
Decision-Theoretic TroubleshootingDavid Heckerman John S. Breese Koos RommelseIntroductionYou have just �nished typing that big report into your word processor. It is formatted correctlyand looks beautiful on the screen. You hit print, go to the printer, and nothing is there. You tryagain, still nothing. The report needs to go out today. What do you do?Increasingly, computer users in this situation are calling customer support. Helpdesk servicescost corporations hundreds of millions of dollars per year, and productivity losses due to usersdebugging software and hardware con�guration problems probably are of a similar magnitude. Assoftware becomes more complex and interoperable, the di�culty of diagnosis and repair grows.Other industries are experiencing similar increases in support and service costs for complex devicessuch as aircraft, trains, automobiles, and photocopiers.Whereas the helpdesk may be able to solve your printing problem, you have had to wait for aresponse, communicate the problem to the technician, and ultimately track down the problem over aperiod of hours or sometimes days. Wouldn't it be better to have an automated local expert at yourbeck and call? This vision has been at the core of substantial research and development in the �eldsof arti�cial intelligence and expert systems. Since the early 1980s, diagnosis and treatment havebeen central problems in theoretical and applied AI [2]. Given that a device is not working properlyor a patient has some complaint, the automated-diagnostic system is charged with determining theset of faults or diseases that explain the symptoms [3, 4, 6, 1]. The diagnostician is able to askquestions about the behavior of the device, or test individual components in order to determine ifthey are working properly. As new information is gained, the procedure updates its current viewof the world. Inference focuses on identifying the set of faults consistent with the observations andordering them in terms of likelihood. Information gathering proceeds until a single cause has beenidenti�ed or the current diagnosis is su�ciently certain to support action.Typically, however, our primary objective is to repair the device or cure the patient, not justdetermine what is wrong. At any stage of the process, there are many possible observations, tests,or repairs that can be applied. In addition, we may have the option of calling service: promoting theproblem to a higher level of expertise that is guaranteed to be able to repair the device. Becausethese operations are expensive in terms of time and/or money, we wish to generate a sequenceof actions that minimizes costs and results in a functioning device (or healthy patient). In this1

paper, we develop a diagnostic procedure that not only seeks to identify the most likely causes ofa malfunction, but also generates a plan of action for repair. This plan consists of repairing orreplacing individual components of a composite device or system, as well as making observationsor tests. We and others call this process troubleshooting [3].Optimal Troubleshooting and Decision TreesAn optimal troubleshooting plan is a sequence of observations and repairs that minimizes expectedcosts. The classic way to compute the expected cost of a plan is to use a decision tree.1 In thissection, we show how this computation is done. In the remainder of the paper, we introduce a morepractical approach using Bayesian networks.A decision tree represents the possible unfolding of events in temporal order. The representationcontains two types of nodes: decision nodes and chance nodes. A decision node (drawn as a squarenode) represents a decision: an irrevocable allocation of resource. Branches of a decision nodecorrespond to the mutually exclusive and collectively exhaustive set of alternatives available to thedecision maker. A chance node (drawn as a circle) represents an uncertain variable. Branches ofa chance node correspond to the mutually exclusive and collectively exhaustive possible states ofthe variable. Associated with each chance-node branch is the decision maker's probability thatthe variable will be in the corresponding state. Each path through the tree reects a possibleoutcome for the decision maker. Associated with each path is the decision maker's preference forthat outcome.A decision tree for troubleshooting a simple two-component device is shown in Figure 1. Theleft-most square node represents the decision of whether or not to observe the variable o. The left-most circular node o represents an observation that provides some evidence about the status of thecomponents. The number to the immediate left of a chance-node branch is the probability of thatbranch. The values at the end of the tree are the cumulative costs of observation and repair alongthe path from the root. For example, the second sum from the top of the �gure (5+10+20) is thecost of the path where �rst o is observed (cost = 5), then c1 is repaired without �xing the device(cost = 10), and then c2 is repaired (cost = 20). In constructing this model, we have assumed thatthe device is faulty initially, the device will be �xed if one repairs both components, and we canobserve only o and whether or not the device is functioning. In addition, we have assumed that thecost of observing whether or not the device is functioning is zero, and all repair and observationcosts are independent of the order in which actions are taken.We compute the expected cost of a troubleshooting plan by rolling back a decision tree fromright to left|a particular form of dynamic programming. At each step in the rollback procedure,we �nd a rightmost node, and compute the expected cost of the plan that would end at that node.1By decision tree, we mean the representation described by Rai�a [9] for use in decision analysis.2

Repair c1

Observe o

.2

.8

o = true

o = false

Repair c2

Repair c1

Repair c2

Repair c1

Repair c2

5 + 10 + 20

5 + 10 + 20

5+ 10

5 + 20

.9

.5

.1

.01

.99

.25

.75

.7

.3

.5

.05

.95

5 + 10 + 20

5 + 10 + 20

5 + 10

5 + 20

10 + 20

 10 + 20

10

20

30

17

34.9

28

17

28

29.5

20

19.2

Figure 1: A decision tree showing all possible troubleshooting plans of a two-component device.The left-most square node represents the decision of whether to observe the variable o. The left-most circular node represents the variable o; and its branches represent the possible outcomes of thevariables. As this is a chance node, we do not know which branch will be taken. The number to theimmediate left of each of o's branches is the probability that the branch will occur. The rightmostcolumn of chance nodes represent the observation of whether or not the device is functioning. Thevalues at the end of the tree are the cumulative costs of observation and repair along the path fromthe root. For example, the second sum from the top of the �gure (5 + 10 + 20) is the cost of thepath where �rst o is observed, then c1 is repaired (not �xing the device), and then c2 is repaired.To identify the plan with the lowest expected cost, we roll back the decision tree from left to right.At each step in the rollback procedure, we �nd a rightmost node, and compute the expected cost ofthe plan that would end at that node. The expected cost of each node is shown under the branchleading to the node. 3

When we encounter a rightmost chance node, we simply compute the expected cost of its branches.We do so by multiplying the number on each branch by its corresponding probability, and thensumming the results for all branches. When we encounter a rightmost decision node, we �nd thebranch of that node with the lowest expected cost, and set the expected value of the decision nodeto this cost. In addition, we record the action corresponding to the lowest-cost branch. The rollbackprocedure is illustrated in Figure 1. Under each branch is its expected cost as determined by theprocedure. For example, the expected cost of the top branch labeled \Repair c1" is0:9(15)+ 0:1(35) = 17The expected cost of the branch labeled \o = true" ismin(17; 34:9) = 17and the best action is \Repair c1," indicated by the arrow. The optimal plan determined from acomplete rollback says that we should �rst observe o; if o = true, then we should repair c1 �rst;and if o = false, then we should repair c2 �rst. This plan has an expected cost of repair of 19.2.Development of an optimal solution to the general troubleshooting problem requires an analysisof all possible mixed observation{repair sequences using dynamic programming as shown above.As we increase the number of repairable components and possible observations, the decision treegrows exponentially. For example, a troubleshooting problem of this form with 5 components and3 observations would generate a decision tree with nearly 340,000 endpoints. In this paper, wegenerate a series of approximations that more e�ciently selects either an observation or repairaction at each stage of the troubleshooting process.Computing Probabilities of Faulty ComponentsWhen troubleshooting under uncertainty, we need to compute the probabilities that componentshave failed. In our example in the previous section, these probabilities are the numbers just tothe right of the rightmost chance nodes. In our approach, we compute these probabilities using aBayesian network (see introductory article). Figure 2 shows an example Bayesian network for aproblem that, unfortunately, almost all of us have experienced: a car that won't start. As mentionedin the introductory article, most Bayesian networks are constructed by drawing arcs from cause toe�ect. This network is no exception. For example, \Battery Age" a�ects \Battery Quality," whicha�ects \Battery Power," which a�ects \Engine Turn Over," which a�ects \Engine Starts."Given observations of some nodes (e.g., \Engine Starts" is false and \Lights" are on), we canuse a Bayesian-network inference algorithm to compute the probability that any or all of the systemcomponents are faulty. The conditional independencies represented by the Bayesian network makethis computation practical in this case, and for most real-world problems as well.4

Battery Age Fan BeltAlternator

Charge Delivered

Battery Power

Engine Turn Over Engine Start

Gas Gauge

Gas

Fuel Pump Fuel Line

Distributor

Spark Plugs

Battery Quality

Starter

Radio LightsFigure 2: A Bayesian network for \my car won't start." Arcs are drawn from cause to e�ect.If we repair a component and possibly make additional observations, we can still use thisBayesian network to compute the probabilities of component faults, but we must account for thechange in the underlying state of the device and the fact that previous observations may have beeninvalidated. An e�cient method for doing so is described by Heckerman et al. [5].A Simple Special CaseIn this section, we describe a set of assumptions under which it is possible to identify an optimalsequence of observations and repair actions in time proportional to the number of components inthe device,2 without explicitly constructing and rolling back a decision tree. We relax several ofthese assumptions in the following section.The approach that we take is an extension of the troubleshooting approaches described inKadane and Simon [7] and Kalagnanam and Henrion [8]. Let us suppose that our device has ncomponents represented by uncertain variables c1; : : : ; cn, and that each component is in exactlyone of a �nite set of states.3 In our automobile example, the components are \Battery Quality,"\Alternator," \Fan Belt," \Starter," \Gas," \Fuel Pump," \Fuel Line," \Distributor," and \SparkPlugs." Our assumptions are as follows:1. There is only one problem-de�ning node in the Bayesian network for the device. This noderepresents the functional status of the device. One of the states of this node must correspondto normal operation. In Figure 2, the node labeled \Engine Starts" is the problem-de�ningnode.2This time complexity assumes that Bayesian-network inference requires constant time. In practice, this assump-tion is often reasonable even though inference in an arbitrary Bayesian network is NP-hard (see sidebar).3Our approach can be generalized to continuous variables, but we do not do so here.5

2. At the onset of troubleshooting, the device is faulty. That is, the problem de�ning node isobserved to be in a state other than \normal."3. Single fault: Exactly one component is abnormal and is responsible for the failure of thedevice. We use pi to denote the probability that component ci is abnormal given our currentstate of information. These probabilities are computed using a Bayesian network, as describedin the previous section. Under the single-fault assumption, we have Pni=1 pi = 1.4. Immediately following any component repair, the problem-de�ning node is observed with costCp.5. Each component is observable or unobservable. An observable component can be unambigu-ously tested or inspected to determine whether or not it is functioning properly. Furthermore,an observable component that is observed to be abnormal must be repaired immediately. Anunobservable component can never be directly observed, but can be repaired or replaced. Inour automobile example, the observable components are \Alternator," \Fan Belt," \Distrib-utor," and \Spark Plugs." All other components are unobservable. For convenience, we usethe phrase observation{repair action to refer both to the observation and possible repair ofan observable component and to the repair of an unobservable component.6. The costs of observation and repair of any component do not depend on previous repair orobservation actions.7. Limited observations: No other observations are available. In our automobile example, wedo not permit the observation of \Battery Age," \Radio," \Lights," \Engine Turn Over," or\Gas Gauge."For the moment, let us consider only observable components. Let Coi and Cri denote the cost ofobservation and repair of component ci, respectively. If we observe and possibly repair componentsin the order c1; : : : ; cn, then for the expected cost of repair, denoted ECR(c1; : : : ; cn), we haveECR(c1; : : : ; cn) = (Co1 + p1(Cr1 + Cp)) + (1� p1)(Co2 + p21� p1 (Cr2 + Cp)) +(1� p1 � p2)(Co3 + p31� p1 � p2 (Cr3 + Cp)) + � � �= nXi=1 240@1� i�1Xj=1 pj1ACoi + pi(Cri + Cp)35That is, we �rst observe component c1 incurring cost Co1 . With probability p1, we �nd that thecomponent is faulty and repair it (and the device) incurring cost Cr1 +Cp. With probability 1� p1,we �nd that the component is functioning properly, and observe component c2. With probabilityp2=(1� p1), we �nd that c2 is faulty and repair it; and so on.6

Now consider a troubleshooting sequence where we reverse the observation and possible repairof components ck and ck+1. All terms in the expected cost of repair of this sequence will be thesame as those for the original sequence, except terms i = k and i = k + 1. Therefore, we obtainECR(c1; : : : ; cn)� ECR(c1; : : : ; ck�1; ck+1; ck; : : : ; cn) = pk+1Cok � pkCok+1Consequently, the sequence c1; : : : ; cn has a lower (preferred) ECR than that with ck and ck+1reversed if and only if pk=Cok > pk+1=Cok+1. It follows that the optimal observation{repair sequenceis given by the following plan:1. Compute the probabilities of component faults given that the device is not functioning.2. Observe the (as yet unobserved) component with the highest ratio pi=Coi . Ties may be brokenarbitrarily.3. If the component is faulty, then replace it.4. If a component was replaced, then terminate. Otherwise, go to step 2.In this plan, if a component is found to be faulty and repaired, we know that the device must berepaired by Assumption 3. Consequently, we can terminate the troubleshooting process as speci�edin step 4. Also, note that fault probabilities need be computed only once.Including unobservable components in our approach is straightforward. Recall that an unob-servable component ci is simply repaired with some cost Ri. Therefore, an unobservable componentacts just like an observable component that is observed with cost Ri and always found to be faultyand repaired with cost zero. Consequently, we can include unobservable components in our proce-dure, provided we set Coi to Ri, and set Cri to zero.Let us now examine some of our assumptions. Assumption 1 if often reasonable. Whenthere is more than one \problem," we often can decompose our troubleshooting problems into twoindependent troubleshooting problems. For example, if our car does not start and our car sidedoor is broken, then (for most cars) we can troubleshoot the problems independently. If there areinteractions between faults, then the information that a second problem exists can be used in theprobability calculations for troubleshooting the primary problem.Assumption 2 usually is appropriate for troubleshooting, as there is no reason to use a trou-bleshooting system unless there is a problem with a device. In contrast, Assumption 2 may oftenbe unreasonable in the context of automated systems for preventative maintenance.Assumption 4 is often reasonable, except in those situations where the cost of testing a deviceis expensive. For example, when repairing a jet engine, it is often best to repair many componentsbefore retesting the engine.Assumption 5 is almost always appropriate. Dividing components into those that are and arenot practical to observe before repair comes with no loss of generalization. Furthermore, in the7

single-fault case, it is optimal to replace any component immediately after it has been observed tobe faulty. In the multiple-fault case, this policy is not necessarily optimal, although it typicallymakes sense to repair a component immediately.The validity of Assumption 6 depends on the problem domain. When trying to troubleshoot aprinting problem, the costs of checking the driver software, network cable, power connection, and soon are reasonably independent of previous actions. When repairing an automobile engine, however,many components can be replaced with low cost once the engine header has been removed. We donot address methods for relaxing this assumption in this paper.Approximations for More General TroubleshootingIn this section, we relax the single-fault assumption, and allow for more general observations inthe troubleshooting plan. In addition, we consider the service-call action. To our knowledge,the generation of optimal troubleshooting plans allowing these extensions can not be done in timepolynomial in the number of components. To handle these extensions, we introduce approximationsbased on our procedure described in the previous section. In Section , we describe experimentswith real-world troubleshooting systems demonstrating that these approximations can lead to high-quality troubleshooting plans.Service CallLet us assume that, at any time in the troubleshooting process, we may call service. This actionwill have �xed cost Cs, and will lead to a functioning device with certainty. For example, a servicecall may be simply a replacement of the entire device. The assumption that the service cost is �xedis often reasonable in practice, although attempted repairs may decrease or increase service costssomewhat. Let us also assume that all components have repair costs less than the service cost. Ifthis assumption is not true for a given component, then we simply replace a recommendation torepair the component with a recommendation to call service.We can include the service-call action in our approach as follows. Because a service call isguaranteed to repair the device, it will always be the last action in a repair sequence. Furthermore,regardless of where in the sequence a service call occurs, the optimal observation{repair order for theremaining components is still determined by nonascending probability{to-cost ratios, as describedin the previous section. Let us label the components so that the optimal sequence without a servicecall is c1; : : : ; cn. If we introduce a service call after the observation{repair of component k, weobtain ECR(c1; : : : ; ck) = kXi=1 240@1� i�1Xj=1 pj1ACoi + pi(Cri + Cp)35+ 0@ nXj=k+1 pj1ACs (1)8

To identify the position of the service call in the optimal sequence, we evaluate Equation 1 for eachvalue of k, �nding the value of k = 0; : : : ; n for which the expected cost of repair is a minimum:ns = mink [ECR(c1; : : : ; ck)] (2)where a service call is omitted from the plan if ns = n. We can compute ns in time linear in thenumber of components n.We emphasize that plans generated by this approach are not necessarily optimal. In particular,we may be able to exchange the observation/repair of one or more components in fc1; : : : ; cnsg withthat of components in fcns+1; : : : ; cng and obtain a plan with lower expected cost of repair.Multiple FaultsThe single-fault assumption is often a good approximation, because it is unlikely that two compo-nents will fail at roughly the same time. We see this behavior in our automobile example. Althoughthe model permits multiple faults, when we observe that the car won't start, the failure of one com-ponent tends to explain away the failure of others. That is, the components are almost mutuallyexclusive when the device is faulty.Nonetheless, there will be times when multiple components in a device have failed. In thesecases, we can use the optimal single-fault plan with the following minor modi�cation:1. Compute the probabilities of component fault given the current state of information.2. Observe the (as yet unobserved) component with the highest ratio pi=Coi .3. If the component is faulty, then replace it.4. If a component was replaced, terminate if the device is working. Otherwise, go to step 1.The only di�erences with the single-fault case are in steps 1 and 4. In step 4, we do not automaticallyterminate if a component was replaced. Rather, because there may be multiple faults, we terminateonly if we observe that the device is working properly. Also, whether we observe the componentto be working or repair the component without repairing the device, we go back to step 1 (ratherthan step 2), where we recompute the fault probabilities under our new state of information.This plan is not necessarily optimal, because we incorrectly assume that there is only one faultin step 2, when we identify the next component to observe. Also, note that we can extend this planto include service calls, using the procedure described in the previous section.Nonbase ObservationsSo far, we have considered two special classes of observations: (1) the observation of the problem-de�ning variable after a repair is made, and (2) the observation of a component before a repair is9

made (as part of an observation-repair action). We refer to these observations as base observations.In many situations, we want to be able to make more general observations. For example, when ourcar fails to start, we may want to check the radio or the headlights in order to check the status ofthe electrical system. In this section, we describe a method for making such general observations.Our approach is based on a second approximation. In particular, we pretend that we canmake at most one nonbase observation before executing a plan consisting of only observation{repair actions and a service call. Then, we determine which nonbase observation if any shouldbe made, and make the observation if appropriate. Finally, we iterate this procedure, possiblymaking additional observations. The procedure is sometimes said to be myopic, because we maymake additional nonbase observations in the troubleshooting sequence, but we do not look aheadto these possible actions when selecting the next nonbase observation.Suppose we havem nonbase observations o1; o2; : : :om available to us. Assume that observationoi can take on exactly one of ri possible states. We write oi = k to indicate that observation oitakes on state k. In our myopic approximation, we �rst use the procedures described in Sectionsand to generate a troubleshooting sequence consisting of only base observations, repairs, andservice call under the current state of information. Changing notation for simplicity, let ECR(I)denote the expected cost of repair of this sequence, where I is the current state of information.Second, imagine that we make some observation oi �rst, and then determine the sequence of baseobservations, repairs, and service call. The expected cost of observing oi with information I,denoted ECO(I; oi), is thus given byECO(I; oi) = Coi + riXk=1Pr(oi = kjI) ECR(I[foi = kg) (3)Note that the troubleshooting sequence following the observation may be di�erent for every possibleoutcome of the observation. Finally, we repeat the computation of ECO for every possible nonbaseobservation.If ECR(I) < ECO(I; oi) for every nonbase observation oi, then we choose not to make anonbase observation at this point in the troubleshooting process. Rather, we choose to perform anobservation{repair action on some component or call service, as described in the previous sections.Otherwise, we choose to observe that variable oi with the lowest ECO. After a repair or nonbaseobservation has been carried out, we update the information state I, and repeat the cycle. Asummary of this approach is given in Figure 3.Empirical ResultsWe have applied our approach to troubleshooting printing problems, automobile startup problems,copier feeder systems, and gas turbines. The results have been satisfying along a number of di-mensions. The models have been easy to build and assess. The generated plans in many cases10

Device
Abnormal

ECO(I,oi)
< ECR(I)

Yes

Evaluate expected costs

ECR(I)
ECO(I,o1)
ECO(I,o2)

Choose
minimum
ECO(I,oi)

No

Observe
c

c
is faulty?

Yes

Repair
c

Device is
normal?

Yes End

No

No

Observe
oi

 Service
call ?

No

Yes

c := max()pi
Ci

oci

Figure 3: A summary of our approximate decision-theoretic method for generating a troubleshoot-ing plan. First, we evaluate ECR(I)|the expected cost of repair under our current state of infor-mation I|and for every observation oi, the expected cost of its observation ECO(I; oi). Next, ifthere is an observation oi for which ECO(I; oi) < ECR(I), then we observe oi for which ECO(I; oi)is a minimum. Otherwise, we check to see whether or not we should call service. We do so if andonly if ns, given by Equation 2, is equal to zero. If so, then we call service and then quit. Otherwise,we perform an observation{repair action on the component ci such that pi=Coi is a maximum. Ifwe repair ci, then we check if the device is functioning properly. If it is, then we quit, otherwise werepeat the process, identifying the next best action.11

conform with intuition. In the remainder of this section, we discuss experiments that measure theperformance of our decision-theoretic approach more precisely.We have developed a Monte-Carlo technique for estimating troubleshooting costs for a givenplanner and domain. The basic idea is to use a Bayesian network for a given device to generatea relatively large set of problem instances where one or more faults are known to have occurred.We then apply the planning method to each case, recording the sum of costs of each action. Ahistogram of these total costs then provides a good estimate of the distribution of troubleshootingcosts associated with a particular planner.The method relies on an oracle Bayesian network to generate sample problems and to reveal theoutcomes of observations given that speci�c components have been repaired. In our experiments,the joint probability distribution for the domain variables speci�ed by the oracle Bayesian networkis identical to that of the decision-theoretic planner, thereby insuring that the planner has the\correct" model. This assumption could be relaxed in future experiments. Our approach forgenerating cases guarantees that the problem-de�ning variable will assume an abnormal state inevery case.In the results that follow, we compare our decision-theoretic planner, a random planner, a staticplanner, and an omniscient planner in two domains: troubleshooting a car that won't start andtroubleshooting the failure to print a document. Our decision-theoretic planner posts a mixture ofrepairs and nonbase queries to the oracle Bayesian network until the oracle reports that the device isrepaired. The random planner posts repairs at random (without repetition) until the oracle reportsthat the device is repaired. The static planner posts repairs in a static order: components withlower observation costs are repaired �rst, with ties broken by repair cost. Again, the static plannercontinues until the oracle reports that the device is repaired. The omniscient planner knows exactlywhat faults are causing the device failure and repairs them. When posting repairs, each planner(except the omniscient planner) queries the oracle to �rst observe whether the device is faulty, andonly repairs the component if it is defective. All planners can request a service call.We generated 1000 troubleshooting cases for both domains. For the automobile problem,we used the Bayesian network shown in Figure 2 containing nine components and �ve nonbaseobservations. For the printing problem, we used the Bayesian network shown in the sidebar,containing 15 components and no nonbase observations. Figure 4 shows a histogram of the costsfor both domains and for each of the planners for the 1000 cases.In the automobile domain, the average cost of the omniscient, decision-theoretic, static, andrandom planners was $127, $154, $298, and $457, respectively. Thus, except for the omniscientplanner, the decision-theoretic planner performed best, with the static planner coming in a distantthird. The decision-theoretic planner saves $144 per case on average over a static repair sequence.The total average cost for the omniscient planner sets a lower bound on the expected cost of anoptimal planner. The decision-theoretic planner is close to this lower bound.12

50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

0

100

200

300

400

500

600

fr
eq

u
en

cy

cost (dollars)

automobile

0

50

100

150

200

250

300

fr
eq

u
en

cy

time (minutes)

printer

Figure 4: Cost histograms for the domains of automobile and print troubleshooting and for fourplanners. Shown from front to back are histograms for the random, static, decision-theoreticplanners, and omniscient planners.We obtained similar results in the printing domain. In this domain, cost was measured inminutes of delay. The average cost of the omniscient, decision-theoretic, static, and random plannerswas 32, 45, 56, and 84 minutes respectively. Again, except for the omniscient planner, the decision-theoretic planner performed best, with the static planner coming in third. Also, the decision-theoretic planner is relatively close to the lower bound set by the omniscient planner. For thedecision-theoretic, static, and random planners, the secondary peaks in the histograms for theprinter domain indicate plans where service was called. The omniscient planner rarely had to callservice, as expected.Thus, in both domains, the decision-theoretic planner had lower costs than either the staticor random planner, and its repair costs were relatively close to the minimum possible repair costs.We note that in both domains, the variance of repair costs associated with the decision-theoreticplanner were less than the variances associated with the heuristic planners.In the automobile domain, the number of cases in which there was single, double, and triplefaults was 930, 69, and 1, respectively. In the printing domain, the number of cases in which therewas single, double, triple, and quadruple faults was 636, 285, 72, and 7, respectively. Therefore, inboth domains, our single-fault assumption was quite good. Nonetheless, to investigate the e�ectof single versus multiple faults on our troubleshooting approach, we generated separate histogramsfor single- and multiple-fault cases in the automobile domain, shown in Figure 5. We see thatthe relative ordering of planners did not change. For the automobile domain, the savings for thedecision-theoretic planner over the static ordering was $144 over all cases. Among the single-fault scenarios, the average savings was $138 whereas over the multiple fault scenarios the savingswas $208. Therefore, even though the single fault assumption was violated, the decision-theoretic13

50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

0

100

200

300

400

500

600

fr
eq

u
en

cy

cost (dollars)

single fault

50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

0

5

10

15

20

25

30

fr
eq

u
en

cy

cost (dollars)

multiple faults

Figure 5: Cost histograms in the automobile domain for single- and multiple-fault cases. Fromfront to back are histograms for the random, static, decision-theoretic, and omniscient planners.planner did well, and, in fact, had a higher net savings because the average repair cost in multiplefault scenarios is higher. For the printer domain, we observed nearly the same average savings forboth single fault and multiple fault scenarios.SummaryWe have described a decision-theoretic approach for generating troubleshooting plans under un-certainty that interleaves both observations and repair actions. Our approach is based on a setof approximations to an exact method for a simple special case. Despite our approximations, wehave seen that our planner produces expected troubleshooting costs that are close to optimal andsigni�cantly lower than simple planners.References[1] J. Breese, E. Horvitz, M. Peot, R. Gay, and G. Quentin. Automated decision-analytic diag-nosis of thermal performance in gas turbines. In Proceedings of the International Gas Turbineand Aeroengine Congress and Exposition, Cologne, Germany, American Society of MechanicalEngineers, June 1992.[2] B.G. Buchanan and E.H. Shortli�e, editors. Rule-Based Expert Systems: The MYCIN Experi-ments of the Stanford Heuristic Programming Project. Addison{Wesley, Reading, MA, 1984.[3] J. de Kleer and B. Williams. Diagnosing multiple faults. Arti�cial Intelligence, 32:97{130, 1987.14

[4] M. Genesereth. The use of design descriptions in automated diagnosis. Arti�cial Intelligence,24:311{319, 1984.[5] D. Heckerman, J. Breese, and K. Rommelse. Sequential troubleshooting under uncertainty. InProceedings of Fifth International Workshop on Principles of Diagnosis, New Paltz, NY, pages121{130, October 1994.[6] D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert systems: Part I. ThePath�nder project. Methods of Information in Medicine, 31:90{105, 1992.[7] J. Kadane and H. Simon. Optimal strategies for a class of constrained sequential problems.Annals of Statistics, 5:237{255, 1977.[8] J. Kalagnanam and M. Henrion. A comparison of decision analysis and expert rules for sequen-tial diagnosis. In Proceedings of the Fourth Workshop on Uncertainty in Arti�cial Intelligence,Minneapolis, MN, pages 205{212. Association for Uncertainty in Arti�cial Intelligence, Moun-tain View, CA, August 1988. Also in Shachter, R., Levitt, T., Kanal, L., and Lemmer, J., editors,Uncertainty in Arti�cial Intelligence 4, pages 271{281. North-Holland, New York, 1990.[9] H. Rai�a. Decision Analysis: Introductory Lectures on Choice Under Uncertainty. Addison{Wesley, Reading, MA, 1968.About the AuthorsDAVID HECKERMAN is a senior researcher in the Decision Theory Group at Microsoft Re-search. His research interests include the design of practical methods for constructing Bayesiannetworks from expert knowledge and learning Bayesian networks from data. Author's PresentAddress: Microsoft Research, One Microsoft Way 9S, Redmond, WA 98052-6399; email: heck-erma@microsoft.com.JOHN S. BREESE is a senior researcher in the Decision Theory Group at Microsoft Research.His research interests focus on developing tools and methods for decision-theoretic reasoning, inparticular the integration of normative methods with symbolic processing techniques. Author'sPresent Address: Microsoft Research, One Microsoft Way 9S, Redmond, WA 98052-6399; email:breese@microsoft.com.KOOS ROMMELSE is a researcher in the Decision Theory Group at Microsoft Research. Hispresent interests are in the development of tools for probabilistic inference, troubleshooting, andlearning Bayesian networks from data. Author's Present Address: Microsoft Research, OneMicrosoft Way 9S, Redmond, WA 98052-6399; email: koosr@microsoft.com.15

