
AUTOMATIC 3D MODEL ACQUISITION AND GENERATION
OF NEW IMAGES FROM VIDEO SEQUENCES

Andrew FitzgibbonandAndrew Zisserman
Dept.of EngineeringScience,Universityof Oxford,

19ParksRoad,OxfordOX1 3PJ,UK
e-mail:

�
awf,az � @robots.ox.ac.uk

ABSTRACT

We describea methodto completelyautomaticallyrecover
3D scenestructuretogetherwith 3D camerapositionsfrom a
sequenceof imagesacquiredby anunknown cameraunder-
going unknown movement. Unlike “tuned” systemswhich
usecalibrationobjectsor markers to recover this informa-
tion, andarethereforeoftenlimited to a particularscale,the
approachof thispaperis moregeneralandcanbeappliedtoa
largeclassof scenes.It is demonstratedherefor interiorand
exterior sequencesusingboth controlled-motionandhand-
heldcameras.
The paperreviews ComputerVision researchinto structure
andmotionrecovery, providing a tutorial introductionto the
geometryof multiple views, estimationandcorrespondence
in video streams.The coremethod,which simultaneously
extractsthe3D scenestructureandcamerapositions,is ap-
plied to theautomatedrecoveryof VRML 3D texturedmod-
elsfrom a videosequence.

1 INTRODUCTION

As virtual worldsdemandevermorerealistic3D models,at-
tentionis beingfocussedon systemsthatcanacquiregraph-
ical modelsfrom realobjects.Thispaperdescribesamethod
for processingasequenceof imagesacquiredby anunknown
cameraundergoingunknown movementto completelyauto-
maticallyrecover 3D scenestructuretogetherwith 3D cam-
erapositions.Weemploy StructureandMotion recoveryres-
ultsfromthephotogrammetryandcomputervisionliterature,
whereit hasbeenshown that thereis sufficient information
in perspective projectionsof a staticcloudof 3D pointsand
linesto determinethe3D structureaswell asthecamerapo-
sitionsfromimagemeasurementsalone.

The core systemis an automaticprocesswhich can be
thoughtof, at its simplest,as converting a camcorderto a
sparserangesensor. Togetherwith more standardgraph-
ical post-processingsuchastriangulationof sparse3D point
andline sets,andtexturemappingfrom images,thesystem
becomesa “VHS to VRML” converter— to acquirea real-
istic modelof a 3D scene,a usermustsimply video it. The
primaryapplicationis asa simple,automatic,accurate,and
quickmeansof modelacquisitionto populatevirtual worlds.
Figure1 showsaschematicoverview of thesystem.
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Figure1: Overview of thesystem.Four framesfrom the32-
frameinput video sequenceareshown at the top; views of
the automaticallyacquiredVRML modelareshown at the
bottom.
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Thekey advantageof theapproachweadoptis thatno in-
formationotherthantheimagesthemselvesis requireda pri-
ori: thecameraposeis computedautomaticallyfrom texture
in the viewed 3D scene,so that neithercalibrationpatterns
nor3D controlpointsarerequired.

1.1 Background

Although the generalframework for uncalibratedstructure
from motionhasbeenin placefor sometime[6, 14, 17] only
recentlyhave generalacquisitionsystemscomenearto be-
comingareality. Thisisbecauseacombinationof imagepro-
cessing,projectivegeometryfor multipleviews [13, 23, 25],
androbust statisticalestimation[28, 29] hasbeenrequired
in order to succeedat automatingstructureandmotion al-
gorithms[1, 16].

Tomasiand Kanade’s acquisitionsystem[26] hasmuch
in commonwith ours, taking uncalibratedviews and con-
verting them to 3D structure. However there are several
importantdifferences:first, a simplified projectionmodel
is used,in our casethe mostgeneralprojectionmodelap-
plies. Significantperspective effects in the Kanadesystem
(giving rise to vanishingpoints etc) will degradethe res-
ults. Second,their systemusesa simplepoint tracker to find
matchesanddoesnot employ robuststatisticsandrigid geo-
metryfor tracking—thisseverelylimits cameramotionsand
thetypeof acquisitionscenes.

1.2 The scope of the approach

Thelimitationsof theapproachof this papercanessentially
besummarizedbysayingthattheimagesmustbesufficiently
“interesting”—if the scenehasno significanttexture (to be
definedmorepreciselylater),thenthefeaturebasedmethods
we usewill have too few 2D measurementsto work with;
andsecond,that the cameramotion betweenimagesneeds
to berelatively small,in particularrotationabouttheoptical
axisshouldbelimited—otherwisethecross-correlationtech-
niquesusedto matchthe featuresbetweenimageswill fail.
Happily, this restrictedmotionis thetypicalmotionbetween
framesof avideosequence,andthesystemis tunedfor such
data. We also requirethat the 3D scenebe largely static,
althoughsmallerindependentlymoving objects—shadows,
highlights,passingcarsandthe like—aretoleratedbecause
of theuseof robuststatistics.

The advantageof a video sequence,wherethe distance
betweencameracentres(thebaseline)for successive frames
is small,is thatcorrespondencebetweensuccessiveimagesis
simplifiedbecausetheimagesaresimilar in appearance.The
disadvantageis thatthe3D structureis estimatedpoorlydue
to thesmallbaseline.However, thisdisadvantageis amelior-
atedby trackingovermany views in thesequencesothatthe
effective baselineis large. The accuratepositionof the 3D
point or line is thencomputedby a bundleadjustment[24]
overall views in which it appears.

2 THE CORE METHOD: CAMERAS FOR EACH
FRAME, AND 3D POINTS AND LINES

The coremethodis now described—theuncalibratedstruc-
ture andmotion algorithm. The coremethodis automatic,
requiring no manualinterventionat any stage. The house
sequenceof figure 1 will be usedto illustrate the method
throughoutthispaper.

The key ideasarethat the imagesof 3D entities(points,
lines) satisfy relationshipswhich are inducedby the geo-
metry of camerasviewing a rigid scene[7, 15]. Thesere-
lationshipsarerepresentedby tensors;in the two-view case
the tensoris the fundamentalmatrix. Thesetensorscanbe
computedfrom theimagecoordinatesof a sufficientnumber
of correspondingentitiesalone. The camerapositionsare
thendeterminedfrom thetensors,andgiventhecamerasand
correspondencesthe3D structurecanberecovered.

Sections3 to5 describethecoresystem:the2D featureex-
tractionprocess,thegeometryof multiple-view tensors,and
thestatisticalestimationof thetensorsfrom the2D features.

3 FEATURE EXTRACTION

In order to recover the 3D entities, their 2D imagesmust
be extractedfrom the input sequence. Two types of im-
ageprimitivesareused—interestpoints(“corners”)andline
segments—extractedindependentlyin eachframeof these-
quenceusing standardcomputervision algorithms. These
algorithmshave thedesirablepropertythatthefeaturesthey
producearegenerallythe imagesof real 3D point andline
featuresin thescene.

Cornersaredetectedto sub-pixel accuracy usingtheHar-
ris corner detector[12]. Line segmentsare detectedby:
Canny edgedetectionat sub-pixel accuracy[4]; edgelink-
ing; segmentationof thechainat high curvaturepoints;and
finally, straightline fitting to the resultingchainsegments.
The straightline fitting is by orthogonalregression,with a
tight toleranceto ensurethat only actualline segmentsare
extracted,i.e. thatcurvesarenot piecewiselinearapproxim-
ated. Furtherimplementationdetailsare given in [1], and
examplesareshown in figure2b.

4 THE GEOMETRY OF MULTIPLE VIEWS: RE-
VIEW

We work in projective 2- and 3- space,representinggeo-
metric objects in homogeneouscoordinates. In general
bold uppercaseis usedfor homogeneous4-vectors 	 
�
�����������������

and bold lowercasefor image3-vectors ��
������ !�#"����
. Note that equationsinvolving homogeneous

primitivesaredefinedonly up to scale.This review is based
on thefollowing papersandbooks[2, 6, 9, 13, 14, 15, 18].

Perspective Projection A cameramapsa point in 3D to
a 2D imageplane. The mappingis perspective (or central)
projection,andis representedby a �$�%� projectionmatrix,
P, whichprojectsa 3D point 	 to its 2D image� :

�&
 P 	 (1)
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Figure2: Image triplet processing: The workhorseof the
system,converting a passive, uncalibrated,camerainto a
sparserangesensor. (a)Thefirst threeimagesof a 32-image
sequencewherethecameracircumnavigatesa toy house.(b)
Point (white) andline (grey) featuresextractedfrom these-
quence.(c) featuresmatchedacrossthesethreeviews. (d)
Visualizationof therecovered3D structureandcameras.

The �)�*� projection matrix has 12 elementsbut is only
definedup to an overall scale(becauseit appearsin homo-
geneousequations),andsohasonly 11 degreesof freedom.
It may be computedfrom the correspondenceof 6 or more
3D pointsandtheir images.Thenull-spaceof P, i.e. + such
thatP +,
.- , is thecentreof projectionof thecamera.

Multiple-View Geometry Supposethereare/ views,with
thecamerasrepresentedby projectionmatrices0 P 1325417698 . A
3D point 	 will projectto a (different)2D point � 1 
 P 1 	
in eachview. These2D pointsarecorrespondingfeatures—
they are imagesof the same3D feature. It is assumedal-
waysthatthesceneis rigid, thatis theworld doesnotdeform
betweenviews. Thenthemotionof thecamerainducesmul-
tiple view relationswhicharesatisfiedby any corresponding
imagepoints.Correspondinglinesaredefinedin ananalog-
ousmanner, againwith rigidity inducingmultipleview rela-
tionsfor lines.Themultipleview relationsfor two andthree
viewsaredescribedin thefollowing subsections.

4.1 Two-View Geometry: The Fundamental Matrix
Triangulation Supposethe projectionmatrices,P andP :
say, areknown for two views, thenthe 3D point 	 canbe
computedfrom its images� and � : . Eachimagepointplaces
two constraintson 	 as

�&
 P 	 � : 
 P : 	

Reconstructed 3D point

Know these rays in 3D

Figure 3: The principle of triangulation. The known pro-
jection matricesP andP : backproject imagepoints to 3D
rayson which the 3D point lies. The 3D point position is
recoveredby intersectingtherays.

1. See this
point

2. Know it must
be on this ray

be on this line
3. So it must

Figure4: The epipolarline of a point (in the first view) is
theimage(in thesecondview) of theraypassingthroughthe
pointin thefirst. Thetwo imagesfrom theexamplesequence
show a point � selectedin thefirst generatingtheline F � in
thesecond.Theepipolarline of the2D point in thefirst view
passesthroughtheimageof the3D point in thesecondview.
TheF matrix for thesetwo views wascomputedautomatic-
ally by thealgorithmdescribedin section5.1.

andthesefour constraints(over-) determine	 . This is trian-
gulation, andis illustratedin Figure3. It is thebasisfor all
algorithmswhichrecover3D structurefrom 2D images.

Epipolar Geometry and the Fundamental Matrix The
imagesof a 3D point in two viewsobey a simplelinearrela-
tionship.As shown in figure4, correspondingpointsmustlie
oneachother’sepipolarlines. Thisconstraintis represented
in homogeneouscoordinatesusingthe fundamentalmatrix:

� : � F �&
<; (2)

whereF is a �=�>� matrixof ranktwo. This is thebilinearre-
lation in thehomogeneouscoordinatesof thecorresponding
pointsin two images.Theprojectivegeometryof this2-view
relationis shown in figure4.

Thefundamentalmatrix is independentof thescenestruc-
ture 	 , dependingonly on the cameramotion andinternal
parameters.Moreover, becausethe fundamentalmatrix dir-
ectly relatesimagepoints, it canbe computedfrom image
correspondencesalone: 7 point correspondencesdetermine
F (thereareoneor threesolutions).In turn, from F, thepro-
jectionmatricesmaybedeterminedsubjectto thechoiceof
anarbitrarybasisfor projective3-space.

4.2 Three-view Geometry: The Trifocal Tensor
For a triplet of images,let theimageof a 3D point 	 be � 8 ,�@? and �@A in thefirst, secondandthird imagesrespectively,
andsimilarly theimagesof a line are B 8 , B ? and B A .

Correspondingpointsin threeimages,andcorresponding
linesin threeimages,satisfytrilinear relationswhichareen-
capsulatedin thetrifocal tensorC , a �D�E�D�E� homogeneous
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Figure5: Trifocal geometry. Raysbackprojectedfrom cor-
respondingimagepoints in the first andsecondview inter-
sect,andthusdetermine,the 3D point. Thepositionof the
correspondingpoint in the third view is computedby pro-
jecting this 3D point onto the image. Similarly lines back-
projectedfrom thefirst andsecondimageintersectin the3D
line, theprojectionof this line in 3-spaceto the third image
determinesits imageposition.

Figure6: Trifocal line transfer. Correspondinglinesin the
first two images(theroof edgemarkedin black)predictthe
infinite line in thethird.

tensor. Usingthetensora point canbetransferredto a third
imagefrom correspondencesin thefirst andsecond:

� AF 
 � ?1
G 6 AH
G 698

� 8 G C G�IJFLK � ?I
G 6 AH
G 698

� 8 G C G 1 F �

for all M �ON 
 "QPRP#P � . Similarly, a line canbetransferredas

S 81 

I 6 AH
I 698

G 6 AH
G 698

S ?I S AG C 1 ITG
i.e. the sametensorcanbe usedto transferboth pointsand
lines. The geometryof these3-view relationsis shown in
figures5 and6.

The trifocal tensorcanbe computedfrom 6 correspond-
ing imagepointsover 3 views (thereareoneor threesolu-
tions). Given the imagerelation C , the projectionmatrices
P 8 � P ? � P A for thethreeviewscanbeextracted,againsubject
to thechoiceof basisin projective3-space.

4.3 Recovering the 3D structure and cameras
Givena setof imagecorrespondences0��@132�UV0R� :1 2 , suffi-
cientto determinethefundamentalmatrix,thecorresponding
objectspacecoordinates05	W1J2 maybecomputedup to a ho-
mographyof 3-space.

In moredetail supposethe Euclideancoordinatesof the
actual(i.e. true) setof pointsare 	$X1 , thenfrom the image
correspondencesbetweentwo views alone,a projective re-
construction	 1 canbeobtainedwhich is relatedto 	 X 1 as

	W19
ZY�	 X1
whereY is a �[�\� homographymatrixwhichis unknownbut
the samefor all points. The cameramatricesof the recon-
structionarealsodeterminedup to thesameambiguity:] 
 ] X Y_^ 8 ] : 
 ] : X Y_^ 8
wherethecamerasaredefinedby ��1�
 ] X 	 X 1 � � :1 
 ] : X 	 X 1
for the Euclideancoordinates,and �@1`
 ] 	$1 � � :1 
 ] : 	$1
for theprojective reconstruction.To remove this ambiguity,
autocalibrationtechniques[8, 19] areused.

5 CORRESPONDENCE AND ESTIMATION: RE-
VIEW

In the following subsectionswe describetwo robustmatch-
ing schemesapplicableto a cameramoving througha scene
that is largely static. In thetwo view casetheobjective is to
simultaneouslyestimatethe fundamentalmatrix anda con-
sistentsetof point correspondences;in the threeview case
theobjectiveis to simultaneouslyestimatethetrifocal tensor
anda consistentsetof point correspondencesover the three
views. No a priori information on camerainternal para-
metersor motion is assumedother thana thresholdon the
maximumdisparitybetweenimages.The methodologyfor
matchingis essentiallythesamein bothcases.

5.1 Matching corners between image pairs
The two-view matchingproblemis representative of all the
simultaneousmatchingandgeometryestimationproblems.
In the two view case,the pertinentgeometricrelation that
wewish to estimateis the7 degree-of-freedomFundamental
Matrix, and the primitivesmatchedare2D cornerscorres-
pondingto 3D point features.Thealgorithmis summarized
asfollows:

- Extract seedcorrespondencesby simple image-based
matching.

- Use robust estimationto computethe F that has the
greatestnumberof consistentcorrespondences.

- Generatemorecorrespondencesbyguidedmatchingus-
ing thethenewly computedF.

- And repeatsteps2 and3 until the numberof matches
stabilizes.

- ComputetheMaximumLikelihoodEstimateof a .
The following paragraphsdescribein greaterdetail the im-
plementationof eachof thesesteps.
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Seed correspondences by unguided matching Given a
cornerat position

�
���� b�
in the first image,the searchfor a

matchconsidersall cornerswithin a regioncentredon
���9�J c�

in the secondimagewith a thresholdon maximumdispar-
ity. Thestrengthof candidatematchesis measuredby cross-
correlationon corner neighbourhoods.The thresholdfor
matchacceptanceis deliberatelyconservative at this stage
to minimizeincorrectmatches.

Robust computation of the epipolar geometry The aim
then is to obtaina setof “inliers” consistentwith the geo-
metricconstraintusinga robust technique— RANSAC has
provedthemostsuccessful[10, 27, 28, 29]: A putative fun-
damentalmatrix (up to threesolutions)is computedfrom a
randomsetof seven cornercorrespondences(the minimum
numberrequiredtocomputeafundamentalmatrix).Thesup-
portfor thisfundamentalmatrixis determinedby thenumber
of correspondencesin theseedsetwithin athresholddistance
of theirepipolarlines.Thisis repeatedfor many randomsets,
andthefundamentalmatrixwith thelargestsupportis accep-
ted. The outcomeis a set of cornercorrespondencescon-
sistentwith thefundamentalmatrix,andasetof mismatches
(outliers).Thefundamentalmatrix is thenreestimatedusing
all of its associatedinliers to improveits accuracy.

Guided matching The aim here is to obtain additional
matchesconsistentwith thegeometricconstraint.Thecon-
straintprovidesa far morerestrictivesearchregion thanthat
usedfor unguidedmatching. Consequently, a lesssevere
thresholdcan be usedon the matchingattributes. In this
case,matchesare soughtfor unmatchedcornerssearching
only epipolarlines. This generatesa largersetof consistent
matches.

Maximum Likelihood Estimation Given a statistical
modelfor themeasurementerror, that theobservedfeatures
have beenperturbedby a Gaussiannoiseprocess,Maximum
LikelihoodEstimation(MLE) canbedevelopedfor boththe
fundamentalmatrixandthecorrespondences.

Suppose0��@1dU � :1 2 are the measuredpoints, then the
MLE involvesobtaininga fundamentalmatrix ea andcorrec-
tedcorrespondences0 e�@1fU e� :1 2 thatminimize

g 
 H
1<h

� e��1 � �@1 � ?�i h
� e� :1 � � :1 � ?

subjectto e� :1 � ea e�@1�
j; , wherethe notation h
� � �Jkl� is the

Euclideanimagedistancebetween� and
k

. Minimizationofg
requiresa consistentparametrizationof a , i.e. onewhere

theconstraintson thematrixelementsareimposed— in this
casethat mbnpoqar
�; . The minimizationis carriedout using
theLevenberg-Marquardt algorithm[20].

Typical results Typically thenumberof cornersusedin as�tvu �&w sxt imageof an indoorsceneis about500,thenum-
ber of seedmatchesis about200, and the final numberof

matchesis about250. Usingcornerscomputedto sub-pixel
accuracy, the averagedistanceof a point from its epipolar
line is y 0.2-0.4pixels.

5.2 Matching points between image triplets
The samebasicstepsareusedover imagetriplets,with the
geometricconstraintprovidedby thetrifocal tensor. Briefly,
putative point matches(Harris corners)are first obtained
for the consecutive imagepairs,one/two andtwo/three,by
simultaneouslycomputingepipolargeometryand matches
consistentwith this estimatedgeometryasdescribedabove.
Fromtheseseedmatchesthetrifocal tensoris robustlyfitted.
Thenumberof pointcorrespondencesin eachrandomsample
is now reducedto six, assix point tripletsareenoughto de-
terminethe trifocal tensor. New matchesarefound(guided
matching) whichareconsistentwith thefitted C . Fitting and
guidedmatchingarerepeateduntil the numberof matched
pointsstabilises.Theimprovementsover [1] include:

1. Parametrizingthe trifocal tensorsuchthat it obeys all
theconstraintsbetweenthetensorelements[28].

2. Maximum-Likelihood Estimation (MLE) of C via
bundleadjustment.

Typical results Typically thenumberof seedmatchesover
a triplet is about100corners.Thefinal numberof matches
is about180.Usingcornerscomputedto sub-pixel accuracy,
the typical distanceof a cornerfrom its transferredposition
is y 1 pixel.

5.3 Matching lines between image triplets
Line matchingis notoriouslydifficult over imagepairs as
there is no geometricconstraintequivalent to the funda-
mental matrix for point correspondences.The following
schemematcheslinesover tripletsusingthegeometriccon-
straint provided by the trifocal tensorcomputedas above
from point correspondences,and also a photometriccon-
straint basedon intensity cross-correlationfor neighbour-
hoodslong thelines.

In detail there are two stagesof verification for line
matchesover an imagetriplet. First, a geometricverifica-
tion. Given the trifocal tensorandputatively corresponding
lines in two images,the correspondingline in the third im-
ageis determined.A line segmentshouldbedetectedat the
predictedpositionin thethird image.Second,a photometric
verification.Thebasicideais to treateachline segmentasa
list of pointsto which neighbourhoodcorrelationis applied
asa measureof similarity. Only the point to point corres-
pondenceis required,andthis is providedby epipolargeo-
metry. Detailsaregivenin [21].

Typical results Typically thereare200linesin eachimage
anda third of thesearematchedover the triplet. The line
transfererror is generallylessthana pixel. In practicethe
two stagesof verificationeliminateall but a coupleof mis-
matches.
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Figure7: Registered triplets. Registeredcamerasandstruc-
turefor 7 frames(five triplets)of theexamplesequence.

Figure8: Example sequences: Model house(32 frames);
Dinosauronturntable(36 frames);Castle,hand-heldcamera
(25 frames);Basement,cameraonavehicle(12 frames).

5.4 From triplets to sequences

The computationof the trifocal tensorandthe concomitant
point and line correspondencesprovidesaccurateand reli-
able3D structureandcamerapositionsfrom eachsuccessive
triplet of views in thesequence.

Theseimagetriplets are thenmerged in order to extract
structureandcameramotion for the entiresequence.This
problemis similar to thatof registeringrangeimagesinto a
consistentframeand the approachtaken is broadly related
to the iteratedclosestpoint (ICP) algorithm[3]. The prob-
lem herediffers from ICP in two ways. First, ratherthan
solvingfor a scaledEuclideantransformation,asin thecal-
ibrated(e.g. rangeimage)case,a projective transformation
of 3-space,representedasa ���d� homogeneoustransform-
ation matrix, mustbe determined.Second,the correspond-
enceproblemis renderedtrivial in thiscaseby theexistence
of the imagefeaturecorrespondences.Furtherdetailsare
suppliedin [11]. An exampleof the registeredviews and
structureis shown in figure7.

6 EXAMPLES

Severalexamplesequencesareshown in figure 8. The fol-
lowing descriptionsillustrateseveralapplicationsof thecore
structureandmotion recovery system. First the sequences
arediscussed,with the pointsof notebeingidentified,and
thensomeapplicationsof thesystemarepresented,with ref-
erenceto theexamplesequences.

Figure 9: Model house: 3D point and line structureplus
camerasrepresentedby their (numbered)imageplanes.

Figure10: Dinosaur: 3D point structurefor the Dinosaur
sequence.

6.1 Model house sequence
This is a 32 frame sequenceobtainedfrom a low resolu-
tion monochromePulnix camera.Themodelis rotatedon a
turntableso that effectively thecameracircumnavigatesthe
object.No informationconcerningthecameramotionis used
atany stage.In particulartheangularrotationbetweenviews
is irregular. The fact that the sequenceis closedis usedto
refinethe recoveredstructure. The automaticallyextracted
point and line structureis shown in figure 9. Becausethe
modelis known to be rotatingon a turntable,thequality of
therecoveredstructurecanbeassessedby observingthepo-
sitionsof therecoveredcameras,whichshouldlie in acircle.
Of coursethemodelcouldbeimprovedby imposingthecon-
straintthat thecameraslie in a circle, andthis is plannedin
thenearfuture.

6.2 Dinosaur sequence
This sequenceis againa closedturntablesequence,but of
a non-polyhedralobject. Featureextractionis performedon
the luminancecomponentof the colour signal. No reliable
lines are extractedon this object so only points are used.
Again note (Fig. 10) the circularity of the recoveredcam-
eras.Again,no knowledgeof thecircularmotionwasused,
in orderto morethoroughlyexercisethesystem.

6.3 Castle sequence
This sequenceis taken with a standardSLR camera,by
a cameramanwalking around the groundsof a Belgian
castle. The imageshave beendigitized to PAL resolution
and presentedto the system. There is significant lighting
variation betweenthe first and final frames, and the se-
quencecontainsnon-rigid components(passingpedestrians
andmoving trees). Figure11 shows that structureandmo-
tion aresuccessfullyrecovereddespitetheseimpediments.

6.4 Basement sequence
A camerawasmountedon a mobilerobotfor this sequence.
Therobotmovesalongthefloor turningto theleft. Thefor-
ward translationin this sequencemakesstructurerecovery
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Figure11: Castle: Computedcamerasand3D point struc-
ture. Theplan view shows the accuracy of the self calibra-
tion.

Figure 12: Basement: Computedcamerasand 3D struc-
ture.Digital cameramountedonautonomousguidedvehicle
(AGV). Forward motion is a difficult casedueto the small
interocularbaseline.In this casethecombiningof all views
givesgreatlyimprovedstructureover thesequentialsystem.

difficult, dueto the small baselinefor triangulation. In this
situation,the benefitof usingall framesin the sequenceis
significant.Figure12showstherecoveredstructure.

7 VRML MODEL CONSTRUCTION

Having the completepoint and line structure,we now de-
scribehow to convertthesparse3D featuresinto aform suit-
ablefor graphicalrendering.

To producetriangulatedstructurefor the polyhedralex-
amplesin thispaper, planesareautomaticallyextractedfrom
the3D datausingtheRANSAC technique:random3-point
subsetsof the data are selectedto define planes,and the
numberof 3D points which are less than a user-specified
distancefrom eachplanearecounted. The planewith the
greatestnumberof consistentpointsis stored,andthe data
pointswhichwereconsistentwith it removedfrom thestruc-
ture. Repeatingthis processextractsthe largestplanesfrom
thedataset,andtheprocessis terminatedwhentherequired
numberof planeshavebeenfound.

TheRANSAC procedure,by its nature,will ignoresmall-

Figure13: Final model. Two views of the VRML model
obtainedafterplanefitting andphotogrammetricmodelling.

Figure14: Basement: Texture mappedplanarmodelbuilt
from 11 views of the basementsequence. Left: VRML
modelof thescenewith thecamerasrepresentedby their im-
ageplanes(texture mappedwith the original imagesfrom
thesequence).Right: a renderingof thescenefrom a novel
viewpointdifferentfrom any in thesequence.

scalestructurein the data,but is an ideal startingpoint for
photogrammetrictechniquessuchasthe Debevec et al. ar-
chitecturalsystem[5]. A simplifiedversionof theirapproach
is usedhereto add the chimneys and porch back into the
model.

The planesare textured by selecting(automatically)the
imagefromthesequencewhichis mostfronto-parallelto that
plane,andthentexturemappingfrom the appropriatepoly-
gonalimageregion. As thetexturemappingfrom theimage
to the planeis via an affine transformation,it is necessary
to first warp the imageto remove any projective distortion.
Again thiscorrectionis automatic.Figure13showsthefinal
texture-mappedmodel. Figure14 shows the resultsof the
sameprocessappliedto thepoint andline dataof thebase-
mentsequence.

Non-polyhedral objects For the non-polyhedralobjects,
thesurfaceextractionproblemis moredifficult, mainly due
to thesparsityof thedata.However, thedinosaursequenceis
easilyapproachedby segmentingthe(blue)backgroundand
intersectingtheconesformedby theoccludingcontours,and
resultsareshown in figure15.

8 FUTURE DEVELOPMENTS

We have presenteda systemthatwill take sequencesof im-
agesfrom anuncalibratedcameraor cameras,andwill auto-
matically recover camerapositionsand 3D point and line
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Figure15: Dinosaur: Reconstructionfrom occludingcon-
tours.

structurefrom thesesequences.We arecurrentlyextending
thecoresystemto includespacecurves[22].

The systemcanbe usedasa pre-processto a numberof
computergraphicsalgorithms. For examplebuilding a lu-
migraphor for light field rendering.Sincethedepthis known
for eachimagethereis alsotheopportunityin film andvideo
post-productionfor techniquesto employ this. Examplesare
“blue-screening”basedondepth(Z-keying);depthbasedop-
tical blurring to simulatedepthof field effects;changingthe
lighting of avideoedscene;and,augmentingthevideo(AR).
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