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Abstract. We study the problem of achieving reliable communication with qui-
escent algorithms (i.e., algorithms that eventually stop sending messages) in
asynchronous systems with process crashes and lossy links. We first show that
it is impossible to solve this problem without failure detectors. We then show
how to solve it using a new failure detector, called heartbeat. In contrast to pre-
vious failure detectors that have been used to circumvent impossibility results,
the heartbeat failure detector is implementable, and its implementation does not
use timeouts. These results have wide applicability: they can be used to transform
many existing algorithms that tolerate only process crashes into quiescent algo-
rithms that tolerate both process crashes and message losses. This can be applied
to consensus, atomic broadcast,

�
-set agreement, atomic commitment, etc.

The heartbeat failure detector is novel: besides being implementable without
timeouts, it does not output lists of suspects as typical failure detectors do. If
we restrict failure detectors to output only lists of suspects, quiescent reliable
communication requires ��� [2], which is not implementable. Combined with the
results of this paper, this shows that traditional failure detectors that output only
lists of suspects have fundamental limitations.

1 Motivation

This paper introduces heartbeat, a failure detector that can be implemented without
timeouts, and shows how it can be used to solve the problem of quiescent reliable
communication in asynchronous message-passing systems with process crashes and
lossy links.

To illustrate this problem consider a system of two processes, a sender � and a
receiver � , connected by an asynchronous bidirectional link. Process � wishes to send
some message � to � . Suppose first that no process may crash, but the link between
� and � may lose messages (in both directions). If we put no restrictions on message
losses it is obviously impossible to ensure that � receives � . An assumption commonly
made to circumvent this problem is that the link is fair: if a message is sent infinitely
often then it is received infinitely often.

With such a link, � could repeatedly send copies of � forever, and � is guaranteed
to eventually receive � . This is impractical, since � never stops sending messages. The
obvious fix is the following protocol: (a) � sends a copy of � repeatedly until it receives�
	���
 ��� from � , and (b) upon each receipt of � , � sends �
	���
 ��� back to � . Note that
this protocol is quiescent: eventually no process sends or receives messages.
�
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The situation changes if, in addition to message losses, process crashes may also
occur. The protocol above still works, but it is not quiescent anymore: for example,
if � crashes before sending �
	���
 ��� , then � will send copies of � forever. Is there a
quiescent protocol ensuring that if neither � nor � crashes then � eventually receives � ?
It turns out that the answer is no, even if one assumes that the link can only lose a finite
number of messages.

Since process crashes and message losses are common types of failures, this neg-
ative result is an obstacle to the design of fault-tolerant distributed systems. In this
paper, we explore the use of unreliable failure detectors to circumvent this obstacle.
Roughly speaking, unreliable failure detectors provide (possibly erroneous) hints on the
operational status of processes. Each process can query a local failure detector module
that provides some information about which processes have crashed. This information
is typically given in the form of a list of suspects. In general, failure detectors can
make mistakes: a process that has crashed is not necessarily suspected and a process
may be suspected even though it has not crashed. Moreover, the local lists of suspects
dynamically change and lists of different processes do not have to agree (or even even-
tually agree). Introduced in [12], the abstraction of unreliable failure detectors has been
used to solve several important problems such as consensus, atomic broadcast, group
membership, non-blocking atomic commitment, and leader election [5, 15, 20, 24, 27].

Our goal is to use unreliable failure detectors to achieve quiescence, but before
we do so we must address the following important question. Note that any reasonable
implementation of a failure detector in a message-passing system is itself not quiescent:
a process being monitored by a failure detector must periodically send a message to
indicate that it is still alive, and it must do so forever (if it stops sending messages it
cannot be distinguished from a process that has crashed). Given that failure detectors
are not quiescent, does it still make sense to use them as a tool to achieve quiescent
applications (such as quiescent reliable broadcast, consensus, or group membership)?

The answer is yes, for two reasons. First, a failure detector is intended to be a basic
system service that is shared by many applications during the lifetime of the system, and
so its cost is amortized over all these applications. Second, failure detection is a service
that needs to be active forever — and so it is natural that it sends messages forever.
In contrast, many applications (such as a single RPC call or the reliable broadcast of a
single message) should not send messages forever, i.e., they should be quiescent. Thus,
there is no conflict between the goal of achieving quiescent applications and the use of
a (non-quiescent) failure detection service as a tool to achieve this goal.

How can we use an unreliable failure detector to achieve quiescent reliable commu-
nication in the presence of process and link failures? Consider the Eventually Perfect
failure detector ��� [12]. Intuitively, ��� satisfies the following two properties: (a) if
a process crashes then there is a time after which it is permanently suspected, and (b)
if a process does not crash then there is a time after which it is never suspected. Using
��� , the following obvious algorithm solves our sender/receiver example: (a) while �
has not received �
	���
 ��� from � , it periodically does the following: � queries ��� and
sends a copy of � to � if � is not currently suspected; (b) upon each receipt of � , �
sends �
	���
 ��� back to � . Note that this algorithm is quiescent: eventually no process
sends or receives messages.

In [2], Aguilera et al. show that among all failure detectors that output lists of
suspects, ��� is the weakest one that can be used to solve the above problem. Unfor-
tunately, ��� is not implementable in asynchronous systems with process crashes (this
would violate a known impossibility result [18, 12]). Thus, at a first glance, it seems
that achieving quiescent reliable communication requires a failure detector that cannot



be implemented. In this paper we show that this is not so.

2 The Heartbeat Failure Detector

We will show that quiescent reliable communication can be achieved with a failure
detector that can be implemented without timeouts in systems with process crashes and
lossy links. This failure detector, called heartbeat and denoted ��� , is very simple.
Roughly speaking, the failure detector module of ��� at a process � outputs a vector of
counters, one for each neighbor � of � . If neighbor � does not crash, its counter increases
with no bound. If � crashes, its counter eventually stops increasing. The basic idea
behind an implementation of ��� is the obvious one: each process periodically sends
an I-am-alive message (a “heartbeat”) and every process receiving a heartbeat increases
the corresponding counter.2

Note that ��� does not use timeouts on the heartbeats of a process in order to
determine whether this process has failed or not. ��� just counts the total number of
heartbeats received from each process, and outputs these “raw” counters without any
further processing or interpretation.

Thus, ��� should not be confused with existing implementations of failure detectors
(some of which, such as those in Ensemble and Phoenix, have modules that are also
called heartbeat [28, 10]). Even though existing failure detectors are also based on the
repeated sending of a heartbeat, they use timeouts on heartbeats in order to derive lists of
processes considered to be up or down; applications can only see these lists. In contrast,
��� simply counts heartbeats, and shows these counts to applications.

A remark is now in order regarding the practicality of ��� . As we mentioned above,
��� outputs a vector of unbounded counters. In practice, these unbounded counters are
not a problem for the following reasons. First, they are in local memory and not in
messages — our ��� implementations use bounded messages (which are actually quite
short). Second, if we bound each local counter to 64 bits, and assume a rate of one
heartbeat per nanosecond, which is orders of magnitude higher than currently used in
practice, then ��� will work for more than 500 years.
��� can be used to solve the problem of quiescent reliable communication and it

is implementable, but its counters are unbounded. Can we solve this problem using a
failure detector that is both implementable and has bounded output? [2] proves that the
answer is no: The weakest failure detector with bounded output that can be used to solve
quiescent reliable communication is ��� .

Thus, the difference between ��� , whose output is unbounded, and existing failure
detectors, whose output is bounded, is more than “skin deep”. The results in this paper
combined with those of [2], show that failure detectors with bounded output (including
those that output lists of processes) are restricted in power and/or applicability.

3 Outline of the Results

We focus on two types of reliable communication mechanisms: quasi reliable send and
receive, and reliable broadcast. Roughly speaking, a pair of send/receive primitives is
quasi reliable if it satisfies the following property: if processes � and � are correct (i.e.,
they do not crash), then � receives a message from � exactly as many times as � sent
that message to � . Reliable broadcast [22] ensures that if a correct process broadcasts a

2 As we will see, however, in some types of networks the actual implementation is not entirely
trivial.



message � then all correct processes deliver � ; moreover, all correct processes deliver
the same set of messages.

We first show that there is no quiescent implementation of quasi reliable send/receive
or of reliable broadcast in a network with process crashes and message losses. This holds
even if we assume that links can lose only a finite number of messages.

We then show how to use failure detectors to circumvent the above impossibility
result. We describe failure detector ��� , and show that it is strong enough to achieve
quiescent reliable communication, but weak enough to be implementable, in each one
of the following two types of communication networks. In both types of networks, we
assume that each correct process is connected to every other correct process through
a fair path, i.e., a path containing only fair links and correct processes.3 In the first
type, all links are bidirectional and fair (Fig. 1a). In the second one, some links are
unidirectional, and some links have no restrictions on message losses, i.e., they are not
fair (Fig. 1b). Examples of such networks are unidirectional rings that intersect.

correct process process that crashes

(a) simple network case (b) general network case

link is fair link is not fair

Fig. 1. Examples of the simple and general network cases

For each network type, we first describe quiescent protocols that use ��� to solve
quasi reliable send/receive and reliable broadcast, and then show how to implement ��� .
For the first type of networks, a common one in practice, the implementation of ��� and
the reliable communication protocols are very simple and efficient. The algorithms for
the second type are significantly more complex.

3 This assumption precludes permanent network partitioning.



We then explain how ��� can be used to easily transform many existing algorithms
that tolerate process crashes into quiescent algorithms that tolerate both process crashes
and message losses (fair links). This transformation can be applied to the algorithms for
consensus in [4, 8, 9, 12, 14, 17, 26], for atomic broadcast in [12], for � -set agreement
in [13], for atomic commitment in [20], for approximate agreement in [16], etc.

Finally, we show that ��� can be used to extend the work in [6] to obtain the following
result. Let � be a problem. Suppose � is correct-restricted (i.e., its specification refers
only to the behavior of correct processes) or a majority of processes are correct. If �
is solvable with a quiescent protocol that tolerates only process crashes, then � is also
solvable with a quiescent protocol that tolerates process crashes and message losses.4

To summarize, the main contributions of this paper are:

1. This is the first work that explores the use of unreliable failure detectors to achieve
quiescent reliable communication in the presence of process crashes and lossy links
— a problem that cannot be solved without failure detection.

2. We describe a simple and implementable failure detector ��� that can be used to
solve this problem.

3. ��� can be used to extend existing algorithms for many fundamental problems (e.g.,
consensus, atomic broadcast, � -set agreement, atomic commitment, approximate
agreement) to tolerate message losses. It can also be used to extend the results of [6].

4. ��� is novel: it is implementable without timeouts, and it does not output lists of
suspects as typical failure detectors do [5, 12, 20, 21, 24, 27]. The results of this
paper, combined with those in [2], show that lists of suspects is not always the best
failure detector output.5

Reliable communication is a fundamental problem that has been extensively stud-
ied, especially in the context of data link protocols (see Chapter 22 of [25] for a com-
pendium). Our work differs from previous results by focusing on the use of unreliable
failure detectors to achieve quiescent reliable communication in the presence of process
crashes and link failures. The work by Basu et al. in [6] is the closest to ours, but their
protocols do not use failure detectors and are not quiescent. In Section 10, we use ���
to extend the results of [6] and obtain quiescent protocols.

The paper is organized as follows. Our model is given in Section 4. Section 5 defines
the reliable communication primitives that we focus on. In Section 6, we show that,
without failure detectors, quiescent reliable communication is impossible. To overcome
this problem, we define heartbeat failure detectors in Section 7, we show how to use them
to achieve quiescent reliable communication in Section 8, and show how to implement
them in Section 9. In Section 10, we explain how to use heartbeat failure detectors to
extend several previous results. In Section 11, we mention a generalization of our results
for the case where the network may partition. A brief discussion of protocol quiescence
versus protocol termination concludes the paper.

All proofs are omitted here due to space limitations. They are provided in [1].

4 Model

We consider asynchronous message-passing distributed systems in which there are no
timing assumptions. In particular, we make no assumptions on the time it takes to deliver
a message, or on relative process speeds. Processes can communicate with each other by

4 The link failure model in [6] is slightly different from the one used here (cf. Section 10).
5 This was anticipated in [11].



sending messages through the network. We do not assume that the network is completely
connected or that the links are bidirectional. The system can experience both process
failures and link failures. Processes can fail by crashing, and links can fail by dropping
messages.

To simplify the presentation of our model, we assume the existence of a discrete
global clock. This is merely a fictional device: the processes do not have access to it.
We take the range � of the clock’s ticks to be the set of natural numbers.

4.1 Processes and Process Failures

The system consists of a set of � processes, ����� 1 �	�	�	�
���
� . Processes can fail
by crashing, i.e., by prematurely halting. A failure pattern � is a function from �
to 2 � , where � 
�� � denotes the set of processes that have crashed through time � .
Once a process crashes, it does not “recover”, i.e., � � : � 
�� ����� 
���� 1 � . We define�����
��� ��! 
 � �"�$#&%('*)+� 
�� � and �-,*���-���/. 
 � �
�0�21 �����
��� ��! 
 � � . If �43 �����
��� ��! 
 � � we
say � crashes (or is faulty) in � and if �43 �-,*���-���/. 
 � � we say � is correct in � .

4.2 Links and Link Failures

Some pairs of processes in the network are connected through unidirectional links. If
there is a link from process � to process � , we denote this link by �65 � , and if, in
addition, �47� � we say that � is a neighbor of � . The set of neighbors of � is denoted by8���9 :/�<;-,*� 
 ��� .

With every link �=5 � we associate two primitives: send >@? A 
 ��� and receive A�? > 
 ��� .
We say that process � sends message � to process � if � invokes send >@? A 
 ��� . We assume
that if � is correct, it eventually returns from this invocation. We allow process � to
send the same message � more than once through the same link. We say that process �
receives message � from process � if � returns from the execution of receive A�? > 
 ��� .
We describe a link �B5 � by the properties that its send >@? A and receive A-? > primitives
satisfy. We assume that links do not create or duplicate messages, i.e., every link �=5 �
in the network satisfies:

– Uniform Integrity: For all �DC 1, if � receives � from � exactly � times by time � ,
then � sent � to � at least � times before time � .

A lossy link can fail by dropping messages. A link �E5 � is fair if send >*? A and
receive A-? > satisfy Uniform Integrity and:

– Fairness: If � is correct and � sends � to � an infinite number of times, then �
receives � from � an infinite number of times.

4.3 Network Connectivity

A path 
 � 1 �	�	�	�*� �GF � is fair if processes � 1 �	�	�	�@� �GF are correct and links � 1 5 � 2, �	�	� ,
�GF*H 1 5 �GF are fair. We assume that every pair of distinct correct processes is connected
through a fair path.



4.4 Failure Detectors
Each process has access to a local failure detector module that provides (possibly
incorrect) information about the failure pattern that occurs in an execution. A process
can query its local failure detector module at any time. A failure detector history �
with range � is a function from ��� � to � . � 
 � � � � is the output value of the failure
detector module of process � at time � . A failure detector � is a function that maps
each failure pattern � to a set of failure detector histories with range ��� (where ���
denotes the range of failure detector outputs of � ). � 
 � � denotes the set of possible
failure detector histories permitted by � for the failure pattern � . Note that the output
of a failure detector depends only on the failure pattern � . Thus, it does not depend on
the behavior of applications.

Let � be a class of failure detectors. An algorithm solves a problem using � if it can
solve this problem using any � 3	� . An algorithm implements � if it implements some
� 3	� .

5 Quiescent Reliable Communication
In this paper, we consider quasi reliable send and receive and reliable broadcast, be-
cause these communication primitives are sufficient to solve many problems (see Sec-
tion 10.1). The full version of this paper [1] also considers stronger types of communi-
cation primitives, namely, reliable send and receive, and uniform reliable broadcast.

5.1 Quasi Reliable Send and Receive
Consider any two distinct processes � and � . We define quasi reliable send and receive
from � to � in terms of two primitives, send 
�? � and receive �-? 
 , that must satisfy Uniform
Integrity and the following property:

– Quasi No Loss6: For all � C 1, if both � and � are correct, and � sends � to �
exactly � times by time � , then � eventually receives � from � at least � times.

Intuitively, Quasi No Loss together with Uniform Integrity implies that if � and �
are correct, then � receives � from � exactly as many times as � sends � to � .

We want to implement quasi reliable send/receive primitives using the (lossy)
send/receive primitives that are provided by the network. In order to differentiate be-
tween these two, the first set of primitives is henceforth denoted by SEND/RECEIVE,
and the second one, by send/receive. Informally, an implementation of SEND 
�? � and
RECEIVE �-? 
 is quiescent if it sends only a finite number of messages when SEND 
�? �
is invoked a finite number of times.7

5.2 Reliable Broadcast
Reliable broadcast [9] is defined in terms of two primitives: broadcast 
 ��� and
deliver 
 ��� . We say that process � broadcasts message � if � invokes broadcast 
 ��� .
We assume that every broadcast message � includes the following fields: the identity
of its sender, denoted �@��8 ! ���

 ��� , and a sequence number, denoted �
�
� 
 � � . These
fields make every message unique. We say that � delivers message � if � returns from
the invocation of deliver 
 � � . Primitives broadcast and deliver satisfy the following
properties[22]:

6 A stronger property, called No Loss, is used to define reliable send and receive [1].
7 A quiescent implementation is allowed to send a finite number of messages even if no SEND �
� �

is invoked at all (e.g., some messages may be sent as part of an “initialization phase”).



– Validity: If a correct process broadcasts a message � , then it eventually delivers � .
– Agreement: If a correct process delivers a message � , then all correct processes

eventually deliver � .
– Uniform Integrity: For every message � , every process delivers � at most once,

and only if � was previously broadcast by �@��8 ! ���

 ��� .
We want to implement reliable broadcast using the (lossy) send and receive primi-

tives that are provided by the network. Informally, an implementation of reliable broad-
cast is quiescent if it sends only a finite number of messageswhen broadcast is invoked
a finite number of times.

5.3 Relating Reliable Broadcast and Quasi Reliable Send and Receive
From a quiescent implementation of quasi reliable send and receive one can easily
obtain a quiescent implementation of reliable broadcast, and vice versa:

Remark 1 From any quiescent implementation of reliable broadcast, we can obtain a
quiescent implementation of the quasi reliable primitives SEND >*? A and RECEIVE A-? >
for every pair of processes � and � .

Remark 2 Suppose that every pair of correct processes is connected through a path of
correct processes. If we have a quiescent implementation of quasi reliable primitives
SEND >*? A and RECEIVE A-? > for all processes � and � 3 neighbor 
 ��� , then we can
obtain a quiescent implementation of reliable broadcast.

6 Impossibility of Quiescent Reliable Communication

Quiescent reliable communication cannot be achieved in a network with process crashes
and message losses. This holds even if the network is completely connected and only a
finite number of messages can be lost.

Theorem 1. Consider a network where every pair of processes is connected by a fair
link and at most one process may crash. Let � and � be any two distinct processes. There
is no quiescent implementation of quasi reliable send and receive from � to � . This holds
even if we assume that only a finite number of messages can be lost.

Corollary 2. There is no quiescent implementation of reliable broadcast in a network
where a process may crash and links may lose a finite number of messages.

7 Definition of ���
A heartbeat failure detector � has the following features. The output of � at each
process � is a list 
 � 1 ��� 1 � � 
 � 2 ��� 2 � �	�	�	�
� 
 �GF ��� F � , where � 1 � � 2 �	�	�	�
� �GF are the neighbors
of � , and each ��� is a nonnegative integer. Intuitively, ��� increases while ��� has not
crashed, and stops increasing if ��� crashes. We say that ��� is the heartbeat value of
��� at � . The output of � at � at time � , namely � 
 � � � � , will be regarded as a vector
indexed by the set � � 1 � � 2 �	�	�	�
� �GF � . Thus, � 
 � � � �
	 ����� is �
� . The heartbeat sequence of
��� at � is the sequence of the heartbeat values of ��� at � as time increases. � satisfies
the following properties:



– ��� -Completeness: At each correct process, the heartbeat sequence of every faulty
neighbor is bounded:

�����������
	
����
��������
correct

����
��������
crashed

����
��
neighbor

� ��
��
������������� �
!

:
�"� �#����
%$ �'&)(*�

– ��� -Accuracy:+ At each process, the heartbeat sequence of every neighbor is nondecreasing:
�����,������	-����
������.�0/
�,�����

neighbor
� ��
��������
!

:
�"� �#�,��
%$ �'&)(*�"� �#����1

1

%$ �2&

+ At each correct process, the heartbeat sequence of every correct neighbor is
unbounded:

���������3�.	
����
������.�
correct

����
��������
correct

�
F

4�

neighbor
� ��
��

�����������5� �
!
:
�"� �#�,��
%$ �'&)6*�

The class of all heartbeat failure detectors is denoted ��� . By a slight abuse of notation,
we sometimes use ��� to refer to an arbitrary member of that class.

It is easy to generalize the definition of ��� so that the failure detector module at
each process � outputs the heartbeat of every process in the system [3], rather than just
the heartbeats of the neighbors of � , but we do not need this generality here.

8 Quiescent Reliable Communication Using ���
The communication networks that we consider are not necessarily completely connected,
but we assume that every pair of correct processes is connected through a fair path. We
first consider a simple type of such networks, in which every link is assumed to be
bidirectional8 and fair (Fig. 1a). This assumption, a common one in practice, allows
us to give efficient and simple algorithms. We then drop this assumption and treat a
more general type of networks, in which some links may be unidirectional and/or not fair
(Fig. 1b). For both network types, we give quiescent reliable communication algorithms
that use ��� . Our algorithms have the following feature: processes do not need to know
the entire network topology or the number of processes in the system; they only need to
know the identity of their neighbors.

In our algorithms, ��> denotes the current output of the failure detector � at process � .

8.1 The Simple Network Case

We assume that all links in the network are bidirectional and fair (Fig. 1a). In this case,
the algorithms are very simple. We first give a quiescent implementation of quasi reliable
SEND 
�? � and RECEIVE �-? 
 for the case � 3 8G� 9 :
�<;-,*��
 � � . For � to SEND a message �
to � , it repeatedly sends � to � every time the heartbeat of � increases, until � receives� �27 
 � � from � . Process � RECEIVEs � from � the first time it receives � from � ,
and � sends � �87 
 ��� to � every time it receives � from � .

From this implementation, and Remark 2, we can obtain a quiescent implementation
of reliable broadcast. Then, from Remark 1, we can obtain a quiescent implementation
of quasi reliable send and receive for every pair of processes.

8 In our model, this means that link
��9:�

is in the network if and only if link
��93�

is in the
network. In other words,

���
neighbor

� ��

if and only if

�.�
neighbor

���5

.



8.2 The General Network Case
In this case (Fig. 1b), some links may be unidirectional, e.g., the network may contain
several unidirectional rings that intersect with each other. Moreover, some links may
not be fair (and processes do not know which ones are fair).

Achieving quiescent reliable communication in this type of network is significantly
more complex than before. For instance, suppose that we seek a quiescent implementa-
tion of quasi reliable send and receive. In order for the sender � to SEND a message �
to the receiver � , it has to use a diffusion mechanism, even if � is a neighbor of � (since
the link ��5 � may not be fair). Because of intermittent message losses, this diffusion
mechanism needs to ensure that � is repeatedly sent over fair links. But when should
this repeated send stop? One possibility is to use an acknowledgement mechanism.
Unfortunately, the link in the reverse direction may not be fair (or may not even be part
of the network), and so the acknowledgement itself has to be “reliably” diffused — a
chicken and egg problem.

Figure 2 shows a quiescent implementation of reliable broadcast (by Remark 1 it
can be used to obtain quasi reliable send and receive between every pair of processes).
For each message � that is broadcast, each process � maintains a variable :*, . > 	 � �
containing a set of processes. Intuitively, a process � is in :*, . > 	 � � if � has evidence
that � has delivered � . In order to broadcast a message � , � first delivers � ; then �
initializes variable :*, . > 	 � � to � � � and forks task !*9 ��� �
� 
 � � ; finally � returns from the
invocation of broadcast 
 � � . The task !*9 ��� �@� 
 � � at � runs in the background. In this
task, � periodically checks if, for some neighbor �473 : , . > 	 � � , the heartbeat of � at � has
increased, and if so, � sends a message containing � to all neighbors whose heartbeat
increased — even to those who are already in : , . > 	 � � .9 The task terminates when all
neighbors of � are contained in :*, . > 	 � � .

All messages sent by the algorithm are of the form 
 �E� :*, . � �-: ��� � . � � where
got msg is a set of processes and � � . � is a sequence of processes. Upon the receipt
of such a message, process � first checks if it has already delivered � and, if not, it
delivers � and forks task !*9 ��� �
� 
 � � . Then � adds the contents of :*, . � �-: to : , . > 	 � �
and appends itself to � � . � . Finally, � forwards the new message 
 � � : , . ����: ��� � . � � to
all its neighbors that appear at most once in � � . � .

The code consisting of lines 19 through 27 is executed atomically.10 Each concurrent
execution of the diffuse task (lines 9 to 17) has its own copy of all the local variables in
this task.

Theorem 3. For the general network case, the algorithm in Fig. 2 is a quiescent im-
plementation of reliable broadcast that uses ��� .

Corollary 4. In the general network case, quasi reliable send and receive between every
pair of processes can be implemented with a quiescent algorithm that uses ��� .

9 Implementations of ���
We now give implementations of ��� for the two types of communication networks that
we considered in the previous sections. These implementations do not use timeouts.

9 It may appear that
�

does not need to send this message to processes in got � $ � & , since they
already got it! With this “optimization” the algorithm is no longer quiescent.

10 A process
�

executes a region of code atomically if at any time there is at most one thread of
�

in this region.



1 For every process
�

:
2

3 To execute broadcast
� ��


:
4 deliver

� �.

5 got

$ �-& ��� ���
6 fork task diffuse

� ��

7 return
8

9 task diffuse
� �.


:
10 for all

� �
neighbor

� ��

do
���	��
 ��
 $ �'& ��� 1

11 repeat periodically
12

��
 � 	 � � query the heartbeat failure detector
�

13 if for some
���

neighbor
� ��


,
����

got
$ � &

and
���	��
 ��
 $ �'&�����
 $ �'&

then
14 for all

���
neighbor

� ��

such that

���	��
 ��
 $ �2&�����
 $ �2&
do

15 send � � � � �0� got
$ � & ����


16
���	��
 ��
 � ��


17 until neighbor
� ��
��

got
$ �-&

18

19 upon receive � � � � � � got msg
�
path



do

20 if
�

has not previously executed deliver
� ��


then
21 deliver

� ��

22 got

$ � & ��� ���
23 fork task diffuse

� ��

24 got

$ �-& � got
$ �-&��

got msg
25 path � path � �
26 for all

�
such that

� �
neighbor

� ��

and

�
appears at most once in path do

27 send � � � � � � got
$ �-& �

path



Fig. 2. General network case — quiescent implementation of broadcast and deliver using ���

9.1 The Simple Network Case
We assume all links in the network are bidirectional and fair (Fig. 1a). In this case, the
implementation is obvious. Each process periodically sends a  "!$#&%('*)+!�#,' message
to all its neighbors; upon the receipt of such a message from process � , � increases the
heartbeat value of � .

9.2 The General Network Case
In this case some links are unidirectional and/or not fair (Fig. 1b). The implementation
is more complex than before because each HEARTBEAT has to be diffused, and this
introduces the following problem: when a process � receives a HEARTBEAT message
it has to relay it even if this is not the first time � receives such a message. This is
because this message could be a new “heartbeat” from the originating process. But this
could also be an “old” heartbeat that cycled around the network and came back, and �
must avoid relaying such heartbeats.

The implementation is given in Fig. 3. Every process � executes two concurrent
tasks. In the first task, � periodically sends message 
  &!�#-%('*).!$#,' � ��� to all its neigh-



bors. The second task handles the receipt of messages of the form 
  "!$#&%('*)+!�#,' ��� � . � � .
Upon the receipt of such message from process � , � increases the heartbeat values of all
its neighbors that appear in � � . � . Then � appends itself to � � . � and forwards message
  &!�#-%('*).!$#,' ��� � . � � to all its neighbors that do not appear in path.

1 For every process
�

:
2

3 Initialization:
4 for all

���
neighbor

� ��

do
	 � $ �'& � 0

5

6 cobegin
7 � � Task 1:
8 repeat periodically
9 for all

���
neighbor

� ��

do send � � � � HEARTBEAT

� ��

10

11 � � Task 2:
12 upon receive � � � � HEARTBEAT

�
path



do

13 for all
�

such that
���

neighbor
� ��


and
�

appears in path do
14

	 � $ �2& � 	 � $ �'&�1 1
15 path � path � �
16 for all

�
such that

���
neighbor

� ��

and

�
does not appear in path do

17 send � � � � HEARTBEAT
�
path



18 coend

Fig. 3. General network case — implementation of ���

Theorem 5. For the general network case, the algorithm in Fig. 3 implements ��� .

10 Using ��� to Extend Previous Work
��� can be used to extend previous work in order to solve problems with algorithms
that are both quiescent and tolerant of process crashes and messages losses.

10.1 Extending Existing Algorithms to Tolerate Link Failures
��� can be used to transform many existing algorithms that tolerate process crashes
into quiescent algorithms that tolerate both process crashes and message losses. For
example, consider the randomized consensus algorithms of [8, 14, 17, 26], the failure-
detector based ones of [4, 12], the probabilistic one of [9], and the algorithms for atomic
broadcast in [12], � -set agreement in [13], atomic commitment in [20], and approximate
agreement in [16]. All these algorithms tolerate process crashes. Moreover, it is easy to
verify that the only communication primitives that they actually need are quasi reliable
send and receive, and/or reliable broadcast. Thus, in systems where ��� is available,
all these algorithms can be made to tolerate both process crashes and message losses
(with fair links) by simply plugging in the quiescent communication primitives given
in Section 8. The resulting algorithms tolerate message losses and are quiescent.



10.2 Extending Results of [BCBT96]
Another way to solve problems with quiescent algorithms that tolerate both process
crashes and message losses is obtained by extending the results of [6]. That work
addresses the following question: given a problem that can be solved in a system where
the only possible failures are process crashes, is the problem still solvable if links can
also fail by losing messages? One of the models of lossy links considered in [6] is called
fair lossy. Roughly speaking, a fair lossy link �D5 � satisfies the following property: If
� sends an infinite number of messages to � and � is correct, then � receives an infinite
number of messages from � . Fair lossy and fair links differ in a subtle way. For instance,
if process � sends the infinite sequence of distinct messages � 1 � � 2 � � 3 �	�	�	� to � and
� 5 � is fair lossy, then � is guaranteed to receive an infinite subsequence, whereas if
�D5 � is fair, � may receive nothing (because each distinct message is sent only once).
On the other hand, if � sends the infinite sequence � 1 � � 2 � � 1 � � 2 �	�	�	� and � 5 � is fair
lossy, � may never receive a copy of � 2 (while it receives � 1 infinitely often), whereas
if �=5 � is fair, � is guaranteed to receive an infinite number of copies of both � 1 and
� 2.11

[6] establishes the following result: any problem � that can be solved in systems
with process crashes can also be solved in systems with process crashes and fair lossy
links, provided � is correct-restricted12 or a majority of processes are correct. For each
of these two cases, [6] shows how to transform any algorithm that solves � in a system
with process crashes, into one that solves � in a system with process crashes and fair
lossy links. The algorithms that result from these transformations, however, are not
quiescent: each transformation requires processes to repeatedly send messages forever.

Given ��� , we can modify the transformations in [6] to ensure that if the original
algorithm is quiescent then so is the transformed one. Roughly speaking, the modification
consists of (1) adding message acknowledgements; (2) suppressing the sending of a
message from � to � if either (a) � has received an acknowledgement for that message
from � , or (b) the heartbeat of � has not increased since the last time � sent a message to
� ; and (3) modifying the meaning of the operation “append ��������� 1 to ��������� 2” so that
only the elements in ��������� 1 that are not in ��������� 2 are actually appended to ��������� 2.
The results in [6], combined with the above modification, show that if a problem � can
be solved with a quiescent algorithm in a system with crash failures only, and either
� is correct-restricted or a majority of processes are correct, then � is solvable with a
quiescent algorithm that uses ��� in a system with crash failures and fair lossy links.

11 Generalization to Networks that Partition

In this paper, we assumed that every pair of correct processes are reachable from
each other through fair paths. In [3], we drop this assumption and consider the more
general problem of quiescent reliable communication in networks that may partition.
In particular, we (a) generalize the definitions of quasi reliable send and receive and
of reliable broadcast, (b) generalize the definition of the heartbeat failure detector and
implement it in networks that may partition, and (c) show that this failure detector can
be used to achieve quiescent reliable communication in such networks. In [3] we also

11 In [6], message piggybacking is used to overcome message losses. To avoid this piggybacking,
in this paper we adopted the model of fair links: message losses can now be overcome by
separately sending each message repeatedly.

12 Intuitively, a problem � is correct-restricted if its specification does not refer to the behavior
of faulty processes [7, 19].



consider the problem of consensus for networks that may partition, and we use ���
to solve this problem with a quiescent protocol (we also use a generalization of the
Eventually Strong failure detector [12]).

12 Quiescence versus Termination
In this paper we considered communication protocols that tolerate process crashes and
message losses, and focused on achieving quiescence. What about achieving termina-
tion? A terminating protocol guarantees that every process eventually reaches a halting
state from which it cannot take further actions. A terminating protocol is obviously
quiescent, but the converse is not necessarily true. For example, consider the protocol
described at the beginning of Section 1. In this protocol, (a) � sends a copy of � repeat-
edly until it receives � 	�� 
 � � from � , and then it halts; and (b) upon each receipt of � ,
� sends �
	���
 ��� back to � . In the absence of process crashes this protocol is quiescent.
However, the protocol is not terminating because � never halts: � remains (forever)
ready to reply to the receipt of a possible message from � .

Can we use ��� to obtain reliable communication protocols that are terminating?
The answer is no, even for systems with no process crashes. This follows from the result
in [23] which shows that in a system with message losses (fair links) and no process
crashes there is no terminating protocol that guarantees knowledge gain.
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