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Abstract. We study the problem of achieving reliable communication with qui-
escent algorithms (i.e., agorithms that eventually stop sending messages) in
asynchronous systems with process crashes and lossy links. We first show that
it is impossible to solve this problem without failure detectors. We then show
how to solve it using a new failure detector, called heartbeat. In contrast to pre-
vious failure detectors that have been used to circumvent impossibility results,
the heartbeat failure detector is implementable, and its implementation does not
use timeouts. These results have wide applicability: they can be used to transform
many existing algorithms that tolerate only process crashes into quiescent algo-
rithmsthat tolerate both process crashes and message losses. This can be applied
to consensus, atomic broadcast, k-set agreement, atomic commitment, etc.

The heartbeat failure detector is novel: besides being implementable without
timeouts, it does not output lists of suspects as typical failure detectors do. If
we redtrict failure detectors to output only lists of suspects, quiescent reliable
communication requires OP [2], which isnot implementable. Combined with the
results of this paper, this shows that traditional failure detectors that output only
lists of suspects have fundamental limitations.

1 Motivation

This paper introduces heartbeat, a failure detector that can be implemented without
timeouts, and shows how it can be used to solve the problem of quiescent reliable
communication in asynchronous message-passing systems with process crashes and
lossy links.

To illustrate this problem consider a system of two processes, a sender s and a
receiver r, connected by an asynchronous bidirectional link. Process s wishes to send
some message m to r. Suppose first that no process may crash, but the link between
s and » may lose messages (in both directions). If we put no restrictions on message
lossesit is obviously impossible to ensurethat r receivesm. An assumption commonly
made to circumvent this problem is that the link is fair: if a message is sent infinitely
often then it is received infinitely often.

With such alink, s could repeatedly send copies of m forever, and r is guaranteed
to eventually receivem. Thisisimpractical, since s never stops sending messages. The
obviousfix isthefollowing protocol: (a) s sendsacopy of m repeatedly until it receives
ack(m) from r, and (b) upon each receipt of m, r sends ack(m) back to s. Note that
this protocol is quiescent: eventually no process sends or receives messages.
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The situation changes if, in addition to message losses, process crashes may also
occur. The protocol above still works, but it is not quiescent anymore: for example,
if » crashes before sending ack(m), then s will send copies of m forever. Is there a
quiescent protocol ensuring that if neither s nor » crashesthen » eventually receivesm?
It turns out that the answer is no, even if one assumesthat the link can only lose afinite
number of messages.

Since process crashes and message losses are common types of failures, this neg-
ative result is an obstacle to the design of fault-tolerant distributed systems. In this
paper, we explore the use of unreliable failure detectors to circumvent this obstacle.
Roughly speaking, unreliable failure detectors provide (possibly erroneous) hints onthe
operational status of processes. Each process can query alocal failure detector module
that provides some information about which processes have crashed. This information
is typically given in the form of a list of suspects. In genera, failure detectors can
make mistakes: a process that has crashed is not necessarily suspected and a process
may be suspected even though it has not crashed. Moreover, the local lists of suspects
dynamically change and lists of different processesdo not haveto agree (or even even-
tually agree). Introduced in [12], the abstraction of unreliable failure detectors has been
used to solve several important problems such as consensus, atomic broadcast, group
membership, non-blocking atomic commitment, and leader election [5, 15, 20, 24, 27].

Our godl is to use unreliable failure detectors to achieve quiescence, but before
we do so we must address the following important question. Note that any reasonable
implementation of afailure detector in amessage-passing systemisitself not quiescent:
a process being monitored by a failure detector must periodically send a message to
indicate that it is till alive, and it must do so forever (if it stops sending messages it
cannot be distinguished from a process that has crashed). Given that failure detectors
are not quiescent, does it still make sense to use them as a tool to achieve quiescent
applications (such as quiescent reliable broadcast, consensus, or group membership)?

The answer is yes, for two reasons. First, afailure detector is intended to be abasic
system servicethat is shared by many applicationsduring the lifetime of the system, and
soits cost isamortized over al these applications. Second, failure detection is a service
that needs to be active forever — and so it is natural that it sends messages forever.
In contrast, many applications (such as asingle RPC call or the reliable broadcast of a
single message) should not send messagesforever, i.e., they should be quiescent. Thus,
there is no conflict between the goal of achieving quiescent applications and the use of
a (non-quiescent) failure detection service as atool to achievethis goal.

How can we use an unreliable failure detector to achieve quiescent reliable commu-
nication in the presence of process and link failures? Consider the Eventually Perfect
failure detector &P [12]. Intuitively, OGP satisfies the following two properties: (a) if
a process crashes then there is a time after which it is permanently suspected, and (b)
if a process does not crash then there is atime after which it is never suspected. Using
<OP, the following obvious algorithm solves our sender/receiver example: () while s
has not received ack(m) from r, it periodically does the following: s queries &P and
sends a copy of m to r if r is not currently suspected; (b) upon each receipt of m, r
sends ack(m) back to s. Note that this algorithm is quiescent: eventually no process
sends or receives messages.

In [2], Aguilera et al. show that among all failure detectors that output lists of
suspects, OP is the weakest one that can be used to solve the above problem. Unfor-
tunately, &P is not implementable in asynchronous systems with process crashes (this
would violate a known impossibility result [18, 12]). Thus, at a first glance, it seems
that achieving quiescent reliable communication requires a failure detector that cannot



be implemented. In this paper we show that thisis not so.

2 TheHeartbeat Failure Detector

We will show that quiescent reliable communication can be achieved with a failure
detector that can be implemented without timeouts in systemswith process crashes and
lossy links. This failure detector, called heartbeat and denoted HB, is very simple.
Roughly speaking, the failure detector module of H B at a process p outputs a vector of
counters, onefor each neighbor ¢ of p. If neighbor g does not crash, its counter increases
with no bound. If ¢ crashes, its counter eventually stops increasing. The basic idea
behind an implementation of H B is the obvious one: each process periodically sends
an |-am-alive message (a“ heartbeat”) and every processreceiving a heartbeat increases
the corresponding counter.?

Note that HB does not use timeouts on the heartbeats of a process in order to
determine whether this process has failed or not. HB just counts the total number of
heartbeats received from each process, and outputs these “raw” counters without any
further processing or interpretation.

Thus, H B should not be confused with existing implementations of failure detectors
(some of which, such as those in Ensemble and Phoenix, have modules that are also
called heartbeat [28, 10]). Even though existing failure detectors are also based on the
repeated sending of aheartbeat, they usetimeouts on heartbeatsin order to derivelists of
processes considered to be up or down; applications can only seetheselists. In contrast,
‘HB simply counts heartbeats, and shows these counts to applications.

A remark isnow in order regarding the practicality of HB. Aswe mentioned above,
"H B outputs a vector of unbounded counters. In practice, these unbounded counters are
not a problem for the following reasons. First, they are in local memory and not in
messages— our ‘H B implementations use bounded messages (which are actually quite
short). Second, if we bound each local counter to 64 bits, and assume a rate of one
heartbeat per nanosecond, which is orders of magnitude higher than currently used in
practice, then H B will work for more than 500 years.

‘H B can be used to solve the problem of quiescent reliable communication and it
is implementable, but its counters are unbounded. Can we solve this problem using a
failure detector that is both implementable and has bounded output? [2] provesthat the
answer is no: Theweakest failure detector with bounded output that can be used to solve
quiescent reliable communicationis © P.

Thus, the difference between H B, whose output is unbounded, and existing failure
detectors, whose output is bounded, is more than “skin deep”. The results in this paper
combined with those of [2], show that failure detectors with bounded output (including
those that output lists of processes) are restricted in power and/or applicability.

3 Outline of the Results

We focus on two types of reliable communication mechanisms: quasi reliable send and
receive, and reliable broadcast. Roughly speaking, a pair of send/receive primitivesis
quasi reliable if it satisfiesthe following property: if processess and r are correct (i.e.,
they do not crash), then r receives a message from s exactly as many times as s sent
that message to ». Reliable broadcast [22] ensuresthat if a correct process broadcastsa

2 Aswe will see, however, in some types of networks the actual implementation is not entirely
trivial.



messagem then all correct processesdeliver m; moreover, all correct processesdeliver
the same set of messages.

Wefirst show that thereisno quiescentimplementation of quasi reliable send/receive
or of reliable broadcast in anetwork with process crashesand messagelosses. Thisholds
even if we assume that links can lose only a finite number of messages.

We then show how to use failure detectors to circumvent the above impossibility
result. We describe failure detector H 3, and show that it is strong enough to achieve
quiescent reliable communication, but weak enough to be implementable, in each one
of the following two types of communication networks. In both types of networks, we
assume that each correct process is connected to every other correct process through
afair path, i.e., a path containing only fair links and correct processes.® In the first
type, al links are bidirectional and fair (Fig. 1a). In the second one, some links are
unidirectional, and some links have no restrictions on message losses, i.e., they are not
fair (Fig. 1b). Examples of such networks are unidirectional rings that intersect.

\
\
\

,,,,,,, -
(a) simple network case (b) genera network case
link is fair link is not fair correct process - process that crashes

Fig. 1. Examples of the simple and general network cases

For each network type, we first describe quiescent protocols that use HB to solve
quasi reliable send/receiveand reliable broadcast, and then show how to implement H B.
For thefirst type of networks, acommon onein practice, theimplementation of H13 and
the reliable communication protocols are very simple and efficient. The algorithms for
the second type are significantly more complex.

3 This assumption precludes permanent network partitioning.



We then explain how H B can be used to easily transform many existing algorithms
that tolerate process crashesinto quiescent algorithms that tolerate both process crashes
and messagelosses (fair links). Thistransformation can be applied to the algorithms for
consensusin [4, 8, 9, 12, 14, 17, 26], for atomic broadcast in [12], for k-set agreement
in[13], for atomic commitment in [20], for approximate agreement in [16], etc.

Finally, we show that H B can be used to extend thework in [6] to obtain thefollowing
result. Let P be a problem. Suppose P is correct-restricted (i.e., its specification refers
only to the behavior of correct processes) or a majority of processes are correct. If P
is solvable with a quiescent protocol that tolerates only process crashes, then P is also
solvable with a quiescent protocol that tolerates process crashes and message losses.

To summarize, the main contributions of this paper are:

1. Thisisthefirst work that exploresthe use of unreliable failure detectorsto achieve
quiescent reliable communication in the presence of processcrashesand lossy links
— aproblem that cannot be solved without failure detection.

2. We describe a simple and implementable failure detector H 3 that can be used to
solve this problem.

3. "H B can be used to extend existing algorithms for many fundamental problems (e.g.,
consensus, atomic broadcast, k-set agreement, atomic commitment, approximate
agreement) to tolerate messagel osses. It can also beused to extend theresults of [6].

4. ‘HB is novel: it isimplementable without timeouts, and it does not output lists of
suspects as typical failure detectors do [5, 12, 20, 21, 24, 27]. The results of this
paper, combined with thosein [2], show that lists of suspectsis not always the best
failure detector output.®

Reliable communication is a fundamental problem that has been extensively stud-
ied, especially in the context of datalink protocols (see Chapter 22 of [25] for a com-
pendium). Our work differs from previous results by focusing on the use of unreliable
failure detectorsto achieve quiescent reliable communication in the presence of process
crashesand link failures. Thework by Basu et al. in [6] is the closest to ours, but their
protocols do not use failure detectors and are not quiescent. In Section 10, we use HB
to extend the results of [6] and obtain quiescent protocols.

The paper isorganized asfollows. Our model isgivenin Section 4. Section 5 defines
the reliable communication primitives that we focus on. In Section 6, we show that,
without failure detectors, quiescent reliable communicationisimpossible. To overcome
thisproblem, we define heartbeat fail ure detectorsin Section 7, we show how to usethem
to achieve quiescent reliable communication in Section 8, and show how to implement
them in Section 9. In Section 10, we explain how to use heartbeat failure detectors to
extend several previousresults. In Section 11, we mention ageneralization of our results
for the case where the network may partition. A brief discussion of protocol quiescence
versus protocol termination concludes the paper.

All proofs are omitted here due to space limitations. They are providedin [1].

4 Modd

We consider asynchronous message-passing distributed systemsin which there are no
timing assumptions. In particular, we make no assumptionsonthetimeit takesto deliver
amessage, or on relative process speeds. Processes can communicate with each other by

4 The link failure model in [6] is slightly different from the one used here (cf. Section 10).
® Thiswas anticipated in [11].



sending messagesthrough the network. We do not assumethat the network is completely
connected or that the links are bidirectional. The system can experience both process
failures and link failures. Processes can fail by crashing, and links can fail by dropping
messages.

To simplify the presentation of our model, we assume the existence of a discrete
global clock. Thisis merely afictional device: the processes do not have accessto it.
We take the range 7 of the clock’sticks to be the set of natural numbers.

4.1 Processesand ProcessFailures

The system consists of a set of n processes, II = {1,...,n}. Processes can fail
by crashing, i.e., by prematurely halting. A failure pattern F' is a function from 7°
to 277, where F(t) denotes the set of processes that have crashed through time ¢.
Once a process crashes, it does not “recover”, i.e, V¢ : F(t) C F(t+ 1). We define
crashed (F) = |, F(t) and correct (F') = II — crashed (F).|f p € crashed (F) we
say p crashes (or isfaulty) in F andif p € correct(F') wesay p iscorrectin F.

4.2 LinksandLink Failures

Some pairs of processes in the network are connected through unidirectional links. If
there is a link from process p to process ¢, we denote this link by p — ¢, and if, in
addition, ¢ # p we say that ¢ isaneighbor of p. The set of neighbors of p is denoted by
neighbor (p).

With every linkp — g weassociatetwo primitives: send,, ,(m) andreceivey ,(m).
We say that processp sendsmessagem to processq if pinvokessend,, ,(m). Weassume
that if p is correct, it eventually returns from this invocation. We allow process p to
send the same message m more than once through the same link. We say that process ¢
receives message m from processp if ¢ returns from the execution of receive, ,(m).
We describe alink p — ¢ by the properties that its send, , and receive, , primitives
satisfy. We assumethat links do not create or duplicate messages, i.e., every link p — ¢
in the network satisfies:

— Uniform Integrity: For al & > 1, if ¢ receivesm from p exactly k times by time ¢,
then p sent m to ¢ at least k times before time ¢.

A lossy link can fail by dropping messages. A link p — ¢ isfair if send, 4 and
receive, , satisfy Uniform Integrity and:

— Fairness: If ¢ is correct and p sends m to ¢ an infinite number of times, then ¢
receivesm from p an infinite number of times.

4.3 Network Connectivity

A path (p1,...,px) isfair if processesp, ..., ps are correct and linksp; — po, ...,
pr—1 — pr arefair. We assumethat every pair of distinct correct processesis connected
through afair path.



4.4 FailureDetectors
Each process has access to a local failure detector module that provides (possibly
incorrect) information about the failure pattern that occurs in an execution. A process
can query its local failure detector module at any time. A failure detector history H
with range R isafunction from II x 7 to R. H(p, ) isthe output value of the failure
detector module of process p at time ¢. A failure detector D is a function that maps
each failure pattern F' to a set of failure detector histories with range R p (where Rp
denotes the range of failure detector outputs of D). D(F') denotes the set of possible
failure detector histories permitted by D for the failure pattern F'. Note that the output
of afailure detector depends only on the failure pattern F'. Thus, it does not depend on
the behavior of applications.

Let C beaclass of failure detectors. An algorithm solves a problem using C if it can
solvethis problem using any D € C. An algorithm implements C if it implements some
DeC.

5 Quiescent Reliable Communication

In this paper, we consider quasi reliable send and receive and reliable broadcast, be-
cause these communication primitives are sufficient to solve many problems (see Sec-
tion 10.1). Thefull version of this paper [1] also considers stronger types of communi-
cation primitives, namely, reliable send and receive, and uniform reliable broadcast.

5.1 Quasi Reliable Send and Receive

Consider any two distinct processes s and r. We define quasi reliable send and receive
froms tor interms of two primitives, send; ,. andreceive,, 5, that must satisfy Uniform
Integrity and the following property:

— Quasi No Loss®: For al & > 1, if both s and r are correct, and s sends m to r
exactly k times by time ¢, then » eventually receivesm from s at least k times.

Intuitively, Quasi No Loss together with Uniform Integrity implies that if s and r
are correct, then r receivesm from s exactly asmany timesas s sendsm tor.

We want to implement quasi reliable send/receive primitives using the (lossy)
send/receive primitives that are provided by the network. In order to differentiate be-
tween these two, the first set of primitives is henceforth denoted by SEND/RECEIVE,
and the second one, by send/receive. Informally, an implementation of SEND . and
RECEIVE, , is quiescentif it sends only afinite number of messageswhen SEND .
isinvoked a finite number of times.”

5.2 Reliable Broadcast

Reliable broadcast [9] is defined in terms of two primitives: broadcast(m) and
deliver(m). We say that process p broadcasts messagem if p invokes broadcast(m).
We assume that every broadcast message m includes the following fields: the identity
of its sender, denoted sender(m), and a sequence number, denoted seq(m). These
fields make every message unique. We say that ¢ delivers messagem if ¢ returns from
the invocation of deliver(m). Primitives broadcast and deliver satisfy the following

properties[22]:

6 A stronger property, called No Loss, is used to define reliable send and receive[1].
7 A quiescent implementationisallowed to send afinitenumber of messagesevenif noSEND.
isinvoked at al (e.g., some messages may be sent as part of an “initialization phase’).



— Validity: If acorrect process broadcastsamessagem, then it eventually deliversm.

— Agreement: If a correct process delivers a message m, then all correct processes
eventually deliver m.

— Uniform Integrity: For every message m, every process delivers m at most once,
and only if m was previously broadcast by sender(m).

We want to implement reliable broadcast using the (lossy) send and receive primi-
tivesthat are provided by the network. Informally, animplementation of reliable broad-
castisquiescentif it sendsonly afinite number of messageswhen broadcastisinvoked
afinite number of times.

5.3 Relating Reliable Broadcast and Quasi Reliable Send and Receive

From a quiescent implementation of quasi reliable send and receive one can easily
obtain a quiescent implementation of reliable broadcast, and vice versa:

Remark 1 Fromany quiescent implementation of reliable broadcast, we can obtain a
quiescent implementation of the quasi reliable primitives SEND,, , and RECEIVE,,,
for every pair of processesp and gq.

Remark 2 Supposethat every pair of correct processesis connected through a path of
correct processes. If we have a quiescent implementation of quasi reliable primitives
SEND,,, and RECEIVE,,, for all processes p and ¢ € neighbor(p), then we can
obtain a quiescent implementation of reliable broadcast.

6 Impossibility of Quiescent Reliable Communication

Quiescent reliable communication cannot be achieved in anetwork with processcrashes
and message losses. This holds even if the network is completely connected and only a
finite number of messages can be lost.

Theorem1. Consider a network where every pair of processesis connected by a fair
link and at most one processmay crash. Let s and r be any two distinct processes. There
is no quiescent implementation of quasi reliable send and receivefroms to . Thisholds
even if we assume that only a finite number of messages can be lost.

Corollary 2. Thereis no quiescent implementation of reliable broadcast in a network
where a process may crash and links may lose a finite number of messages.

7 Definition of HB

A heartbeat failure detector D has the following features. The output of D at each
processp isalist (p1,m1), (P2, n2), - - - , (P&, Mk ), Whereps, pa, . . . , pr. are the neighbors
of p, and each n; is a nonnegative integer. Intuitively, n; increases while p; has not
crashed, and stops increasing if p; crashes. We say that n; is the heartbeat value of
p; at p. The output of D at p at time ¢, namely H(p, t), will be regarded as a vector
indexed by the set {p1, p2,...,pr}. Thus, H(p, t)[p;] isn;. The heartbeat sequence of
p; at p isthe sequence of the heartbeat values of p; at p astime increases. D satisfies
the following properties:



— HB-Completeness: At each correct process, the heartbeat sequence of every faulty
neighbor is bounded:

VF,VH € D(F),Vp € correct(F'),VYq € crashed(F') N neighbor(p),
dK e N,Vt €T : H(p,t)[g] < K

— "HB-Accuracy:
o At each process, the heartbeat sequence of every neighbor is nondecreasing:

VF,VH € D(F),Vp € II,Vq € neighbor(p),Vt € T : H(p,t)[g] < H(p,t+ 1)[q]

e At each correct process, the heartbeat sequence of every correct neighbor is
unbounded:

VF,YH € D(F),Vp € correct(F),Vq € correct(F) N neighbor(p),
VK e N,3t € T : H(p,t)[q] > K

Theclassof all heartbesat failure detectorsis denoted H B. By a slight abuse of notation,
we sometimes use ‘H B to refer to an arbitrary member of that class.

It is easy to generalize the definition of HB so that the failure detector module at
each process p outputs the heartbeat of every processin the system[3], rather than just
the heartbeats of the neighbors of p, but we do not need this generality here.

8 Quiescent Reliable Communication Using HB

Thecommunication networksthat we consider are not necessarily completely connected,
but we assumethat every pair of correct processesis connected through afair path. We
first consider a simple type of such networks, in which every link is assumed to be
bidirectional® and fair (Fig. 1a). This assumption, a common one in practice, allows
us to give efficient and simple algorithms. We then drop this assumption and treat a
more general type of networks, in which somelinks may be unidirectional and/or not fair
(Fig. 1b). For both network types, we give quiescent reliable communication algorithms
that use HB. Our algorithms have the following feature: processes do not need to know
the entire network topology or the number of processesin the system; they only need to
know the identity of their neighbors.

Inour algorithms, D, denotesthe current output of thefailure detector D at process p.

8.1 The Simple Network Case

We assumethat all links in the network are bidirectional and fair (Fig. 1a). In this case,
thealgorithmsare very simple. Wefirst give aquiescentimplementation of quasi reliable
SEND;,. and RECEIVE,., for the caser € neighbor(s). For s to SEND amessagem
tor, it repeatedly sendsm to r every time the heartbeat of r increases, until s receives
ack(m) from r. Processr RECEIVEs m from s the first time it receives m from s,
and r sends ack(m) to s every timeit receivesm from s.

From thisimplementation, and Remark 2, we can obtain aquiescentimplementation
of reliable broadcast. Then, from Remark 1, we can obtain a quiescent implementation
of quasi reliable send and receive for every pair of processes.

8 In our model, this meansthat link p — g isin the network if and only if link ¢ — pisin the
network. In other words, g € neighbor(p) if and only if p € neighbor(q).



8.2 TheGeneral Network Case

In this case (Fig. 1b), some links may be unidirectional, e.g., the network may contain
several unidirectional rings that intersect with each other. Moreover, some links may
not be fair (and processes do not know which ones are fair).

Achieving quiescent reliable communication in this type of network is significantly
more complex than before. For instance, suppose that we seek a quiescent implementa-
tion of quasi reliable send and receive. In order for the sender s to SEND amessagem
to thereceiver r, it hasto use a diffusion mechanism, evenif r isaneighbor of s (since
thelink s — r may not be fair). Because of intermittent message losses, this diffusion
mechanism needs to ensure that m is repeatedly sent over fair links. But when should
this repeated send stop? One possibility is to use an acknowledgement mechanism.
Unfortunately, the link in the reverse direction may not be fair (or may not even be part
of the network), and so the acknowledgement itself has to be “reliably” diffused — a
chicken and egg problem.

Figure 2 shows a quiescent implementation of reliable broadcast (by Remark 1 it
can be used to obtain quasi reliable send and receive between every pair of processes).
For each message m that is broadcast, each process p maintains a variable got ,[m]
containing a set of processes. Intuitively, a process ¢ isin got [m] if p has evidence
that ¢ has delivered m. In order to broadcast a message m, p ﬁrst deliversm; then p
initializes variable got ,[m] to {p} and forks task diffuse(m); finally p returnsfrom the
invocation of broadcast(m). Thetask diffuse(m) at p runsin the background. In this
task, p periodically checksif, for someneighbor g ¢ got ,[m], the heartbeat of ¢ at p has
increased, and if so, p sends amessage containing m to all neighbors whose heartbeat
increased — even to those who are already in got,[m].? The task terminates when all
neighbors of p are contained in got ,[m].

All messages sent by the algorithm are of the form (m, got_msg, path) where
got_msg is a set of processes and path is a sequence of processes. Upon the receipt
of such a message, process p first checks if it has aready delivered m and, if not, it
deliversm and forkstask diffuse(m). Then p addsthe contentsof got_msg to got ,[m]
and appendsitself to path. Finally, p forwards the new message (m, got _msg, path) to
all its neighborsthat appear at most oncein path.

The code consisting of lines 19 through 27 isexecuted atomically.1° Each concurrent
execution of the diffuse task (lines 9to 17) hasits own copy of all thelocal variablesin
this task.

Theorem 3. For the general network case, the algorithmin Fig. 2 is a quiescent im-
plementation of reliable broadcast that uses H B.

Corollary 4. Inthegeneral network case, quasi reliable send and receivebetween every
pair of processescan be implemented with a quiescent algorithmthat uses H 5.

9 Implementations of HB

We now giveimplementations of H B for the two types of communication networksthat
we considered in the previous sections. These implementations do not use timeouts.
° It may appear that p does not need to send this message to processes in got, [m], since they
aready got it! With this“optimization” the algorithm is no longer quiescent.
10 A process p executes aregion of code atomically if at any time thereis at most one thread of p
in thisregion.



For every process p:

To execute broadcast(m):
deliver(m)
got[m] — {p}
fork task diffuse(m)
return

© ® N o g~ wW N B

task diffuse(m):
for all g € neighbor(p) do prev_hblg] — —1
repeat periodically
hb — D, { query the heartbeat failure detector }
if for some g € neighbor(p), g ¢ got[m] and prev_hb[g] < hb|g] then
for all g € neighbor(p) such that prev_hb[q] < hb[g] do
send,,q(m, got[m], p)
prev_hb — hb
until neighbor(p) C got[m]
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upon receive, ,(m, got_msg, path) do

if p has not previously executed deliver(m) then
deliver(m)
got{m] — {p}
fork task diffuse(m)

got[m] — got[m] U got_msg

path « path-p

for all g such that ¢ € neighbor(p) and g appears at most once in path do
send,,,(m, got[m], path)
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Fig. 2. General network case — quiescent implementation of broadcast and deliver using H3

9.1 TheSimple Network Case

We assume all linksin the network are bidirectional and fair (Fig. 1a). In this case, the
implementation is obvious. Each process periodically sendsaHEARTBEAT message
to all its neighbors; upon the receipt of such a messagefrom processgq, p increasesthe
heartbeat value of q.

9.2 TheGeneral Network Case

In this case some links are unidirectional and/or not fair (Fig. 1b). The implementation
is more complex than before because each HEARTBEAT has to be diffused, and this
introduces the following problem: when a processp receivesa HEARTBEAT message
it has to relay it even if this is not the first time p receives such a message. This is
becausethis message could be a new “heartbeat” from the originating process. But this
could also be an “old” heartbeat that cycled around the network and came back, and p
must avoid relaying such heartbeats.

The implementation is given in Fig. 3. Every process p executes two concurrent
tasks. In thefirst task, p periodically sends message (HEARTBEAT, p) to all itsneigh-



bors. Thesecond task handlesthereceipt of messagesof theform (HEARTBEAT, path).
Upon thereceipt of such messagefrom processgq, p increasesthe heartbeat values of all
its neighbors that appear in path. Then p appendsitself to path and forwards message
(HEARTBEAT, path) to all its neighborsthat do not appear in path.

For every process p:

Initialization:
for all ¢ € neighbor(p) do D, [q] < O

cobegin
|| Task 1:
repeat periodically
for all ¢ € neighbor(p) do send,,,(HEARTBEAT, p)

© ® N o O A W N e

1 || Task 2:

2 upon receive, .(HEARTBEAT, path) do

13 for all ¢ such that ¢ € neighbor(p) and ¢ appearsin path do

1 Dylg] — Dylg] +1

15 path — path- p

16 for all g such that ¢ € neighbor(p) and g does not appear in path do
7 send,,,(HEARTBEAT, path)

18 coend

Fig. 3. General network case — implementation of HB

Theorem5. For the general network case, the algorithmin Fig. 3 implements H 5.

10 Using ‘H B to Extend Previous Work

‘HB can be used to extend previous work in order to solve problems with agorithms
that are both quiescent and tolerant of process crashes and messages |osses.

10.1 Extending Existing Algorithmsto TolerateLink Failures

‘HB can be used to transform many existing algorithms that tolerate process crashes
into quiescent algorithms that tolerate both process crashes and message losses. For
example, consider the randomized consensus algorithms of [8, 14, 17, 26], the failure-
detector based ones of [4, 12], the probabilistic one of [9], and the algorithms for atomic
broadcastin [12], k-set agreement in [13], atomic commitment in [20], and approximate
agreement in [16]. All these algorithms tolerate process crashes. Moreover, it is easy to
verify that the only communication primitives that they actually need are quasi reliable
send and receive, and/or reliable broadcast. Thus, in systems where HB is available,
al these algorithms can be made to tolerate both process crashes and message losses
(with fair links) by simply plugging in the quiescent communication primitives given
in Section 8. The resulting algorithms tolerate message losses and are quiescent.



10.2 Extending Results of [BCBT96]

Another way to solve problems with quiescent algorithms that tolerate both process
crashes and message losses is obtained by extending the results of [6]. That work
addressesthe following question: given a problem that can be solved in a system where
the only possible failures are process crashes, is the problem still solvable if links can
alsofail by losing messages?One of the models of lossy links consideredin [6] is called
fair lossy. Roughly speaking, afair lossy link p — ¢ satisfiesthe following property: If
p sends an infinite number of messagesto ¢ and q is correct, then g receives an infinite
number of messagesfrom p. Fair lossy and fair links differ in asubtleway. For instance,
if process p sends the infinite sequence of distinct messages m1, m2, ms, ... to ¢ and
p — q isfair lossy, then ¢ is guaranteed to receive an infinite subsequence, whereas if
p — q isfair, ¢ may receive nothing (because each distinct messageis sent only once).
Onthe other hand, if p sendstheinfinite sequencemi, m2, m1, ma, ... andp — g isfar
lossy, ¢ may never receive a copy of m, (whileit receivesm infinitely often), whereas
if p 4 isfair, ¢ is guaranteed to receive an infinite number of copies of both m 1 and
mao.

[6] establishes the following result: any problem P that can be solved in systems
with process crashes can also be solved in systems with process crashes and fair lossy
links, provided P is correct-restricted!? or amajority of processesare correct. For each
of these two cases, [6] shows how to transform any algorithm that solves P in asystem
with process crashes, into one that solves P in a system with process crashes and fair
lossy links. The algorithms that result from these transformations, however, are not
quiescent: each transformation requires processesto repeatedly send messages forever.

Given ‘H B, we can modify the transformations in [6] to ensure that if the original
algorithmisquiescent then soisthetransformed one. Roughly speaking, themodification
consists of (1) adding message acknowledgements; (2) suppressing the sending of a
message from p to ¢ if either (a) p has received an acknowledgement for that message
from g, or (b) the heartbeat of ¢ has not increased sincethe last time p sent amessageto
¢; and (3) modifying the meaning of the operation “append Queue; to Queue,” so that
only the elementsin Queue; that are not in Queue, are actually appended to Queue,.
Theresultsin [6], combined with the above modification, show that if a problem P can
be solved with a quiescent algorithm in a system with crash failures only, and either
P is correct-restricted or a majority of processes are correct, then P is solvable with a
quiescent algorithm that uses H B in a system with crash failures and fair lossy links.

11 Generalization to Networksthat Partition

In this paper, we assumed that every pair of correct processes are reachable from
each other through fair paths. In [3], we drop this assumption and consider the more
general problem of quiescent reliable communication in networks that may partition.
In particular, we (a) generalize the definitions of quasi reliable send and receive and
of reliable broadcast, (b) generalize the definition of the heartbeat failure detector and
implement it in networks that may partition, and (c) show that this failure detector can
be used to achieve quiescent reliable communication in such networks. In [3] we also

1 In[6], message piggybacking is used to overcome message losses. To avoid this piggybacking,
in this paper we adopted the model of fair links: message losses can now be overcome by
separately sending each message repeatedly.

12 | ntuitively, a problem P is correct-restricted if its specification does not refer to the behavior
of faulty processes|[7, 19].



consider the problem of consensus for networks that may partition, and we use HB
to solve this problem with a quiescent protocol (we also use a generalization of the
Eventually Strong failure detector [12]).

12 Quiescence versus Termination

In this paper we considered communication protocols that tolerate process crashes and
message losses, and focused on achieving quiescence. What about achieving termina-
tion? A terminating protocol guaranteesthat every process eventually reaches a halting
state from which it cannot take further actions. A terminating protocol is obviously
quiescent, but the converse is not necessarily true. For example, consider the protocol
described at the beginning of Section 1. In this protocoal, (a) s sendsa copy of m repeat-
edly until it receives ack(m) from r, and then it halts; and (b) upon each receipt of m,
r sends ack(m) back to s. In the absence of process crashes this protocol is quiescent.
However, the protocol is not terminating because r never halts: » remains (forever)
ready to reply to the receipt of a possible messagefrom s.

Can we use H B to obtain reliable communication protocols that are terminating?
Theanswer isno, even for systemswith no processcrashes. Thisfollows from the result
in [23] which shows that in a system with message losses (fair links) and no process
crashesthereis no terminating protocol that guarantees knowledge gain.
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