property asserts that something good eventually hap-
pens; it is the generalization of termination. You can always tell that a trace does not
have a safety property by looking at some finite prefix of it, but you can never do this
for a liveness property. Any property (that is, any set of sequences of actions) is the
intersection of a safety property and a liveness property [2].

In this paper we deal only with safety properties. This seems appropriate, since we
know that there is no terminating algorithm for asynchronous consensus. It is also
fortunate, because liveness properties are much harder to handle.

It’s convenient to define a safety property by a state machine whose actions are
also divided into external and internal ones. All the sequences of external actions of
the machine define a safety property. Do not confuse these specification state ma-
chines with the replicated state machines that we implement using consensus.

We define what it means for one system Y to implement another system X as fol-
lows:

• Every trace of Y is a trace of X; that is, X’s safety property implies Y’s safety
property.

• Y’s liveness property implies X’s liveness property.

The first requirement ensures that you can’t tell by observing Y that it isn’t X; Y never
does anything bad that X wouldn’t do. The second ensures that Y does all the good
things that X is supposed to do. We won’t say anything more about liveness.

Following this method, to specify a system with state we must first define the state
space and then describe the actions. We choose the state space to make the spec clear,
not to reflect the state of the implementation. For each action we say what it does to
the state and whether it is external or internal. We model an action with parameters
and results such as Read(x) by a family of actions, one of which is Read(x) returning
3; this action happens when the client reads x and the result is 3.

Here are some helpful hints for writing these specs.

• Notation is important, because it helps you to think about what’s going on. Invent
a suitable vocabulary.

• Less is more. Fewer actions are better.

• More non-determinism is better, because it allows more implementations.

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one.
Pascal
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4.2 Specifying Consensus

We are now ready to give specifications for consensus. There is an outcome variable
initialized to nil, and an action Allow(v) that can be invoked any number of times.
There is also an action Outcome to read the outcome variable; it must return either nil
or a v which was the argument of some Allow action, and it must always return the
same v.

 More precisely, we have two requirements:

Agreement: Every non-nil result of Outcome is the same.

Validity: A non-nil outcome equals some allowed value.

Validity means that the outcome can’t be any arbitrary value, but must be a value
that was allowed. Consensus is reached by choosing some allowed value and assigning
it to outcome. This spec makes the choice on the fly as the allowed values arrive.

Here is a precise version of the spec, which we call C. It gives the state and the ac-
tions of the state machine. The state is:

outcome : Value ∪ {nil} initially nil

The actions are:

Name Guard Effect

*Allow(v) choose if outcome = nil then outcome := v
or         skip

*Outcome choose return outcome
or         return nil

Here the external actions are marked with a *. The guard is a precondition which
must be true in the current state for the action to happen; it is true (denoted by blank)
for both of these actions. The choose ... or ... denotes non-deterministic choice, as in
Dijkstra’s guarded commands.

Note that Outcome is allowed to return nil even after the choice has been made.
This reflects the fact that in an implementation with several replicas, Outcome is often
implemented by talking to just one of the replicas, and that replica may not yet have
learned about the choice.

Next we give a spec T for consensus with termination. Once the internal Terminate
action has happened, the outcome is guaranteed not to be nil. You can find out whether
the algorithm has terminated by calling Done. We mark the changes from C by boxing
them.

 State: outcome : Value ∪ {nil} initially nil

done : Bool initially false
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Name Guard Effect

*Allow(v) choose if outcome = nil then outcome := v
or         skip

*Outcome choose return outcome

or        if not done then   return nil

*Done return done

Terminate outcome ≠ nil done := true

Note that the spec T says nothing about whether termination will actually occur.
An implementation in which Outcome always returns nil satisfies T. This may seem
unsatisfactory, but it’s the best we can do with an asynchronous implementation. In
other words, a stronger spec would rule out an asynchronous implementation.

Finally, here is a more complicated spec D for ‘deferred consensus’. It accumulates
the allowed values and then chooses one of them in the internal action Agree.

State: outcome : Value ∪ {nil} initially nil
done : Bool initially false
allowed : set Value initially {}

Name Guard Effect

*Allow(v) allowed := allowed ∪ {v}  

*Outcome choose return outcome
or         if not done then return nil

*Done return done

Agree(v) outcome = nil
and v in allowed

outcome := v

Terminate outcome ≠ nil done := true

It should be fairly clear that D implements T. To prove this using the abstraction
function method described in the next section, however, requires a prophecy variable
or backward simulation [1, 10], because C and T choose the outcome as soon as the
see the allowed value, while an implementation may make the choice much later. We
have two reasons for giving the D spec. One is that some people find it easier to under-
stand than T, even though it has more state and more actions. The other is to move the
need for a prophecy variable into the proof that D implements T, thus simplifying the
much more subtle proof that Paxos implements D.
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5 Implementation

In this section we first explain the abstraction function method for showing that an
implementation meets a specification. This method is both general and practical. Then
we discuss some hints for designing and understanding implementations, and illustrate
the method and hints with abstraction functions for the simple implementations given
earlier. The next section shows how to use the method and hints to derive Lamport’s
Paxos algorithm for consensus.

5.1 Proving that Y implements X

The definition of ‘implements’ tells us what we have to do (ignoring liveness): show
that every trace of Y is a trace of X. Doing this from scratch is painful, since in general
each trace is of infinite length and Y has an infinite number of traces. The proof will
therefore require an induction, and we would like a proof method that does this induc-
tion once and for all. Fortunately, there is a general method for proving that Y imple-
ments X without reasoning explicitly about traces in each case. This method was
originally invented by Hoare to prove the correctness of data abstractions. It was gen-
eralized by Lamport [6] and others to arbitrary concurrent systems.

The method works like this. First, define an abstraction function f from the state of
Y to the state of X. Then show that Y simulates X:

1) f maps an initial state of Y to an initial state of X.

2) For each Y-action and each reachable state y
there is a sequence of X-actions (perhaps empty)
that is the same externally,
such that this diagram commutes.

A sequence of X-actions is the same externally as a Y-action if they are the same
after all internal actions are discarded. So if the Y-action is internal, all the X-actions
must be internal (perhaps none at all). If the Y-action is external, all the X-actions
must be internal except one, which must be the same as the Y-action.

A straightforward induction shows that Y implements X: For any Y-behavior we
can construct an X-behavior that is the same externally, by using (2) to map each Y-
action into a sequence of X-actions that is the same externally. Then the sequence of
X-actions will be the same externally as the original sequence of Y-actions.

If Y implements X, is it always to possible to prove it using this method. The an-
swer is “Almost”. It may be necessary to modify Y by adding auxiliary ‘history’ and
‘prophecy’ variables according to certain rules which ensure that the modified Y has

X-actions

Y-action

f(y’)

y’

f(y)

ff

y
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exactly the same traces as Y itself. With the right history and prophecy variables it’s
always possible to find an abstraction function [1]. An equivalent alternative is to use
an abstraction relation rather than an abstraction function, and to do ‘backward’ simu-
lation as well as the ‘forward’ simulation we have just described [10]. We mention
these complications for completeness, but avoid them in this paper.

In order to prove that Y simulates X we usually need to know what the reachable
states of Y are, because it won’t be true that every action of Y from an arbitrary state
of Y simulates a sequence of X-actions; in fact, the abstraction function might not even
be defined on an arbitrary state of Y. The most convenient way to characterize the
reachable states of Y is by an invariant, a predicate that is true of every reachable
state. Often it’s helpful to write the invariant as a conjunction; then we call each con-
junct an invariant. It’s common to need a stronger invariant than the simulation re-
quires; the extra strength is a stronger induction hypothesis that makes it possible to
establish what the simulation does require.

So the structure of a proof goes like this:

• Define an abstraction function.

• Establish invariants to characterize the reachable states, by showing that each
action maintains the invariants.

• Establish the simulation, by showing that each Y-action simulates a sequence of
X-actions that is the same externally.

This method works only with actions and does not require any reasoning about
traces. Furthermore, it deals with each action independently. Only the invariants con-
nect the actions. So if we change (or add) an action of Y, we only need to verify that
the new action maintains the invariants and simulates a sequence of X-actions that is
the same externally.

In the light of this method, here are some hints for deriving, understanding, and
proving the correctness of an implementation.

• Write the specification first.

• Dream up the idea of the implementation. This is the crucial creative step. Usually
you can embody the key idea in the abstraction function.

• Check that each implementation action simulates some spec actions. Add invari-
ants to make this easier. Each action must maintain them. Change the implemen-
tation (or the spec) until this works.

• Make the implementation correct first, then efficient. More efficiency means more
complicated invariants. You might need to change the spec to get an efficient im-
plementation.

An efficient program is an exercise in logical brinksmanship
Dijkstra

In what follows we give abstraction functions for each implementation we con-
sider, and invariants for the Paxos algorithm. The actual proofs that the invariants hold
and that each Y-action simulates a suitable sequence of X-actions are routine, and we
omit them.
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5.2 Abstraction Functions for the Simple Implementations

Recall our two simple, non-fault-tolerant implementations. In the first a single leader
process, with the same state as the specification, tells everyone else the outcome (this
is how two-phase commit works). The abstraction function to C is:

outcome = the outcome of the coordinator.

done       = everyone has gotten the outcome.

This is not fault-tolerant—it fails if the leader fails.
In the second there is set of processes, each choosing a value. If a majority choose

the same value, that is the outcome. The abstraction function to C is:

outcome = the choice of a majority, or nil if there’s no majority.

done       = everyone has gotten the outcome.

This is not fault-tolerant—it fails if a majority doesn’t agree, or if a member of the
majority fails.

6 The Paxos Algorithm

In this section we describe Lamport’s Paxos algorithm for implementing consensus
[7]. This algorithm was independently invented by Liskov and Oki as part of a repli-
cated data storage system [8]. Its heart is the best known asynchronous consensus algo-
rithm. Here are its essential properties:

It is run by a set of leader processes that guide a set of agent processes to achieve
consensus.

It is correct no matter how many simultaneous leaders there are and no matter how
often leader or agent processes fail and recover, how slow they are, or how many
messages are lost, delayed, or duplicated.

It terminates if there is a single leader for a long enough time during which the
leader can talk to a majority of the agent processes twice.

It may not terminate if there are always too many leaders (fortunate, since we
know that guaranteed termination is impossible).

To get a complete consensus algorithm we combine this with a sloppy timeout-
based algorithm for choosing a single leader. If the sloppy algorithm leaves us with no
leader or more than one leader for a time, the consensus algorithm may not terminate
during that time. But if the sloppy algorithm ever produces a single leader for long
enough the algorithm will terminate, no matter how messy things were earlier.

We first explain the simplest version of Paxos, without worrying about the amount
of data stored or sent in messages, and then describe the optimizations that make it
reasonably efficient. To get a really efficient system it’s usually necessary to use leases
as well.
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6.1 The Idea

First we review the framework described above. There is a set of agent processes,
indexed by a set I. The behavior of an agent is deterministic; an agent does what it’s
told. An agent has ‘persistent’ storage that survives crashes. The set of agents is fixed
for a single run of the algorithm (though it can be changed using the Paxos algorithm
itself). There are also some leader processes, indexed by a totally ordered set L, that
tell the agents what to do. Leaders can come and go freely, they are not deterministic,
and they have no persistent storage.

The key idea of Paxos comes from the non-fault-tolerant majority consensus algo-
rithm described earlier. That algorithm gets into trouble if the agents can’t agree on a
majority, or if some members of the majority fail so that the rest are unsure whether
consensus was reached. To fix this problem, Paxos has a sequence of rounds indexed
by a set N. Round n has a single leader who tries to get a majority for a single value vn.
If one round gets into trouble, another one can make a fresh start. If round n achieves a
majority for vn then vn is the outcome.

Clearly for this to work, any two rounds that achieve a majority must have the
same value. The tricky part of the Paxos algorithm is to ensure this property.

In each round the leader

• queries the agents to learn their status for past rounds,

• chooses a value and commands the agents, trying to get a majority to accept it, and

• if successful, distributes the value as the outcome to everyone.

It takes a total of 2½ round trips for a successful round. If the leader fails repeatedly,
or several leaders fight it out, it may take many rounds to reach consensus.

6.2 State and Abstraction Function

The state of an agent is a persistent ‘status’ variable for each round; persistent means
that it is not affected by a failure of the agent. A status is either a Value or one of the
special symbols no and neutral. The agent actions are defined so that a status can only
change if it is neutral. So the agent state is defined by an array s:

State: si, n : Value ∪ {no, neutral} initially neutral

A round is dead if a majority has status no, and successful if a majority has status
which is a Value.

The state of a leader is the round it is currently working on (or nil if it isn’t work-
ing on a round), the value for that round (or nil if it hasn’t been chosen yet), and the
leader’s idea of the allowed set.

State: nl : N ∪ {nil} initially nil

ul : Value ∪ {nil} initially nil
allowedl : set Value initially {}
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The abstraction function for allowed is just the union of the leaders’ sets:

AF: allowed = ∪l ∈ L allowedl

We define the value of round n as follows:

vn ≡ if some agent i has a Value in si, n then si, n

       else nil

For this to be well defined, we must have

Invariant 1: A round has at most one value.

That is, in a given round all the agents with a value have the same value. Now we can
give the abstraction function for outcome:

AF: outcome = vn for some successful round n
                  or nil if there is no successful round.

For this to be well defined, we must have

Invariant 2: Any two successful rounds have the same value.

We maintain invariant 1 (a round has at most one value) by ensuring that a leader
works on only one round at a time and never reuses a round number, and that a round
has at most one leader. To guarantee the latter condition, we make the leader’s identity
part of the round number by using (sequence number, leader identity) pairs as round
numbers. Thus N = (J, L), where J is some totally ordered set, usually the integers.
Leader l chooses (j, l) for nl, where j is a J that l has not used before. For instance, j
might be the current value of local clock. We shall see later how to avoid using any
stable storage at the leader for choosing j.

6.3 Invariants

We introduce the notion of a stable predicate on the state, a predicate which once true,
remains true henceforth. This is important because it’s safe to act on the truth of a
stable predicate. Anything else might change because of concurrency or crashes.

Since a non-neutral value of si, n can’t change, the following predicates are stable:

si, n = no
si, n = v
vn   = v

n is dead
n is successful

Here is a more complex stable predicate:

n is anchored ≡ for all m ≤ n, m is dead or vn = vm

In other words, n is anchored iff when you look back at rounds before n, skipping dead
rounds, you see the same value as n. If all preceding rounds are dead, n is anchored no
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matter what its value is. For this to be well-defined, we need a total ordering on N’s,
and we use the lexicographic ordering.

Now  all we have to do is to maintain invariant 2 while making progress towards a
successful round. To see how to maintain the invariant, we strengthen it until we get a
form that we can easily maintain with a distributed algorithm, that is, a set of actions
each of which uses only the local state of a process.

Invariant 2: Any two successful rounds have the same value.

follows from

Invariant 3: for all n and m ≤ n, if m is successful then vn = nil or vn = vm

which follows from

Invariant 4: for all n and m ≤ n, if m is not dead    then  vn = nil or vn = vm

and we rearrange this by predicate calculus

              ≡     for all n and m ≤ n,     m is       dead    or     vn = nil or vn = vm

              ≡     for all n,  vn = nil or (for all m ≤ n, m is dead          or vn = vm)

              ≡     for all n,  vn = nil or n is anchored

So all we have to do is choose each non-nil vn so that
there is only one, and
n is anchored.

Now the rest of the algorithm is obvious.

6.4 The Algorithm

A leader has to choose the value of a round so that the round is anchored. To accom-
plish this, the leader l chooses a new nl and queries all the agents to learn their status in
all rounds with numbers less than nl (and also the values of those rounds). Before an
agent responds, it changes any neutral status for a round earlier than nl to no, so that
the leader will have enough information to anchor the round. Responses to the query
from a majority of agents give the leader enough information to make round nl an-
chored, as follows:

The leader looks back from nl, skipping over rounds for which no Value status was
reported, since these must be dead (remember that l has heard from a majority, and
the reported status is a Value or no). When l comes to a round n with a Value
status, it chooses that value vn as ul. Since n is anchored by invariant 4, and all the
rounds between n and nl are dead, nl is also anchored if this ul becomes its value.

If all previous rounds are dead, the leader chooses any allowed value for ul. In this
case nl is certainly anchored.

Because ‘anchored’ and ‘dead’ are stable properties, no state change can invalidate this
choice.
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Now in a second round trip the leader commands everyone to accept ul for round
nl. Each agent that is still neutral in round nl (because it hasn’t answered the query of a
later round) accepts by changing its status to ul in round nl; in any case it reports its
status to the leader. If the leader collects ul reports from a majority of agents, then it
knows that round nl has succeeded, takes ul as the agreed outcome of the algorithm,
and sends this fact to all the processes in a final half round. Thus the entire process
takes five messages or 2½ round trips.

Note that the round succeeds (the Agree action of the spec happens and the abstract
outcome changes) at the instant that some agent forms a majority by accepting its
value, even though no agent or leader knows at the time that this has happened. In fact,
it’s possible for the round to succeed without the leader knowing this fact, if some
agents fail after accepting but before getting their reports to the leader, or if the leader
fails.

An example may help your intuition about why this works. The table below shows
three rounds in two different runs of the algorithm with three agents a, b, and c and
allowed = {7, 8, 9}. In the left run all three rounds are dead, so if the leader hears from
all three agents it knows this and is free to choose any allowed value. If the leader
hears only from a and b or a and c, it knows that round 3 is dead but does not know
that round 2 is dead, and hence must choose 8. If it hears only from b and c, it does not
know that round 3 is dead and hence must choose 9.

In the right run, no matter which agents the leader hears from, it does not know that
round 2 is dead. In fact, it was successful, but unless the leader hears from a and c it
doesn’t know that. Nonetheless, it must choose 9, since it sees that value in the latest
non-dead round. Thus a successful round such as 2 acts as a barrier which prevents any
later round from choosing a different value.

Status

 vn     sa, n    sb, n    sc, n  vn     sa, n    sb, n    sc, n

Round 1

Round 2

Round 3

 7          7         no        no

 8          8         no        no

 9          no       no        9

  8         8         no       no

  9         9        no        9

  9         no      no        9

Leader’s
choices for
round 4

7, 8, or 9 if a, b, c report
8 if a, b or b, c report
9 if b, c report

  9 no matter what majority
     reports

Presumably the reason there were three rounds in both runs is that at least two dif-
ferent leaders were involved, or the leader failed before completing each round. Oth-
erwise round 1 would have succeeded. If leaders keep overtaking each other and forc-
ing the agents to set their earlier status to no before an earlier rounds reach the com-
mand phase, the algorithm can continue indefinitely.

Here are the details of the algorithm. Its actions are the ones described in the table
together with boring actions to send and receive messages.
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Leader l Message Agent i

Choose a new nl

Query a majority of agents
for their status

query(nl)  → for all m < nl,
    if      si, m = neutral
    then si, m := no

←  report(i, si)

Choose ul to keep nl an-
chored. If all m < nl are
dead, choose any v in al-
lowedl

Command a majority
of agents to accept ul

command(nl, ul)  → if      si, nl
 = neutral

then si, nl
 := ul

←  report(i, nl, si, nl
)

If a majority accepts, pub-
lish the outcome ul

outcome(ul)  →

The algorithm makes minimal demands on the properties of the network: lost, du-
plicated, or reordered messages are OK. Because nodes can fail and recover, a better
network doesn’t make things much simpler. We model the network as a broadcast
medium from leader to agents; in practice this is usually implemented by individual
messages to each agent. Both leaders and agents can retransmit as often as they like; in
practice agents retransmit only in response to the leader’s retransmission.

A complete proof requires modeling the communication channels between the
processes as a set of messages which can be lost or duplicated, and proving boring
invariants about the channels of the form “if a message report(i, s) is in the channel,
then si agrees with s except perhaps at some neutral components of s.”

6.5 Termination: Choosing a Leader

When does the algorithm terminate? If no leader starts another round until after an ex-
isting one is successful, then the algorithm definitely terminates as soon as the leader
succeeds in both querying and commanding a majority. It doesn’t have to be the same
majority for both, and the agents don’t all have to be up at the same time. Therefore
we want a single leader, who runs one round at a time. If there are several leaders, the
one running the biggest round will eventually succeed, but if new leaders keep starting
bigger rounds, none may ever succeed. We saw a little of this behavior in the example
above. This is fortunate, since we know from the Fischer-Lynch-Paterson result [3]
that there is no algorithm that is guaranteed to terminate.

It’s easy to keep from having two leaders at once if there are no failures for a
while, the processes have clocks, and the usual maximum time to send, receive, and
process a message is known:
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Every potential leader that is up broadcasts its name.

You become the leader one round-trip time after doing a broadcast, unless you
have received the broadcast of a bigger name.

Of course this algorithm can fail if messages are delayed or processes are late in re-
sponding to messages. When it fails, there may be two leaders for a while. The one
running the largest round will succeed unless further problems cause yet another leader
to arise.

7 Optimizations

It’s not necessary to store or transmit the complete agent state. Instead, everything can
be encoded in a small fixed number of bits, as follows. The relevant part of si is just
the most recent Value and the later no states:

si, lasti
 = v

si, m = no for all m between lasti and nexti
si, m = neutral for all m ≥ nexti.

We can encode this as (v, lasti, nexti). This is all that an agent needs to store or report.
Similarly, all a leader needs to remember from the reports is the largest round for

which a value was reported and which agents have reported. It is not enough to simply
count the reports, since report messages can be duplicated because of retransmissions.

The leaders need not be the same processes as the agents, although they can be and
usually are. A leader doesn’t really need any stable state, though in the algorithm as
given it has something that allows it to choose an n that hasn’t been used before. In-
stead, it can poll for the nexti from a majority after a failure and choose an nl with a
bigger j. This will yield an nl that’s larger than any from this leader that has appeared
in a command message so far (because nl can’t get into a command message without
having once been the value of nexti in a majority of agents), and this is all we need.

If Paxos is used to achieve consensus in a non-blocking commit algorithm, the first
round-trip (query/report) can be combined with the prepare message and its response.

The most important optimization is for a sequence of consensus problem, usually
the successive steps of a replicated state machine. We try to stay with the same leader,
usually called the ‘primary’, and run a sequence of instances of Paxos numbered by
another index p. The state of an agent is now

State: sp, i, n : Value ∪ {no, neutral} initially neutral

Make the fixed size state (v, last, next, p) for agent i encode

 sq, i, m = no  for all q ≤ p and m < next.

Then a query only needs to be done once each time the leader changes. We can also
piggyback the outcome message on the command message for the next instance of
Paxos. The result is 2 messages (1 round trip) for each consensus.
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8 Conclusion

We showed how to build a highly available system using consensus. The idea is to un a
replicated deterministic state machine, and get consensus on each input. To make it
efficient, use leases to replace most of the consensus steps with actions by one process.

We derived the most fault-tolerant algorithm for consensus without real-time guar-
antees. This is Lamport’s Paxos algorithm, based on repeating rounds until you get a
majority, and ensuring that every round after a majority has the same value. We saw
how to implement it with small messages, and with one round-trip for each consensus
in a sequence with the same leader.

Finally, we explained how to design and understand a concurrent, fault-tolerant
system. The recipe is to write a simple spec as a state machine, find the abstraction
function from the implementation to the spec, establish suitable invariants, and show
that the implementation simulates the spec. This method works for lots of hard prob-
lems.
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