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Abstract

We discuss Bayesian methods for learning
Bayesian networks when data sets are incom-
plete. In particular, we examine asymptotic
approximations for the marginal likelihood
of incomplete data given a Bayesian net-
work. We consider the Laplace approxima-
tion and the less accurate but more efficient
BIC/MDL approximation. We also consider
approximations proposed by Draper (1993)
and Cheeseman and Stutz (1995). These ap-
proximations are as efficient as BIC/MDL,
but their accuracy has not been studied in
any depth. We compare the accuracy of these
approximations under the assumption that
the Laplace approximation is the most ac-
curate. In experiments using synthetic data
generated from discrete naive-Bayes models
having a hidden root node, we find that (1)
the BIC/MDL measure is the least accurate,
having a bias in favor of simple models, and
(2) the Draper and CS measures are the most
accurate.

1 Introduction

There is growing interest in methods for learning
graphical models from data. We consider Bayesian
methods such as those summarized in Heckerman
(1995) and Buntine (1996).

A key step in the Bayesian approach to learning graph-
ical models is the computation of the marginal likeli-
hood of a data set given a model. Given a complete
data set—that is a data set in which each sample con-
tains observations for every variable in the model, the
marginal likelihood can be computed exactly and ef-
ficiently under certain assumptions (e.g., see Cooper
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& Herskovits, 1992; Heckerman & Geiger, 1995). In
contrast, when observations are missing, including sit-
uations where some variables are hidden or never ob-
served, the exact determination of the marginal likeli-
hood is typically intractable. Consequently, approx-
imate techniques for computing the marginal likeli-
hood are used. These techniques include Monte Carlo
approaches such as Gibbs sampling and importance
sampling (Neal, 1993; Madigan & Raftery, 1994), se-
quential updating methods (Spiegelhalter & Lauritzen,
1990; Cowell, Dawid, & Sebastiani, 1995), and asymp-
totic approximations (Kass, Tierney, & Kadane, 1988;
Kass & Raftery, 1995; Draper, 1993).

In this paper, we examine asymptotic approximations,
comparing their accuracy and efficiency. We con-
sider the Laplace approximation (Kass et al., 1988;
Kass & Raftery, 1995; Azevedo-Filho & Shachter,
1994) and the Bayesian Information Criterion (BIC)
(Schwarz, 1978), which is equivalent to Risannen’s
(1987) Minimum-Description-Length (MDL) measure.
In addition, we consider approximations described by
Draper (1993) and Cheeseman and Stutz (1995).

Both theoretical and empirical studies have shown
that the Laplace approximation is more accurate than
is BIC/MDL (see, e.g., Draper, 1993, and Raftery,
1994). Furthermore, it is well known that the Laplace
approximation is significantly less efficient than are
the BIC/MDL, Draper, and Cheeseman-Stutz mea-
sures. To our knowledge, however, there have been
no theoretical or formal empirical studies that com-
pare the accuracy of the Laplace approximation with
those of Draper and Cheeseman and Stutz. We de-
scribe an experimental comparison of the approxima-
tions for learning directed graphical models (Bayesian
networks) for discrete variables where one variable is
hidden.



2 Background and Motivation

The Bayesian approach for learning Bayesian networks
from data is as follows. Given a domain or set of
variables X = {Xy,...,X,}, suppose we know that
the true joint distribution of X can be encoded in
the Bayesian-network structure S. Let S denote the
hypothesis that this encoding is possible. Also, sup-
pose that we are uncertain about the parameters of
the Bayesian network (05, a column vector) that de-
termine the true joint distribution. Given a prior dis-
tribution over these parameters and a random sample
(data set) D = {X; = x1,...,Xx = xn} from the
true joint distribution, we can apply Bayes’ rule to
infer the posterior distribution of 6,:

p(0,|D,S") = c p(D|0;,S") p(6,]S") (1)

where ¢ is a normalization constant. Because D is a
random sample, the likelihood p(D|@,,S") is simply
the product of the individual likelihoods

N
p(D|05, Sh) = Hp(xllesv Sh)
=1

Given some quantity of interest that is a function of
the network-structure hypothesis and its parameters,
f(S",0,), we can compute its expectation, given D,
as follows:
E(f(5",0.1D.5") = [ 7(5".6.) p(6.|D.5") .
(2)
Consider the case where the variables X are discrete.
Let Pa; denote the set of variables corresponding to
the parents of X;. Let x¥ and pa] denote the kth
possible state of X; and the jth possible state of Pa;,
respectively. Also, let r; and ¢; denote the number of
possible states of X; and Pa;, respectively. Assuming
that there are no logical constraints on the true joint
probabilities other than those imposed by the network
structure S, the parameters 84 correspond to the true
probabilities (i.e., long-run fractions) associated with
the Bayesian-network structure. In particular, 8, is
the set of parameters 60,1 for all possible values of 4, j,
and k, where 0,1 is the true probability that X; = :cic
given Pa; = pa{ . We use the notation

oij = (oijk)zi:1 0, = (oij)qizl

J
The likelihood for a random sample with no missing
observations is given by

05 = (0:)iL,

no 4 T

p(D16., 5" = TTTI I1 5"

i=1j=1k=1

where N;;, are the sufficient statistics for the
likelihood—the number of samples in D in which X; =

xf and Pa; = pag . Consequently, we can compute the
posterior distribution of @, using Equation 1. This
computation is especially simple when (1) the param-
eter sets 8;; are mutually independent—an assump-
tion we call parameter independence—and (2) the prior
distribution for each parameter set 8;; is a Dirichlet
distribution

- ik —1
p(0:51S") = c [ 05 (3)
k=1

where c is a normalization constant and the oy > 0
may depend on the network structure S.

Making the problem more difficult, suppose that we
are also uncertain about which structure encodes the
true distribution. Given a prior distribution over the
possible network-structure hypotheses, we can com-
pute the corresponding posterior distribution using
Bayes rule:

p(S"|D) = ¢p(S") p(D[S") (4)
= cp(Sh /p(D|05,Sh) p(6,]S™) db,

Given some quantity of interest, f(S",0,), we can
compute its expectation, given D:

B(f(S",8,)|D) =
S p(s"(D) / 7(S",0.) p(6.]D, ") d6,

Sh

This Bayesian approach is an example of what statisti-
cians call model averaging. The key computation here
is that of p(D|S"), known as the marginal likelihood
of D given S, or simply the marginal likelihood of S.
In the remainder of the paper, we assume that priors
over network structure are uniform, so that relative
posterior probability and marginal likelihood are the
same.

When we can not use prior knowledge to restrict the
set of possible network structures to a manageable
number, we can select (typically) one model S and
use Equation 2 to approximate the true expectation of
f(S",0,). This approximation is an example of model
selection. In practice, one selects a model by using
some search procedure that produces candidate net-
work structures, applying a scoring function to each
found structure, and retaining the structure with the
highest score. One reasonable scoring function is the
log marginal likelihood: log p(D|S™).

Dawid (1984) notes the following interesting interpre-
tation of the log marginal likelihood as a scoring func-
tion. Suppose we use a model S to predict the prob-
ability of each sample in D given the previously ob-
served samples in D, and assign a utility to each pre-



diction using the log proper scoring rule. The util-
ity for the first prediction will be logp(x;|S"). We
make this prediction based solely on the prior distri-
bution for 65. The utility for the second prediction
will be log p(xz|x1,S5"). We compute this prediction
by training the network structure using only the first
sample in D. The utility for the ith prediction will
be log p(x;|x1, . ..,X;_1,S"). We make this prediction
by training the network structure with the first ¢ — 1
samples in D. Summing these utilities (as one does
with this proper scoring rule), we obtain

N
Zlogp(xi|x1, cee
i=1

By Bayes’ rule this sum is equal to the log marginal
likelihood log p(D|S"), and is independent of the or-
der in which we process the samples in D. Thus, the
network structure with the highest log marginal likeli-
hood is precisely the model that is the best sequential
predictor of the data D according to the log scoring
rule.

Xi—1, Sh)

When the random sample D is complete, parameters
are independent, and parameter priors are Dirichlet,
the computation of the marginal likelihood is straight-
forward:

p(D|S) _ Dleiy)  yp Dlevige + Nigr)
| 11_[“1_[1 I(evi; + Nij) kl_[l I(eviji)

(5)
This formula was first derived by Cooper and Her-
skovits (1992). Heckerman et al. (1995) refer to this
formula in conjunction with the structure prior as the
Bayesian Dirichlet (BD) scoring function.

When the random sample D is incomplete, the exact
computation of the marginal likelihood is intractable
for real-world problems (e.g., see Cooper & Herskovits,
1992). Thus, approximations are required. In this
paper, we consider asymptotic approximations.

One well-known asymptotic approximation is the
Laplace or Gaussian approximation (Kass et al., 1988;
Kass & Raftery, 1995; Azevedo-Filho & Shachter,
1994). The idea behind the Laplace approximation
is that, for large amounts of data, p(8,|D,S") o
p(D|6,, S") - p(85]S™) can often be approximated as
a multivariate Gaussian distribution. Consequently,

HDIS") = [ p(DIB.. 8" p(0.]") do.  (0)
can be evaluated in closed form. In particular, let

9(05)

Let 0, be the (vector) value of 8 for which the poste-

= log(p(D|6s, S") - p(8,|S™))

rior probability of 8, is a maximum:

0, = argn}gax {p(6,|D, Sh)} = argnbax {9(0s)}

The quantity 0, is known as the maximum a posteri-
ori probability (MAP) value of 8. Expanding g(65)
about 65, we obtain

9(6.) % g(6.) + 56, 6. A0, 6.) (1)
where (0, — 6,) is the transpose of column vector
(8, —0,), and A is the negative Hessian of ¢(8) eval-
uated at 6. Substituting Equation 7 into Equation 6,
integrating, and taking the logarithm of the result, we
obtain the Laplace approximation:

logp(D|S") &~ logp(D|6s,S") +logp(6s]S™)
d 1
+§ log(27) — 3 log | A (8)

where d is the dimension of the model S given D in
the region of 0,. For a Bayesian network with discrete
variables, this dimension is typically the number of
parameters of the network structure, Y ., ¢;(r; — 1).
(When enough data are missing—for example, when
one or more variables are hidden—it may be that the
dimension is lower. See Geiger et al. in this proceed-
ings for a discussion.) Kass et al. (1988) have shown
that, under certain regularity conditions, errors in this
approximation are bounded by O(1/N), where N is
the number of samples in D.

A more efficient but less accurate approximation is ob-
tained by retaining only those terms in Equation 8 that
increase with N: log p(D|6s, S™), which increases lin-
early with N, and log |A|, which increases as dlog N.
Also, for large N, 0, can be approximated by the maz-
imum likelihood (ML) value of 65, 8, the vector value
of 8, for which p(D|@s,S") is a maximum. Thus, we
obtain
h s ooy d

log p(D|S™) ~ log p(D|0, S") — §1ogN (9)

This approximation is called the Bayesian informa-

tion criterion (BIC), and was first derived by Schwarz
(1978).

Given regularity conditions similar to those for the
Laplace approximation, BIC is accurate to O(1). That
is, for large N, the error bounds of the approximation
do not increase as N increases.! Thus, if we use BIC
to select one of a set of models, we will select a model
whose posterior probability is a maximum, when N

'Under some conditions, the BIC is accurate to
O(N~Y?) (Kass & Wasserman, 1996). These conditions
do not apply to the models we examine in our experiments.



becomes sufficiently large. We say that BIC is asymp-
totically correct. By this definition, the Laplace ap-
proximation is also asymptotically correct.

The BIC approximation is interesting in several re-
spects. First, it does not depend on the prior. Con-
sequently, we can use the approximation without as-
sessing a prior.2 Second, the approximation is quite
intuitive. Namely, it contains a term measuring how
well the model with parameters set to an ML value pre-
dicts the data (log p(D|6s, S")) and a term that pun-
ishes the complexity of the model (d/2 log N). Third,
the BIC approximation is exactly the additive inverse
of the Minimum Description Length (MDL) scoring
function described by Rissanen (1987).

Draper (1993) suggests another approximation to
Equation 8, in which the term £ log(27) is retained:

log p(D|S") ~ log p(D|6s, S™) — glogN + glog(%r)
(10)
This measure is asymptotically correct under the same
conditions as those for BIC/MDL. For finite data sets,
however, Draper (1993) mentions that he has found his
approximation to be better than BIC/MDL. We shall
refer to Equation 10 as the Draper scoring function.

To compute the Laplace approximation, we must com-
pute the negative Hessian of g(6,) evaluated at 6.
Meng and Rubin (1991) describe a numerical tech-
nique for computing the second derivatives. Raftery
(1995) shows how to approximate the Hessian using
likelihood-ratio tests that are available in many sta-
tistical packages. Thiesson (1995) demonstrates that,
for discrete variables, the second derivatives can be
computed using Bayesian-network inference.

When computing any of these approximations, we
must determine 0~s or és. One technique for finding
a maximum is gradient ascent, where we follow the
derivatives of ¢g(6;) or the likelihood to a local max-
imum. Buntine (1994), Russell et al. (1995), and
Thiesson (1995) discuss how to compute derivatives
of the likelihood for a Bayesian network with discrete
variables.

A more efficient technique for identifying a local MAP
or ML value of 6, is the EM algorithm (Dempster,
Laird, & Rubin, 1977). Applied to Bayesian networks
for discrete variables, the EM algorithm works as fol-
lows. First, we assign values to 65 somehow (e.g., at
random). Next, we compute the expected sufficient

20ne of the technical assumptions used to derive this
approximation is that the prior be non-zero around 6.

statistics for the missing entries in the data:

N
E(Nyk|6,,8") = > p(af, pallxi,0,,5")  (11)
=1

When X; and all the variables in Pa; are observed in
sample x;, the term for this sample requires a trivial
computation: it is either zero or one. Otherwise, we
can use any Bayesian network inference algorithm to
evaluate the term. This computation is called the E
step of the EM algorithm.

Next, we use the expected sufficient statistics as if they
were actual sufficient statistics from a complete ran-
dom sample D’. If we are doing a MAP calculation, we
compute the values of 8, that maximize p(0,|D’, S"):

E(ka|05) + Qg — 1
E(Ni;|05) + aij — i

Oijr =

If we are doing an ML calculation, we compute the
values of 8, that maximize p(D’|@,, S"):

o EVil0)

T B(Ny6s)

This assignment is called the M step of the EM al-
gorithm. Dempster et al. (1977) showed that, under
certain regularity conditions, iteration of the E and M
steps will converge to a local maximum. The EM algo-
rithm assumes parameter independence,® and is typ-
ically used whenever the expected sufficient statistics
can be computed efficiently (e.g., discrete, Gaussian,
and Gaussian-mixture distributions).

In the EM algorithm, we treat expected sufficient
statistics as if they are actual sufficient statistics. This
use suggests another approximation for the marginal
likelihood:

logp(D|S") ~ log p(D'|S™) (12)

where D’ is an imaginary data set that is consistent
with the expected sufficient statistics computed using
an E step at a local ML value for 8. For discrete
variables, this approximation is given by the logarithm
of the right-hand-side of Equation 5, where N;j is
replaced by E(Ny;x|0s). We call this scoring function
the marginal likelihood of the expected data or MLED.

MLED has two desirable properties. One, be-
cause it computes a marginal likelihood, it punishes
model complexity as does the Laplace, Draper, and
BIC/MDL measures. Two, because D’ is a complete
(albeit imaginary) data set, the computation of the
measure is efficient.

3 Actually, some parameter sets may be equal, provided
these sets are mutually independent.



One problem with this scoring function is that it may
not, be asymptotically correct. In particular, assuming
the BIC/MDL regularity conditions apply, we have

I
log p(D'[") = logp(D'|6., 5") ~ T log N + O(1)

where d’ is the dimension of the model S given data
D’ in the region around 6, that is, the number of pa-
rameters of S. As N increases, the difference between
p(D|6,,5") and p(D'|0,,S") may increase. Also, as
we have discussed, it may be that d’ > d. In either
case, MLED will not be asymptotically correct. A sim-
ple modification to MLED addresses these problems:

logp(D[S") =~ logp(D'|S") (13)

. d
—logp(D'|0,, S™) + ElogN

. d
+logp(D|6s,S™) — 3 log N

Equation 12 (without the correction to dimension)
was first proposed by Cheeseman and Stutz (1995)
as a scoring function for AutoClass, an algorithm for
data clustering. We shall refer to Equation 13 as the
Cheeseman-Stutz (CS) scoring function. We note that
both the MLED and CS scoring functions can easily
be extended to the directed Gaussian-mixture mod-
els described in Lauritzen and Wermuth (1989) and to
undirected Gaussian-mixture models.

The accuracy of these approximations, which we ex-
amine in the following two sections, must be balanced
against their computation costs. The evaluation of CS,
MLED, Draper, and BIC/MDL is dominated by the
determination of the MAP or ML. The time complex-
ity of this task is O(edNi), where e is the number of
EM iterations and ¢ is the cost of inference in Equa-
tion 11. The evaluation of the Laplace approximation
is dominated by the computation of the determinant
of the negative Hessian A. The time complexity of
this computation (using Thiesson’s 1995 method) is
O(d*Ni + d?). Typically e < d and d < N so that
the Laplace approximation is the least efficient, hav-
ing complexity O(d?Ni).

3 Experimental Design

As mentioned, the Laplace approximation is known to
be more accurate than the BIC/MDL and Draper ap-
proximations. In contrast, to our knowledge, no the-
oretical (or empirical) work has been done comparing
the Laplace approximation with the CS or MLED ap-
proximations. Nonetheless, in our experiments, we as-
sume that the Laplace approximation is the most accu-
rate of the approximations, and measure the accuracy

of the other approximations using the Laplace approx-
imation as a gold standard. We can not verify our as-
sumption, because exact computations of the marginal
likelihood are not possible for the models that we con-
sider. Thus, the results of our experiments must be
interpreted with caution. In particular, we can not
rule out the possibility that the CS or MLED approx-
imations are better than the Laplace approximation.

We evaluated the accuracy of the CS, MLED, Draper,
and BIC/MDL approximations relative to that of the
Laplace approximation using synthetic models con-
taining a single hidden variable. For reasons discussed
in Section 4, we limited our synthetic networks to
naive-Bayes models for discrete variables (also known
as discrete mixture models). A naive-Bayes model for
variables {C, X1,...,X,} encodes the assertion that
X1,..., X, are mutually independent, given C'. The
network structure for this model contains the single
root node C' and leaf nodes X; each having only C as
a parent. (We use the same notation to refer to a vari-
able and its corresponding node in the network struc-
ture.) We generated a variety of naive-Bayes mod-
els by varying the number of states of C' (c) and the
number of observed variables n (all of which are bi-
nary). We determined the parameters of each model
by sampling from the uniform (Dirichlet) distribution

(aijk = 1).

We sampled data from a model so as to make the root
node C a hidden variable. Namely, we sampled data
from a model using the usual Monte-Carlo approach
where we first sampled a state C = ¢ according to
p(C) and then sampled a state of each X; according
to p(X;|C = ¢). We then discarded the samples of C,
retaining only the samples of X5,..., X,,.

In a single experiment, we first generated a model for
a given n and ¢, and subsequently five data sets for
a given sample size N. Next, we approximated the
marginal likelihood for each data set given a series
of test models that were identical to the synthesized
model, except we allowed the number of states of the
hidden variable to vary. Finally, we compared the dif-
ferent approximations of the marginal likelihood in the
context of both model averaging and model selection.
To compare the approximations for model averaging,
we simply compared plots of log marginal likelihood
versus states of the hidden variable in the test model
directly. To compare the approximations for model
selection, we compared the number of states of the
hidden variable selected using a given approximation
with the number of states selected using the Laplace
approximation.

We initialized the EM algorithm as follows. First, we
initialized 64 copies of the parameters 0, at random,
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Figure 1: Approximate log marginal likelihood of the data given a test model as a function of the number of
hidden states in the test model. The 400 sample data sets were generated from naive-Bayes models with n

observed variables and 4 hidden states.

and ran one E and M step. Then, we retained the 32
copies of the parameters for which g(0,) was largest,
and ran two EM iterations. Next, we retained the 16
copies of the parameters for which ¢g(85) was largest,
and ran 4 EM iterations. We continued this proce-
dure four more times, until only one set of parameters
remained.

To guarantee convergence of the EM algorithm, we
performed 200 EM iterations following the initializa-
tion phase. To check that the algorithm had con-
verged, we measured the relative change of g(6y) be-
tween successive iterations. Using a convergence crite-
rion similar to that of AutoClass’ default, we said that
the EM algorithm had converged when this relative
change fell below 0.00001. The algorithm converged
in all but one of the 550 runs.

We assigned Dirichlet priors to each parameter set 8;;.
We used the almost uniform prior o5, = 1+¢, because
it produced local maxima in the interior of the param-
eter space. (The traditional Laplace approximation is
not valid at the boundary of a parameter space.) Our
conclusions are not sensitive to € in the range we tested
(0.1 t0 0.001). We report results for the value e = 0.01.

As described by Equation 8, we evaluated the Laplace
approximation at the MAP of 8. To simplify the com-
putations, we also evaluated the CS, MLED, Draper,

and BIC/MDL measures at the MAP. Given our choice
for a1, the differences between the MAP and ML val-
ues were insignificant. We used the method of Thies-
son (1995) to evaluate the negative Hessian of g(6y).
To compute the CS scoring function, we assumed that
dimensions d’ and d are equal. Although we have no
proof of this assumption, experiments in Geiger et al.
(in this proceedings) suggest that the assumption is
valid.

All experiments were run on a P5 100MHz machine
under the Windows NT™ operating system. The al-
gorithms were implemented in C++.

4 Results and Discussion

First, we evaluated the approximations for use in
model averaging, comparing plots of approximate log
marginal likelihood versus the number of states of the
hidden variable in the test model. We conducted three
sets of comparisons for different values of ¢ (number
of states of the hidden variable), n (number of ob-
served variables), and N (sample size). The results
are almost the same for different data sets in a given
experiment (if we were to show one-standard devia-
tion errors bars, they would be invisible for most data
points, and barely visible for the remaining points).
Consequently, we show results for only one data set
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Figure 2: Approximate log marginal likelihood of the data given a test model as a function of the number of
hidden states in the test model. The 400 sample data sets were generated from naive-Bayes models with 64

observed variables and ¢ hidden states.

per experiment.

In our first set of experiments, we fixed ¢ = 4 and
N = 400 and varied n. In particular, we generated
400-sample data sets from four naive-Bayes models
with 8, 16, 32, and 64 observed variables, respectively,
each model having a hidden variable with four states.
Figure 1 shows the approximate log marginal likeli-
hood of a data given test models having hidden vari-
ables with two to eight states. (Recall that each test
model has the same number of observed variables as
the corresponding generative model.)

In our second set of experiments, we fixed n = 64
and N = 400, and varied c. In particular, we gener-
ated 400-sample data sets from four naive-Bayes mod-
els with ¢ = 32, 16, 8, and 4 hidden states respectively,
each model having 64 observed variables. Figure 2
shows the approximate log marginal likelihood of a
data for test models having values of ¢ that straddle
the value of ¢ for the generative model.

In our third set of experiments, we fixed n = 32 and
¢ = 4, and varied N. In particular, from a naive-
Bayes model with n = 32 and ¢ = 4, we generated
data sets with sample sizes (N) 100, 200, 400, and
800, respectively. Figure 3 shows the approximate log
marginal likelihood of a data for test models having
hidden variables with two to eight states.

The trends in the marginal-likelihood curves as a func-
tion of n, ¢, and N are not surprising. For each ap-
proximation, the curves become more peaked about
the value of ¢ (the number of hidden states in the gen-
erative model) as (1) N increases, (2) n increases, and
(3) as ¢ decreases. The first result says that learning
improves as the amount of data increases. The second
result is a reflection of the fact that larger numbers of
observed variables provide more evidence for the iden-
tity of the hidden variable. The third result says that
it becomes more difficult to learn as the number of
hidden states increases.

In comparing these curves, note that only differences
in the shape of the curves are important. The height
of the curves are not important, because the marginal
likelihoods (i.e., relative posterior probabilities) are
normalized in the process of model averaging. Over-
all, the Draper and CS scoring functions appear to
be equally good approximations, both better than the
BIC/MDL. The MLED and CS scoring functions are
almost identical, except for small values of n, where
the CS approximation is better.

Next, we evaluated the approximations for use in
model selection. In each experiment for a particular
n, ¢, and N, we computed the size of the model se-
lected by a given approximation—that is, the number
of states of the hidden variable in the test model hav-
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observed variables and 4 hidden states.

ing the largest approximate marginal likelihood. We
then subtracted from this number the size of the model
selected by the gold-standard Laplace approximation,
yielding a quantity called Ac. The results are shown
in Table 1.

Overall, the Draper, CS, and MLED scoring functions
are more accurate than the BIC/MDL, which consis-
tently selects models that are too simple. The CS and
MLED results are almost the same, except for small
values of n where CS does slightly better. The CS and
MLED measures tend to select models that are too
complex (Ac > 0), whereas the Draper measure tends
to select models that are too simple (Ac < 0).

For large values of ¢, the Draper measure does bet-
ter than the CS approximation for large values of c.
The source of this difference can be seen in the top
two graphs of Figure 2. All algorithms in both these
graphs show two peaks: a broad peak around ¢/2 and
a sharp peak around ¢, where c is the number of hid-
den states in the generative model. The Laplace and
Draper (and BIC) curves tend downward on the right
sharply enough such that the first peak dominates. In
contrast, the CS curve remains fairly flat to the right
such that the second peak dominates. The existence
of the second peak at the true number of hidden states
is quite interesting (and unexpected), but we do not
pursue it further in this paper.

As we have discussed, the accuracy results must be
balanced against the computational costs of the var-
ious approximations. The time complexities given in
Section 2 are overly pessimistic for naive-Bayes mod-
els, because probabilistic inferences can be cached and
reused. For naive-Bayes models, the evaluation of the
CS, MLED, Draper, and BIC/MDL measures (again
dominated by the MAP computation) has time com-
plexity O(edN). The evaluation of Laplace approxi-
mation (again dominated by the determination of the
Hessian), is given by O(d?N). To appreciate the con-
stants for these costs, the run times for the experiment
n = 64,c= 32, N = 400 are shown in Table 2.

The bottom line is that the Draper and CS measures
are both accurate and efficient, and are probably the
approximations of choice for most applications.

Our findings are valid only for naive-Bayes models with
a hidden root node. These results are important, be-
cause they apply directly to the AutoClass algorithm,
which is growing in popularity. Also, it is likely that
our results will extend to models for discrete variables
and data sets where each variable that is unobserved
has an observed Markov blanket. Under these condi-
tions, each Bayesian inference required by the scoring
functions (e.g., Equation 11) reduces to a naive-Bayes
computation. Nonetheless, more detailed experiments
are warranted to address models with more general



Table 1: Errors in model selection (mean =+ s.d.).

Experiment Ac

n ¢ N CS MLED Draper  BIC/MDL
8 4 400 0 04+1.5 0 -0.2+0.4
16 4 400 024+04 -024+08 02+04 -0.8+0.4
32 4 400 0 0 -0.4+0.5
64 4 400 0 0 -0.2+0.4
64 32 400 | 16.2 +1.5 162+ 1.5 -2.24+2.0 -6.0£2.7
64 16 400 | 5.0 +6.4 50+64 -1.6+1.1 -3.0+1.4
64 8 400 | 0.8 +£0.8 0.8 £0.8 0 -1.0£1.0
64 4 400 0 0 -0.2+0.4
32 4 100 06+09 0.6=+0.9 0 -0.640.5
32 4 200 02+04 02+£04 0 -0.640.5
32 4 400 0 0 -0.440.5
32 4 800 0 0 0

structure and non-discrete distributions. Finally, we
again note that our results do not rule out the possi-
bility that the CS or MLED approximations are better
than the Laplace approximation.

5 Reality Check

In our analysis of scoring functions for hidden-variable
models, we have made an important assumption.
Namely, we have assumed that, when the true model
contains a hidden variable, it is better to learn by
searching over models with hidden variables than those
without hidden variables. This assumption is not triv-
ially correct. Given a naive-Bayes model for the vari-
ables C, X1,...,X,, the joint distribution for these
variables can be encoded by a Bayesian network with-
out hidden variables. (Assuming there are no acci-
dental cancellations in the probabilities, this Bayesian
network will be completely connected.) Thus, we can
attempt to learn a model containing no hidden vari-
ables, and this model may be more accurate than that
learned by searching over naive-Bayes models having
a hidden root node.

We tested our assumption as follows. First, we gen-
erated a naive-Bayes model with n = 12 and ¢ = 3.
From this model we generated a data set of size 800,
discarding the observations of the variable C. Sec-
ond, we learned a single naive-Bayes model contain-
ing a hidden root node using the experimental tech-
nique described in the previous section. In particular,
we varied the number of hidden states of the naive-
Bayes model, and selected the one with the largest
(approximate) marginal likelihood. (In this case, all
scoring functions yielded the same model: one with
three hidden states). Third, we learned a single model
containing no hidden variables using the approach de-

scribed in Heckerman et al. (1995). In particular, we
used the BD scoring function with a uniform prior over
the parameters in conjunction with a greedy search al-
gorithm (in directed-graph space) initialized with an
empty graph.

We evaluated the two learned models by comparing
their marginal likelihoods. Specifically, we computed
Am = logp(D|S14en) — logp(D[S",140)- We used
the Laplace approximation to compute the first term,
and the exact expression for marginal likelihood (e.g.,
Heckerman et al., 1995) to compute the second term.
Repeating this experiment five times, we obtained
Am = 26 £+ 33, indicating that the hidden-variable
model better predicted the data. In additional exper-
iments, we found that Am increased as we increased
the size of the models.

6 Conclusions

We have evaluated the Laplace, CS, MLED, Draper,
and BIC/MDL approximations for the marginal likeli-
hood of naive-Bayes models with a hidden root node,
under the assumption that the Laplace approximation
is the most accurate of the scoring functions. Our
experiments indicate that (1) the BIC/MDL measure
is the least accurate, having a bias in favor of simple
models, and (2) the Draper and CS measures are the
most accurate, having a bias in favor of simple and
complex models, respectively, in most cases.
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Table 2: Algorithm run times (in seconds) as a function of the dimension of the test model for the experiment
n = 64,c= 32, and N = 400. The values for EM are times to convergence. The values for the scoring functions

exclude EM run times.

d EM Laplace CS MLED Draper BIC/MDL
1689 | 500 2800 2 0.06 2 2
1754 | 580 3000 2 0.07 2 2
1819 | 590 3300 2 0.07 2 2
1884 | 650 3600 2 0.08 2 2
1949 | 680 3900 2 0.08 2 2
2014 | 680 4200 2 0.08 2 2
2079 | 530 4600 2 0.08 2 2
2144 | 760 4900 2 0.08 2 2
2209 | 810 5500 2 0.08 2 2
2274 | 790 5900 3 0.08 3 3
2339 | 870 6700 3 0.08 3 3
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