
Choiceless Polynomial Time ∗

Andreas Blass †, Yuri Gurevich ‡ and Saharon Shelah §

Abstract

Turing machines define polynomial time (PTime) on strings but cannot deal
with structures like graphs directly, and there is no known, easily computable
string encoding of isomorphism classes of structures. Is there a computation
model whose machines do not distinguish between isomorphic structures and
compute exactly PTime properties? This question can be recast as follows:
Does there exist a logic that captures polynomial time (without presuming the
presence of a linear order)? Earlier, one of us conjectured a negative answer.
The problem motivated a quest for stronger and stronger PTime logics. All
these logics avoid arbitrary choice. Here we attempt to capture the choice-
less fragment of PTime. Our computation model is a version of abstract state
machines (formerly called evolving algebras). The idea is to replace arbitrary
choice with parallel execution. The resulting logic expresses all properties ex-
pressible in any other PTime logic in the literature. A more difficult theorem
shows that the logic does not capture all of PTime.

∗Annals of Pure and Applied Logic 100 (1999), 141–187.
†Mathematics Department, University of Michigan, Ann Arbor, MI 48109-1109, USA,

ablass@math.lsa.umich.edu. The work was partially supported by NSF grant DMS 95-05118.
‡Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399, USA, gure-

vich@microsoft.com, on a leave of absence from the University of Michigan. Thanks to NSF (grant
CCR 95-04375), to Binational US-Israel Science Foundation, and to Rutgers University where a part
of the work was done.

§Mathematics Department, Hebrew University, Jerusalem 91904, Israel, and Mathematics De-
partment, Rutgers University, New Brunswick, N.J. 08903, USA. The work was partially supported
by a grant from Binational US-Israel Science Foundation.

1

Contents

1 Introduction 4

2 Preliminaries 8

2.1 Global Relations . 8

2.2 Least Fixed Point Logic FO+LFP . 9

2.3 Finite Variable Infinitary Logic Lω
∞,ω 10

2.4 Set Theory . 11

3 PTime and PTime Logics 12

4 The Computation Model 16

4.1 Vocabularies . 16

4.2 States . 16

4.3 Input Structures . 17

4.4 Terms . 18

4.5 Syntax of Rules . 18

4.6 Semantics of Rules . 20

4.7 Programs . 21

4.8 The Counting Function . 21

5 Choiceless PTime 22

5.1 The Definition of Choiceless PTime 22

5.2 Upper Bounds for C̃PTime . 24

5.3 A Lower Bound for C̃PTime . 25

5.4 The Robustness of C̃PTime . 28

6 Two Fixed-Point Theorems 29

6.1 Definable Set-Theoretic Functions . 30

6.2 First-Order Semantics . 31

6.3 Time-Explicit Programs . 32

2

6.4 Fixed-Point Definability . 33

7 On the Extent of C̃PTime 34

8 The Support Theorem 37

9 The Equivalence Theorem 42

9.1 Matter . 42

9.2 Forms . 44

9.3 The In and Eq Relations . 46

9.4 The Winning Strategy . 48

9.5 A Generalization . 48

10 Negative Results 50

10.1 Parity . 50

10.2 Bipartite Matching is not in Choiceless PTime 50

10.3 An Enriched C̃PTime . 53

3

1 Introduction

The standard computation model is Turing machines, whose inputs are strings. How-
ever, in combinatorics, database theory, etc., inputs are naturally structures (graphs,
databases, etc.) indistinguishable up to isomorphism. In such cases, there is a prob-
lem with a string presentation of input objects: there is no known, easily computable
string encoding of isomorphism classes of structures. This calls for a computation
model that deals with structures directly rather than via string encoding. There are
several such computation models in the literature, in particular relational machines
[Abiteboul and Vianu 1991] and abstract state machines (formerly called evolving
algebras) [Gurevich 1995].

The natural question is whether there is a computation model that captures PTime
over structures (rather than strings). In different terms, essentially the same question
has been raised in [Chandra and Harel 1982]. Gurevich translated Chandra–Harel’s
question as a question of existence of a logic that captures PTime and conjectured
that no such logic exists [Gurevich 1988]. We address this issue in Section 3; here it
suffices to say that the notion of logic is a very broad one and includes computation
models.

If one seriously entertains the possibility that there is no logic that captures
PTime, the question arises how much of PTime can be captured by a coherent logic or
computation class. Here we define a natural fragment of PTime captured by means
of a version of abstract state machines (ASMs). We call the fragment Choiceless
Polynomial Time (C̃PTime). The idea is to eliminate arbitrary choice by means of
parallel execution.

Consider for example the Graph Reachability problem: Given a graph G = (V, E)
with distinguished nodes s and t (an allusion to Source and Target respectively),
decide whether there is a path from s to t in G.

A common reachability algorithm constructs the set X of all vertices reachable from
s and then checks if X contains t. To construct X, an auxiliary “border-set” Y ⊆ X
is used.

if Mode = Initial then

X,Y := {s}, Mode := Construct

endif

4

if Mode = Construct then

if Y 6= ∅ then

choose y ∈ Y
let Z = {z ∈ V −X : yEz}

do in parallel

X := X ∪ Z
Y := (Y − {y}) ∪ Z

enddo

endlet

endchoose

else Mode := Examine

endif

endif

if Mode = Examine then

if t ∈ X then Output := Yes else Output := No endif

Halt := True

Mode := Final

endif

If a given graph G comes with an order on vertices, the order can be used to elim-
inate choice, but we are interested in structures which are not necessarily ordered. In
the case of the reachability problem, choice can be eliminated by means of parallelism.
Here is a revised version of the second transition rule from the program above.

if Mode = Construct then

if Y 6= ∅ then

let Z = {z ∈ V −X : (∃y ∈ Y) yEz}
X := X ∪ Z
Y := Z

endlet

else Mode := Examine

endif

endif

Of course, one is not always so lucky. In Section 10, we describe a well-known
PTime algorithm for the Perfect Matching problem. The algorithm uses choice and,
as far as we know, there is no choiceless PTime algorithm for Perfect Matching.

Our computation model is explained in Section 4 and our formalization C̃PTime of
Choiceless PTime is given in Section 5. C̃PTime is a computation model, but it can be
viewed as a (very generalized) logic. Abusing notation, we will use the term C̃PTime
to denote not only our computation model but also the portion of PTime captured by

5

the model. In Section 7, we show that the C̃PTime logic is more expressive than the
logic whose “formulas” are Abiteboul-Vianu’s relational machines. It expresses also
all properties computable by Abiteboul-Vianu’s (strongly coupled) generic machines.
It appears that, in fact, the expressive power of C̃PTime on finite structures matches
that of Abiteboul-Vianu’s generic machines. Details about these and related systems
will appear in a forthcoming paper by the first two authors and Jan van den Bussche.

The C̃PTime syntax is richer than the syntax associated to generic machines. In
particular, C̃PTime allows direct use of sets of arbitrary finite type over the input
structure, not only relations. It has basic set-theoretic operations built in. Also,
C̃PTime includes most of the programming constructs of abstract state machines, a
powerful and natural model of computation.

In Section 10, we show that C̃PTime does not express the parity of a naked set
or the perfect matchability of a bipartite graph where the parts are of the same size.

Viewed as a logic, C̃PTime is naturally three-valued: some input structures are
accepted, some are rejected, and some may be neither accepted nor rejected by a
given machine. The customary two-valuedness of logic could be restored by giving
our machines the ability to tell when their (polynomial) time limit is reached, so they
could reject any input not accepted by then. In Section 10, we take a step in this
direction by giving our computation model explicit knowledge of the cardinality of
(the base set of) the input structure. Then Parity is in this extension of C̃PTime,
but “parity of subsets” is not, and neither is perfect matchability. It is not clear
whether the machines of this extended model can detect when a polynomial time
bound expires; the difficulty is in accurately counting the steps performed by parallel
subcomputations.

The logic C̃PTime can be extended further with a counting function (see Sec-
tion 4) and maybe it should be. This would be a natural way to continue this investi-
gation. This extension allows the machines to detect when a polynomial time bound
is reached, so the logic becomes two-valued. It seems likely that perfect matchability
remains uncomputable even in this extended C̃PTime computation model.

In connection with extensions like this, let us notice that, unless there is a logic
that captures PTime, there is no end to possible extensions of C̃PTime. Any PTime
decidable problem can be converted to a quantifier and added to C̃PTime.

Certain aspects of the work reported here are related to previous work of others.
We comment briefly here on these relationships, and we thank the referees for bringing
some of this work to our attention.

Our computation model works not only with the given input structure but with
the universe of hereditarily finite sets over that structure. The idea that the heredi-
tarily finite sets (over a set of atoms) form a natural domain for computation is quite
classical and is developed in detail in Barwise’s book [Barwise 1975]. Connections
with resource-bounded notions of computation are presented in [Sazonov 1997] in
terms of weak set theories. Codings of the hereditarily finite sets by natural num-

6

bers play a central role in his presentation, even in the definition of such concepts
as PTime. Similarly, Dahlhaus and Makowsky [Dahlhaus and Makowsky 1992] work
in a context very similar to the universe of hereditarily finite sets over a database
and make heavy use of numerical coding. They are, however, interested primarily in
general computability, without resource bounds. Like Barwise but unlike Sazonov,
Dahlhaus, and Makowsky, we consider computations directly in the world of heredi-
tarily finite sets without numerical coding. Indeed, numerical coding is not available
to us, because we are interested in input structures that need not be equipped with
an ordering.

In the context of computation by Boolean circuits, Otto [Otto 1997] has consid-
ered computations invariant under automorphisms of the input structure, and he has
obtained, under suitable hypotheses, results which, like those of our Section 8, as-
sert the existence of small supports for certain objects. In his case, however, those
objects are relations on the input structure, whereas our results deal with general
hereditarily finite sets over the input structure. The extra generality in our situation
increases considerably the amount of combinatorial work needed to establish these
results. Also, Otto needs to assume that the orbits (under the automorphism group)
under consideration are of polynomial size; in our approach, this is not a separate
assumption but a consequence of the polynomial time bound on the computation.

The previous work most closely related to ours, both in purpose and in content
though not in appearance, is that of Abiteboul and Vianu, partly in collaboration with
Papadimitriou and Vardi [Abiteboul and Vianu 1991], [Abiteboul, Papadimitriou and
Vianu 1994], and [Abiteboul, Vardi and Vianu 1997]. They introduced three sorts
of machines, currently known as the relational machine, the generic machine, and
the reflective relational machine. Their conventions for imposing time bounds on
computations differ from ours in two ways. The less important difference is that they
allow updating a whole relation in a single step. Another way to express this difference
is to say that they count parallel time (with a number of processors polynomial in the
size of the database) while we count sequential time; even in parallel computations, we
add the times taken by all the processors. Thus, by our standards they underestimate
time; by their standards we overestimate. Fortunately, the discrepancy is only a
polynomial factor, since the parallelism allowed by their model is only polynomial.

A second difference, however, is more serious. In the generic and relational ma-
chine models, Abiteboul and Vianu require the number of steps in a PTime compu-
tation to be polynomial with respect to the size not of the actual input structure but
of a certain quotient, obtained by identifying sufficiently indistinguishable (tuples of)
objects. For ordered structures, no identification takes place, but in general, the quo-
tient may be far smaller than the original structure. As a result, their time bounds
are more stringent than ours and their models therefore appear less powerful.

We shall show in Section 7 that our model is strictly more powerful than the
relational machine model. The structures we use for this purpose are essentially the
same size as the quotient mentioned in the preceding paragraph, so the relational

7

machine is, in these examples, not unfairly hampered by the use of the quotient in
defining its input size.

As mentioned above, it appears that the generic machine model is equivalent to
ours, except for the differences, described above, in how the models measure time.
Specifically, the computations of generic machines can be straightforwardly simulated
in our model, while the simulation in the reverse direction, it seems, can be carried
out using the “form and matter” constructions in Section 9 of the present paper.
Nevertheless, we feel that, for the reasons indicated above, the syntax of C̃PTime is
closer to intuition and therefore easier to use.

The third author proved that the C̃PTime logic enjoys the zero-one law [Shelah
1997]. It makes sense also to investigate C̃PTime as a complexity class. It is not diffi-
cult to concoct an artificial complete problem for C̃PTime, but it would be interesting
to see a natural one.

2 Preliminaries

We recall various definitions and establish some terminology and notation. In this
paper, vocabularies are finite.

2.1 Global Relations

We start with a convenient notion of global relation [Gurevich 1988].

A k-ary global relation of vocabulary Υ is a function ρ such that

• the domain Dom(ρ) consists of Υ-structures and is closed under isomorphism,

• with every structure A ∈ Dom(ρ), ρ associates a k-ary relation ρA on (the base
set of) A, and

• ρ is abstract in the following sense: every isomorphism from a structure A ∈
Dom(ρ) onto a structure B is also an isomorphism from the structure (A, ρA)
onto the structure (B, ρB).

Typically the domain of a global relation of vocabulary Υ is the class of all Υ-
structures or the class of all finite Υ-structures. For example, every first-order formula
ϕ(v1, . . . , vk) of vocabulary Υ, with free variables as shown, denotes a k-ary global
relation ρ(v1, . . . , vk) on all Υ-structures. To avoid set-theoretic difficulties, however,
we generally deal only with global relations on structures of bounded cardinality, in
fact usually just on finite structures.

8

2.2 Least Fixed Point Logic FO+LFP

Least fixed point logic has been around for a long time [Moschovakis 1974]. It is
especially popular in finite model theory [Ebbinghaus and Flum 1995]. The latter
book contains all the facts that we need. For the reader’s convenience and to establish
notation, we recall a few things.

Syntax FO+LFP is obtained from first-order logic by means of the following addi-
tional formula-formation rule:

• Suppose that ϕ(P, v̄) is a formula with a k-ary predicate variable P and a k-tuple
v̄ of free individual variables. Further suppose that P occurs only positively in
ϕ. If t̄ is a k-tuple of terms, then

[
LFPP,v̄(ϕ(P, v̄))

]
(t̄)

is a formula.

The vocabulary and the free variables of the new formula ψ are defined in the obvious
way. In particular, P is not in the vocabulary of ψ. We say that a predicate Q in the
vocabulary of ψ occurs only positively in ψ if and only if it occurs only positively in
ϕ.

Semantics The formula ϕ(P, v̄), may have free individual variables ū in addition
to v̄. Let w̄ be a k-tuple of fresh individual variables, and let Υ be the vocabulary of
the formula

ψ(ū, w̄) =
[
LFPP,v̄(ϕ(P, ū, v̄))

]
(w̄)

The meaning of ψ is a global relation ρ(ū, w̄) whose domain consists of all Υ-structures
(unless we restrict the domain explicitly, for example to finite Υ-structures).

Given an Υ-structure A with fixed values ā of parameters ū, consider the following
operator on k-ary relations over BaseSet(A):

θ(P) = {v̄ : ϕ(P, ā, v̄)}.

Since ϕ is positive in P , θ is monotone in P . The k-ary relation ρA(ā, w̄) is the least
fixed point of θ. To obtain the least fixed point, generate the sequence

∅ ⊆ θ(∅) ⊆ θ2(∅) ⊆ . . .

9

of k-ary relations over A. For a finite structure A, there exists a natural number l
such that θl(∅) = θl+1(∅); in this case the least fixed point is θl(∅). The case of infinite
A is similar except that the sequence may continue transfinitely, with unions at limit
stages, and in particular the closure ordinal l may be infinite.

Simultaneous Induction Let Υ be a vocabulary and consider FO+LFP formulas
ϕ(P,Q, ū) and ψ(P,Q, v̄) of vocabulary Υ ∪ {P,Q} which are positive in P and Q.
Here Arity(P) = Length(ū) and Arity(Q) = Length(v̄). There may be additional free
individual variables which we consider as parameters.

Given an Υ-structure A with fixed parameters, consider the monotone operator
on pairs of relations

θ(P,Q) =
(
{ū : ϕ(P,Q, ū)}, {v̄ : ψ(P,Q, v̄)}

)

and let (P ∗, Q∗) be the least fixed point of θ.

Proposition 1 The global relations P ∗ and Q∗ are expressible by FO+LFP formulas.
Moreover, the result generalizes to simultaneous induction over any finite number of
predicate variables.

2.3 Finite Variable Infinitary Logic Lω
∞,ω

Again, the book [Ebbinghaus and Flum 1995] contains all the information that we
need, but we recall a few things for the reader’s convenience.

Syntax As in a popular version of first-order logic, Lω
∞,ω formulas are built from

atomic formulas by means of negations, conjunctions, disjunctions, the existential
quantifier and the universal quantifier. The only difference is that Lω

∞,ω allows one to
form the conjunction and the disjunction of an arbitrary set S of formulas provided
that the total number of variables in all S-formulas is finite. Recall also our standing
convention that all vocabularies are finite. For every natural number m, Lm

∞,ω is the
fragment of Lω

∞,ω where formulas use at most m individual variables.

Semantics Every Lω
∞,ω formula of vocabulary Υ with k free individual variables

denotes a k-ary global relation of vocabulary Υ in the obvious way.

An important fact is that every global relation on structures of bounded cardinality
expressible in FO+LFP is expressible in Lω

∞,ω. This is explained in [Ebbinghaus
and Flum 1995, Theorem 7.4.2] for global relations on finite structures. For infinite
structures, the stages of the iteration leading to the fixed point can be defined in

10

Lω
∞,ω by an induction like that for finite structures but with an additional clause using

infinite disjunctions to represent the unions that occur at limit stages. For structures
of cardinality bounded by κ, the iterations involved in the semantics of LFP stabilize
before stage κ+ (the next cardinal after κ, regarded as an initial ordinal), so the final
result of the iteration can be expressed in Lω

∞,ω as stage κ+.

Pebble Games There is a pebble game Gm(A,B) appropriate to Lm
∞,ω. Here A and

B are structures of the same purely relational vocabulary. For explanatory purposes,
we pretend that A is located on the left and B is located on the right, but in fact A
and B may be the same structure.

The game is played by Spoiler and Duplicator. For each i = 1, . . . , k, there are two
pebbles marked by i: the left i-pebble and the right i-pebble. Initially all the pebbles
are off the board. After any number of rounds, for every i, either both i-pebbles are
off the board or else the left i-pebble covers an element of A and the right i-pebble
covers an element of B. In the obvious way, the pebbles on the board define a relation
R between A to B. A round of Gk(A,B) is played as follows.

If R is not a partial isomorphism, then the game is over; Spoiler has won and
Duplicator has lost. Otherwise Spoiler chooses a number i; if the i-pebbles are on
the board, they are taken off the board. Then Spoiler chooses left or right and puts
that i-pebble on an element of the corresponding structure. Duplicator puts the other
i-pebble on an element of the other structure.

Duplicator wins a play of the game if the number of rounds in the play is infinite.

Proposition 2 If Duplicator has a winning strategy in Gm(A,B), then no Lm
∞,ω sen-

tence distinguishes between A and B. Therefore, for every FO+LFP sentence ϕ,
there exists m such that, for any A and B, if Duplicator has a winning strategy in
Gm(A,B) then ϕ does not distinguish A from B.

2.4 Set Theory

Let A be a structure. In the literature, the notation |A| is used in two ways: to
denote the base set of A and to denote the cardinality of BaseSet(A). We will employ
notation |A| only in the sense of cardinality; we will also use an alternative notation
Card(A) for the cardinality of A.

As usual in set theory, we identify a natural number (that is a non-negative integer)
i with the set of smaller natural numbers {j : j < i}; this set is called the von
Neumann ordinal for i. The first infinite ordinal is denoted ω.

We consider sets built from atoms (also called urelements). The term object will
mean an atom or a set. A set X is transitive if y ∈ x ∈ X implies y ∈ X. If X

11

is an object, then TC(X) is the least transitive set Y with X ∈ Y . An object X is
hereditarily finite if TC(X) is finite.

P is the powerset operation; if X is a set then P(X) is the collection of all subsets
of X. If X is a finite set of atoms, then

HF(X) :=
⋃{Pi(X) : i < ω} = X ∪P(X) ∪P(X ∪P(X)) ∪ . . .

where P0(X) = X and Pi+1(X) = P(
⋃

j≤i P
j(X)). Alternatively, HF(X) can be

defined as the smallest set Y such that X ⊆ Y and every finite subset of Y is a
member of Y . The members of HF(X) are exactly the members of X and those
hereditarily finite sets y such that all atoms in TC(y) belong to X.

Every set has an ordinal rank. If x is an atom or the empty set, then the rank of
x equals 0. Otherwise, the rank of x is the smallest ordinal strictly above the ranks
of all members of x.

3 PTime and PTime Logics

In this section, structures are finite and global relations are restricted to finite struc-
tures.

By definition, the complexity class PTime consists of languages, that is sets of
(without loss of generality, binary) strings. A language X is PTime if there exists
a PTime Turing machine (that is polynomial time bounded Turing machine) that
accepts exactly the strings in X. This definition is easily generalized to ordered
structures by means of a standard encoding; see for example [Ebbinghaus and Flum
1995]. We will say that a Turing machine accepts an ordered structure A if it accepts
the standard encoding of A.

The generalization to arbitrary (that is not necessarily ordered) structures is less
obvious. One does not want to distinguish between isomorphic structures and there
is no known, easily computable string encoding of isomorphism classes of structures.

The problem was first addressed by Chandra and Harel in the context of database
theory [Chandra and Harel 1982]. We describe their approach. A database is defined
as a purely relational structure whose elements come from some fixed countable set,
without loss of generality the set of natural numbers. Thus, each database inherits
an ordering from this countable set, and so standard encodings make sense, but
isomorphisms are not required to respect the orderings. A query is a global relation
over databases; recall that global relations respect isomorphisms. A query Q is PTime
if the set

{(B, x̄) : x̄ ∈ Q(B)}

12

is PTime. Thus each PTime query Q is given by a PTime Turing machine M that
accepts a string s if and only if s is the standard encoding of some (B, x̄) with
x̄ ∈ Q(B); call M a PTime witness for Q. Let W be the collection of all PTime
witnesses for all queries. It is easy to check that W is not recursive. Chandra and
Harel posed the following question. Does there exists a recursive set S ⊂ W such
that every PTime query has a PTime witness in S?

Gurevich translated their question as a question of the existence of a logic that
captures PTime [Gurevich 1988]. He conjectured that the answer is negative; in this
connection his definition of a logic is very broad. If desired, some obvious requirements
can be imposed; see [Ebbinghaus 1985] in this connection. Here we recall Gurevich’s
definitions and slightly generalize them in order to define three-valued logics.

PTime Global Relations What does it mean that a global relation is PTime?
The question easily reduces to the case of nullary global relations. Indeed, let ρ
be a k-ary global relation of some vocabulary Υ and let c1, . . . , ck be the first k
individual constants outside of Υ. Define the nullary relation σ of vocabulary Υ+ =
Υ ∪ {c1, . . . , ck} as follows. If A is an Υ-structure, and a1, . . . , ak are elements of A,
and B is the Υ+-expansion of A where a1, . . . , ak interpret c1, . . . , ck, then σB ⇐⇒
ρA(a1, . . . , ak). Declare ρ PTime if σ is so.

A nullary global relation ρ of vocabulary Υ can be identified with the class of
Υ-structures A such that ρA is true. It remains to define what it means that a class
K of structures of some vocabulary Υ is PTime. Let < be a binary predicate not in
Υ. An ordered version of an Υ-structure A is a structure B of vocabulary Υ ∪ {<}
such that the Υ-reduct of B is isomorphic to A and the interpretation of < is a linear
order.

Define a class of K of Υ-structures to be PTime if it is closed under isomorphisms
and there exists a PTime Turing machine M (a PTime witness for K) which accepts
a binary string s if and only if s is the standard encoding of an ordered version of
some structure in K. This definition agrees with that of Chandra-Harel described
above, if we restrict it to the structures they consider — all base sets contained in a
fixed countable set.

Logics For simplicity, we define logics whose formulas denote nullary global rela-
tions. The trick above allows one to extend such a logic so that its formulas denote
arbitrary global relations.

A logic L is given by a pair of functions (Sen,Sat) satisfying the following condi-
tions. Sen associates with every vocabulary Υ a recursive set Sen(Υ) whose elements
are called L-sentences of vocabulary Υ. Sat associates with every vocabulary Υ a
recursive relation SatΥ(A,ϕ) where A is an Υ-structure and ϕ an L-sentence of vo-
cabulary Υ. We say that A satisfies ϕ (symbolically A |= ϕ) if SatΥ(A,ϕ) holds. It
is assumed that SatΥ(A,ϕ) ⇐⇒ SatΥ(B, ϕ) if A and B are isomorphic.

13

If ϕ is a sentence of vocabulary Υ, let Mod(ϕ) be the collection of Υ-structures A
satisfying ϕ.

PTime Logics Let L be a logic. For each Υ and each ϕ ∈ Sen(Υ), let K(Υ, ϕ) be
the class of Υ-structures A such that A |= ϕ. Call L PTime, if every class K(Υ, ϕ) is
PTime.

Logic that Capture Ptime A logic L captures PTime if it is PTime and, for every
vocabulary Υ, every PTime class of Υ-structures coincides with some K(Υ, ϕ).

Remark It may seem odd that the definition of logic does not require any uniformity
with respect to varying Υ, but uniformity is not necessary. It is not hard to show
that, if there is a logic of graphs (rather than arbitrary structures) that captures
PTime on graphs, then there is a logic that captures PTime on arbitrary structures
and that possesses some uniformity with respect to Υ [Gurevich 1988]. 2

Three-Valued Logics In the cases when a logic is really a computation model and
sentences are computing machines, A satisfies ϕ means that ϕ accepts A. That calls
for the following natural generalization. Call logics defined above two-valued.

A three-valued logic L is like a two-valued logic except that SatΥ(A,ϕ) has three
possible values telling us whether ϕ accepts A, or ϕ rejects A, or neither. It is assumed
that SatΥ(A,ϕ) = SatΥ(B, ϕ) if A and B are isomorphic.

Each L-sentence ϕ of vocabulary Υ gives rise to two disjoint classes of Υ-structures.
The class Mod+(ϕ) of Υ-structures accepted by ϕ and the class Mod−(ϕ) of classes
rejected by ϕ. Call L PTime if, for every ϕ, the classes Mod+(ϕ) and Mod−(ϕ) are
PTime.

Two disjoint classes K1, K2 of structures of some vocabulary Υ are L-separable if
there exists an L-sentence ϕ such that K1 ⊆ Mod+(ϕ) and K2 ⊆ Mod−(ϕ). We will
see that this is a more robust notion than the similar notion where ⊆ is replaced with
equality.

Abiteboul-Vianu Relational Machines Finally, for future reference, we recall
(a version of) Abiteboul-Vianu’s relational machines [Abiteboul and Vianu 1991;
Abiteboul-Vardi-Vianu 1997].

A relational machine is a Turing machine augmented with a relational store which
is a structure of a fixed purely relational vocabulary Υ. A part Υ0 of the vocabulary
is devoted to input relations. The Turing tape is initially empty. As usual, the
program consists of “if condition then action” instructions. Here is an example of an
instruction.

14

If the control state is s3, and the head reads symbol 1, and the relation
R1 is empty, then change the state to s4, replace 1 by 0, move the head
to the right and replace R2 with R2 ∩R3.

In general, instructions are Turing instructions except that (1) the condition may
be augmented with the emptiness test of one of the relations, and (2) the action may
be augmented with an algebraic operation on the relations. The algebraic operations
are of the following four types. It is assumed that the arities of the operations involved
are appropriate; in the example above, the relations R2 and R3 are of the same arity.

• Boolean operations.

• Projections πi1...imRk. Project Rk on the coordinates i1, . . . , im in the specified
order.

• Cartesian product of two relations.

• Selections σi=jRk. Select the tuples in Rk whose i-th component coincides with
the j-th component.

A PTime relational machine M can be defined as a relational machine together
with a polynomial p(n) bounding the number of computation steps on input structures
of size n. The notion of PTime relational machine gives rise to a PTime logic (which
may be called AV Logic) where the sentences of vocabulary Υ0 are PTime relational
machines with input vocabulary Υ0.

In our view, AV Logic is naturally three-valued. Given an input structure I of size
n, a PTime relational machine (M, p(n)) may accept I within time p(n), may reject
I within time p(n), or do neither. In many computation models, e.g., the Turing
machine model, one customarily regards all non-accepted inputs as rejected. This
convention is reasonable for models where the machine can determine the size n of its
input, compute p(n), keep track of the number of steps it has executed, and reject an
input if the time limit expires without acceptance. But for a computation model (or
logic) that cannot determine the size of its input or cannot keep track of the number
of steps it executes, to call the undecided inputs rejected is to go beyond what the
computing devices could do on their own. In this sense, our three-valued approach
is more appropriate whenever the size of the input is unavailable to the computing
devices.

The three-valuedness of the computation model affects the notion of simulation.
For one program Π′ to simulate another program Π, we require that Π′ accept every
input accepted by Π and reject every input rejected by Π, but we do not care what Π′

does with inputs for which Π reaches no decision. Thus, any pair of classes separated
by Π will also be separated by Π′, but not necessarily vice versa.

15

4 The Computation Model

Our computing devices are abstract state machines (ASMs, formerly called evolving
algebras) [Gurevich 1995, Gurevich 1997] adapted for our purposes here.

4.1 Vocabularies

An ASM vocabulary is a finite collection of function names, each of a fixed arity. Some
function names may be marked as relational or static, or both. Relational names are
also called predicates. A function name is dynamic if it is not marked static. The
Greek letter Υ is reserved to denote vocabularies.

In our case, every vocabulary consists of the following four parts:

Logic names The equality sign, nullary function names true, false and the names
of the usual Boolean operations. All logic names are relational and static. (The
standard ASM definition [Gurevich 1995] requires another logic name, undef,
but we will not employ undef here, using ∅ instead as a default value.)

Set-theoretic names The static binary predicate ∈ and the following static non-
predicate function names.

• Nullary names ∅ and Atoms.

• Unary names
⋃

and TheUnique.

• A binary name Pair.

Input names A finite collection of static names. For simplicity of exposition, we
assume that all input names are relational.

Dynamic names A finite collection of dynamic function names including nullary
predicates Halt and Output.

4.2 States

A state A of vocabulary Υ is a structure A of vocabulary Υ satisfying a number of
conditions described in this subsection.

Base Set The base set of A consists of two disjoint parts:

1. A finite set X of atoms, that is elements that are not sets.

2. The collection of all hereditarily finite sets built from the atoms.

16

The atoms and the sets are objects of A. The objects form a transitive set HF(X)
which can be defined as the closure of X under the following operation: If n is a
natural number and x1, . . . , xn are in, then throw {x1, . . . , xn} in. We have also as in
Subsection 2.4:

HF(X) =
⋃

n<ω

Pn(X).

Set-Theoretic Functions The interpretations of ∈ and ∅ are obvious. Atoms is
the set of atoms. If a is an atom, then

⋃
a = ∅. If a1, . . . , aj are atoms and b1, . . . , bk

are sets then
⋃{a1, . . . , aj, b1, . . . , bk} = b1 ∪ · · · ∪ bk. If a is a singleton set, then

TheUnique(a) is the unique element of a; otherwise TheUnique(a) = ∅. (If x is a set
then x = TheUnique{x} =

⋃{x}, so TheUnique is redundant in this situation, but it
is needed if x is an atom.) Pair(a, b) = {a, b}.

Logic Names false and true are interpreted as 0 and 1 respectively. Recall that
0 is ∅ and that 1 is Pair(0, 0) = {∅}. The Boolean connectives are interpreted in the
obvious way over the Boolean values 0, 1 and take the value 0 if at least one of the
arguments is not Boolean.

Predicates Predicates are interpreted as functions whose only possible values are
the Boolean values 0, 1. If P (ā) evaluates to 1 (respectively 0), we say that P (ā) holds
or is true (respectively, fails or is false). The input predicates “live” over the atoms:
if P is an input predicate and P (a1, . . . , aj) holds, then every ai is an atom.

Dynamic Functions Define the extent of a dynamic function f of arity j to be the
set

{(x0, . . . , xj) : f(x0, . . . , xj−1) = xj 6= 0}.

The only restriction on the interpretation of a dynamic function f is that its extent
is finite.

4.3 Input Structures

Consider an ASM vocabulary Υ. An input structure appropriate for Υ-programs
is any finite structure I of the input vocabulary (i.e., the vocabulary consisting of
the input names from Υ). We want to treat the elements of I as atoms and build
sets over them, so a little problem arises if some elements of I happen to be sets.
The actual input corresponding to I is a structure isomorphic to I whose base set

17

(the universe) consists of atoms. An Υ-state is initial if the extent of every dynamic
function is empty. For any input structure I appropriate for Υ, there is a unique, up
to isomorphism, initial Υ-state A where the atoms together with input relations form
a structure isomorphic to I. We call this A the input structure generated by I.

Remark We will not be very careful in distinguishing between an input structure
I and its atomic version. Without loss of generality, one may assume that the input
structure itself consists of atoms. 2

4.4 Terms

By induction, we define a syntactic category of terms and a subcategory of Boolean
terms.

• A variable is a term.

• If f is a function name of arity j and t1, . . . , tj are terms, then f(t1, . . . , tj) is a
term. If f is a predicate then f(t1, . . . , tj) is Boolean.

• Suppose that v is a variable, t(v) is a term, r is a term without free occurrences
of v, and g(v) is a Boolean term. Then

{t(v) : v ∈ r : g(v)}

is a term.

In the usual way, the same induction is used to define free variables of a given
term. In particular, the free variables of {t(v) : v ∈ r : g(v)} are those of t(v), r and
g(v) except for v.

Semantics is obvious. In particular, the value of {t(v) : v ∈ r : g(v)} at a given
state A is the set of values ValA(t(v)) such that, in A, both v ∈ r and g(v) hold.

4.5 Syntax of Rules

Transition rules are defined inductively.

Skip Skip is a rule.

18

Update Rules Suppose that f is a dynamic function name of some arity r and
t0, . . . , tr are terms. If f is relational, we require that t0 is Boolean. Then

f(t1, . . . , tr) := t0

is a rule.

Conditional Rules If g is a Boolean term and R1, R2 are rules, then

if g then R1 else R2 endif

is a rule.

Do-forall Rules If v is a variable, r is a term without v free, and R0(v) is a rule,
then

do forall v ∈ r
R0(v)

enddo

is a rule with head variable v, guard r and body R0. The definition of free and bound
variables is obvious.

Abbreviate rule

do forall v ∈ {0, 1}
if v = 0 then R0

else R1 endif

enddo

to
do in-parallel

R0, R1

enddo

Here and in the following, we use standard notation as a more readable substitute
for the official syntax. In particular, 0 means ∅, {x, y} means Pair(x, y), {x} means
Pair(x, x), x ∪ y means

⋃{x, y} and 1 means {0}.
Readers familiar with other work on abstract state machines, such as [Gurevich

1995, 1997], will notice that our model lacks the customary import rule. The effect
of this rule can, however, be simulated (with some bookkeeping effort) because our
states are infinite structures. Thanks to the pairing function, we can use sets of
sufficiently high rank to play the role of imported elements.

19

4.6 Semantics of Rules

If ζ is a variable assignment over a state A, assigning values to finitely many variables,
then the pair B = (A, ζ) is an expanded state, A = State(B), ζ = Assign(B), and
Dom(ζ) = Var(B). Further, let v be a variable and a an element of A. Then B(v 7→ a)
is the expanded state obtained from B by assigning or reassigning a to v. In other
words, B(v 7→ a) = (A, ζ ′) where Dom(ζ ′) = Dom(ζ)∪{v}, ζ ′(v) = a and ζ ′(u) = ζ(u)
for the remaining variables.

A location of an expanded state A is a pair ` = (f, ā) where f is a dynamic function
and ā is a tuple of elements of A such that the length of ā equals the arity of f . If b
is also an element of A, then the pair α = (`, b) is an update of A. ((f, (a1, . . . , aj)), b)
is abbreviated to (f, a1, . . . , aj, b). To fire α at A, put b into the location `, that is,
redefine A so that f(ā) = b. The other locations remain intact. The resulting state is
the sequel of A with respect to α. Two updates clash if they have the same locations
but different new contents.

An action over a state A is a set of updates of A. An action is consistent if
it contains no clashing updates. To perform an action β, do the following. If β is
consistent, then fire all updates α ∈ β simultaneously; otherwise do nothing. The
result is the sequel of A with respect to β. If β is inconsistent then the sequel of A is
A itself.

A rule R and the expanded state A are appropriate for each other if Voc(A)
contains all function symbols in R and Var(A) contains all free variables in R.

Now we are ready to explain the semantics of rules. The denotation Den(R) of a
rule R is a function on expanded states A appropriate for R. Each Den(R)(A) (or
Den(R,A) for brevity) is an action. To fire R at A, perform the action Den(R,A)
at State(A). The sequel of A with respect to R is the sequel of A with respect to
Den(R,A). Den(R,A) is defined by induction on R.

Skip Den(Skip, A) = ∅.

Update Rules If R is an update rule f(s̄) := t and ` is location (f, ValA(s̄)), then
Den(R,A) = {(`, ValA(t))}.

Conditional Rules If R is the rule if g then R1 else R2 endif, then

Den(R,A) =
{

Den(R1, A) if g holds at A;
Den(R2, A) otherwise.

Do-forall Rules If R is

20

do forall v ∈ r,
R0(v)

enddo

then

Den(R,A) =
⋃{Den(R0(v), A(v 7→ a)) : a ∈ ValA(r)}

4.7 Programs

A program is a rule without free variables. The vocabulary Voc(Π) of a program
Π is the collection of function names that occur in Π. States of Π are states of the
vocabulary Voc(Π).

Runs A run of Π is a (finite or infinite) sequence 〈Ai : i < κ〉 of states of Π such
that

• A0 is an initial state,

• every Ai+1 is a sequel of Ai with respect to Π, and

• Halt fails at every Ai with i + 1 < κ.

Here κ is a positive integer or the first infinite ordinal ω. The length of a finite run
〈Ai : i ≤ l〉 is l. The length of an infinite run is ω.

Let I be an input structure for Π. The run of Π on I is the run 〈Ai : i < κ〉 such
that

• A0 is the initial state generated by I, and

• either κ is infinite, or else κ is finite and Halt holds at the final state Aκ−1.

The base set and objects of a run 〈Ai : i < κ〉 are those of A0.

4.8 The Counting Function

There are many ways to extend the computation model described above without
introducing explicit choice in its full generality. One natural extension is achieved by
introducing the counting function which, given a set x of cardinality k, produces the
von Neumann ordinal for k.

21

Remark Since the computation model is expandable by adding static functions for
counting or perfect matching, etc., one gets in fact a notion of relative computability.
2

5 Choiceless PTime

It is easy to check that every computable global relation on finite structures is com-
putable by an appropriate ASM program. The idea is that an ASM computation can
first produce the set of all linear orderings of the input structure. (For more details
about this, see Section 7.) Then it can simulate a Turing machine computation on
ordered structures by means of parallel subcomputations, one for each ordering.

Thus, the “choicelessness” of our machines has a real effect only in the presence
of a resource bound stringent enough to prevent the computation from trying all
possible choices. We are interested in polynomial time computation, and this, when
reasonably defined, is stringent enough.

5.1 The Definition of Choiceless PTime

Critical and Active Objects Let A be a state and x ∈ BaseSet(A).

• Object x is critical at A if x is an atom, or x ∈ {0, 1}, or x is a value of a
dynamic function, or x is a component of a tuple where some dynamic function
takes a value different from ∅.

• Object x is active at A if x ∈ TC(y) for some critical y.

Further, let ρ be a run of a program Π. An object x is active in ρ if it is so at some
state of ρ. The idea behind this definition is that the active objects are those that
are really involved in the computation process.

PTime Programs There are two ways to count the steps in a run of an ASM
program. One is as the length of the run, considered as a sequence of states. That
is, one execution of the entire program counts as a single step, regardless of how
much work this involves. We use the word “macrosteps” for steps counted in this
way; “macro” is intended to suggest that there may be a lot going on inside one such
step. The other approach is to count every function evaluation and every transfer of
control (as in a conditional rule) as a separate step. We use the word “microstep” for
steps in this sense. When several subcomputations are done in parallel, the numbers
of microsteps in them are to be added to produce the microstep count for the whole
computation. Microsteps are intended to provide an honest measure of the total
amount of work done by a computation. Indeed, we sometimes refer to the number

22

of microsteps as “honest computation time.” This measure agrees, except for some
overhead, with the time required by a sequential simulation of the computation on
a standard device such as a Turing machine. For details about the definition of
microsteps, see [Blass and Gurevich 1997]. We shall not need the details here, because
the requirement that a computation have only polynomially many microsteps can be
reformulated as in the definition below, bounding macrosteps and active objects.

A PTime (bounded) program Π̄ is a triple Π̄ = (Π, p(n), q(n)) where Π is a program
and p(n), q(n) are integer polynomials. The run of Π̄ on an input structure I of size
n is the longest initial segment ρ of the run of Π on I such that the length of ρ is
≤ p(n) and the number of active objects in ρ is ≤ q(n). A PTime program Π̄ accepts
(respectively rejects) an input structure I if the run of Π̄ on I halts (i.e., ends with
value true for Halt) and Output equals true (respectively false) in the final state.

Remark In this definition, p(n) bounds the number of macrosteps in the run ρ,
while q(n) limits the amount of parallelism so that one macrostep contains only
polynomially many microsteps.

To see what can go wrong if the q(n) restriction is omitted, consider the program

c := c ∪ {∅} ∪ ⋃{{u ∪ {v} : v ∈ Atoms : true} : u ∈ c : true}.

According to our definitions, c is initially empty. If the number of atoms is n, then
this program produces, after a run of length n, a state where c = P(Atoms). Each of
the 2n sets of atoms will have been “visited” by the computation. In other words, in
only n macrosteps the computation executed exponentially many microsteps.

The role of q(n) in our definition is to prevent such things from counting as PTime.
2

Choiceless Polynomial Time Notice that the classes of accepted and rejected
input structures are disjoint but not necessarily complementary and that increasing
the polynomial bound may increase these classes. If the size of the input structure
is known and if a program can keep track of the honest computation time, then the
program can insure that every computation accepts or rejects the input. Otherwise
our three-valued picture (accept, reject, neither) seems more appropriate.

Here, we define a complexity class Choiceless Polynomial Time (in brief C̃PTime)
as a collection of pairs (K1, K2) where K1, K2 are disjoint classes of finite structures
of the same vocabulary. A pair (K1, K2) is in C̃PTime (or C̃PTime separable) if there
exists a PTime program that accepts all structures in K1 and rejects all structures
in K2. The program may accept some structures not in K1 or reject some structures
not in K2. Obviously, there is a three-valued logic that separates exactly C̃PTime
pairs; use PTime programs as sentences.

23

A class K of finite structures of the same vocabulary Υ is in C̃PTime, if the pair
(K, K ′) is in C̃PTime where K ′ is the complement of K in the class of finite structures
of vocabulary Υ.

Call two programs Π and Σ PTime equivalent if

• for every PTime version Π̄ of Π, there exists a PTime version Σ̄ of Σ which ac-
cepts all input structures accepted by Π̄ and rejects all input structures rejected
by Π̄, and

• for every PTime version Σ̄ of Σ, there exists a PTime version Π̄ of Π which ac-
cepts all input structures accepted by Σ̄ and rejects all input structures rejected
by Σ̄.

5.2 Upper Bounds for C̃PTime

In our definition of a PTime program, the polynomial q bounds the space used by
the computation. So one may fear that the definition is too broad, akin to PSpace
rather than PTime. We show in this subsection that C̃PTime is not too broad.

Theorem 3 Consider a PTime program Π̄ = (Π, p(n), q(n)).

1. There is a PTime-bounded Turing machine that accepts exactly those strings
that encode ordered versions of input structures accepted by Π̄ and rejects exactly
those strings that encode ordered versions of input structures rejected by Π̄.

2. There exists a polynomial r(n) such that the number of microsteps in every run
of Π̄ on an input structure of size n is bounded by r(n).

Proof 1. The desired Turing machine simulates the given PTime program. The
bound r in a term {s(v) : v ∈ r : g(v)} and in a do-forall rule ensures that the
number of immediate subcomputations is bounded by the number of active elements
and thus by q(n). This yields a polynomial bound on the work needed to simulate
one transition in the run. Since the number of transitions is bounded by p(n), the
whole simulation takes only polynomial time.

2. Since the number of macrosteps is bounded by a polynomial, it suffices to check
that the number of microsteps needed to fire an arbitrary rule R is bounded by a
polynomial. This is done by an obvious induction on R. 2

Part 1 of the theorem gives the following corollary.

Corollary 4 Every C̃PTime pair of structure classes (K1, K2) is separated by a
PTime class.

24

5.3 A Lower Bound for C̃PTime

In the previous subsection, we have shown that our definition of C̃PTime is not
too broad. One may also worry that it is too narrow, that — because of the use
of transitive closure in the definition of active objects — it is possible to create a
large number of active objects in short time. If this happened, then our definition,
bounding the number of active objects, would be more restrictive than the intuitive
idea of bounding the number of microsteps. The purpose of this subsection is to show
that this problem does not arise.

Some active objects, namely atoms and 0, 1, exist already in the initial state. The
problem is to show that only polynomially many active nonempty sets can be created
within polynomial honest computation time. We show that, under the definition of
honest computation time hinted at above, the number of objects activated (that is
the number of active objects which are inactive in the initial state) in any run of
a PTime program is bounded by the honest computation time. The details of the
definition of honest computation time are not important.

The idea of the proof is that every object that becomes active during a compu-
tation must be explicitly obtained during the computation, by evaluating some term
in some expanded state. Since a microstep can explicitly evaluate at most one term,
it will follow that the number of objects activated in a run is bounded by the hon-
est computation time, as desired. Of course, this proof will require a definition of
“explicitly obtained by evaluating some term.” Furthermore, we shall need informa-
tion about the order in which terms are (naturally) evaluated. The posets Pre(X,A)
defined below are designed to incorporate just this information.

Consider a PTime program Π. Without loss of generality, we may assume that Π
does not reuse variables, that is no variable is bound more than once. It follows that,
in every subrule of Π, no variable is bound more than once and no variable occurs
both free and bound. Define a grounded term to be a pair (t, A) where t is a term
and A is an expanded state appropriate for t. Similarly, define a grounded rule to
be a pair consisting of a rule and expanded state appropriate for it. Notice that a
grounded term (t, A) has a value, namely ValA(t).

The following definitions are intended to describe, for each grounded term or rule,
say (X,A), a partially ordered set (poset) Pre(X,A) whose nodes are labeled with
grounded terms that one would naturally evaluate in the course of evaluating X at A;
the order of Pre(X,A) reflects the order in which one would evaluate the grounded
terms. Pre(X,A) is similar to the parse tree of X, but there are some distinctions. To
prevent the definitions from getting even longer than they are, we omit the grounded
terms involved in evaluating guards; one could include them without any damage to
our argument.

In fact, Pre(X,A) is not necessarily a tree. It will be convenient for our purposes
that, for each free variable of X, there is at most one node with a label of the form

25

(x,A) or (x,A(v̄ 7→ ā)); this gives rise to the following auxiliary definition. Let P be
a poset whose nodes are labeled with grounded terms, and let F be a collection of
variables x such that each node with a label of the form (x,A) or (x,A(v̄ 7→ ā)) is
minimal in P and, if v̄ is present, then it does not contain x. Then adjusting P with
respect to F means merging, for each x ∈ F , all nodes of P with labels of the form
(x,A) or (x,A(v̄ 7→ ā)) into one node labeled with (x,A).

Define a disjoint union of labeled posets in the obvious way: order and the labels
within each piece are preserved and elements of distinct pieces are incomparable.
The constituent labeled posets will be called summands. Now we are ready to define
posets Pre(X,A) by induction on X.

Definition 5 Pre(t, A) is defined by recursion on t.

• If t is a variable x, then Pre(t, A) is a singleton poset whose only node is labeled
with (x,A).

• If t is f(t1, . . . , tj), then Pre(t, A) is obtained from the disjoint union of
Pre(t1, A), . . . , Pre(tj, A) by adding a (t, A)-labeled node at the top and ad-
justing the result with respect to the free variables of t.

• If t is {s(v) : v ∈ r : g(v)}, then construct Pre(t, A) as follows. Form the disjoint
union of Pre(s(v), A(v 7→ a)) for all a ∈ ValA(r). Add a copy of Pre(r, A) below
each (v, A(v 7→ a)) if there are any; otherwise add a copy of Pre(r, A) to the
disjoint union as a new summand. Adjoin a (t, A)-labeled node at the top.
Adjust the result with respect to the free variables of t.

Note that Pre(t, A) always has the top node labeled with (t, A). Further, for each
free variable x of t, there is at most one node labeled with (x,A) and this node (if
present at all) is minimal in Pre(t, A).

Definition 6 Pre(R,A) is defined by recursion on R.

• If R is Skip, then Pre(R,A) = ∅.
• If R is f(t1, . . . , tj) := t0, then construct Pre(R,A) as follows. Form the disjoint

union of Pre(t0, A), . . . , Pre(tj, A) and adjust the result with respect to the free
variables of R.

• If R is “if g then R1 else R2 endif” then Pre(R,A) is Pre(R1, A) or Pre(R2, A)
according to whether ValA(g) is true or false.

• If R is “do forall v ∈ r, R0(v) enddo”, then construct Pre(R,A) as follows.
Form the disjoint union of Pre(R0(v), A(v 7→ a)) for all a ∈ ValA(r). Add a
copy of Pre(r, A) below each (v, A(v 7→ a)) if there are any; otherwise add a
copy of Pre(r, A) to the disjoint union as a new summand. Adjust the result
with respect to the set of free variables of R.

26

If (X,A) is a grounded term or rule, let Val[Pre(X,A)] be the collection of objects
ValB(s) such that (s,B) is a label in Pre(X,A).

Lemma 7 1. If Den(R,A) contains an update (f, (a0, . . . , aj−1), aj), then every
ai ∈ Val[Pre(R,A)].

2. Suppose that (X,A) is a grounded term or rule with bound variable v. If (v, B)
is a label in Pre(X,A), then B has the form C(v 7→ a) where C = A(ū 7→ b̄)
and the variables ū (if present at all) are all different from v.

Proof
1. Induction on R.
2. Induction on X. 2

The labels of Pre(X,A) are (some of the) grounded terms that would be evaluated
when one evaluates X in A. At least one unit of honest computation time should be
spent to evaluate each of the labels. So if a run 〈A0, . . . , Al〉 of the program Π takes
honest computation time T , then

Card(
⋃

i

Val[Pre(Π, Ai)]) ≤ T.

Theorem 8 Consider a run ρ = 〈A0, . . . , Al〉 of Π. Every object x activated in ρ
belongs to

⋃

i

Val[Pre(Π, Ai)].

Proof Call the sets 0, 1 binary and let x be an active nonbinary set in ρ. In view of
the convention about dynamic functions in initial states, A0 has no critical nonbinary
sets and thus no active nonbinary sets. Let i be the first index such that x is active
in Ai+1. So there is a nonbinary set y, critical for Ai+1, with x ∈ TC(y). Since y is
not critical for Ai, there must be an update, executed in the step from Ai to Ai+1,
involving y as either the new value or a component of the location. By Lemma 7, y ∈
Val[Pre(Π, Ai)]. Among all nodes n in Pre(Π, Ai) such that x ∈ TC(Val(Label(n))),
choose a minimal one. Call this node n0 and let (t, B) = Label(n0). Our goal is to
show that ValB(t) = x. So suppose this fails. Then there exists w ∈ ValB(t) such
that x ∈ TC(w). (This includes the possibility that x = w.) As x is a nonbinary
set, w is a nonbinary set. We consider the various possibilities for t and deduce a
contradiction in every case. Note that B is an expansion of Ai.

Suppose that t has the form f(s̄) for a dynamic f . Then ValB(t) is critical already
in Ai and therefore x is active in Ai, contrary to our choice of i.

Suppose that t is ∅ or Atoms. This is absurd, as ValB(t) contains a nonbinary set
w.

27

Suppose that t is
⋃

s. Since w ∈ ValB(t) =
⋃

ValB(s), we have w ∈ u ∈ ValB(s)
for some u. Since x ∈ TC(w), we have x ∈ TC(ValB(s)). But Pre(t, B) has a node
labeled (s,B) and thus there is a node labeled (s,B) below n0 in Pre(Π, A). This
contradicts the choice of n0.

Suppose t is {s1, s2}. Then x ∈ TC(w) = TC(ValB(s)) for some s ∈ {s1, s2}. The
rest is as in the

⋃
case.

Suppose that t is TheUnique(s). Since ValB(t) is a set (not an atom),
TheUnique(s) =

⋃
(s) here, and we get a contradiction as in the

⋃
case.

Suppose that t is P (s̄) where P is a predicate name. According to our presentation
of truth values, ValB(t) is either ∅ or {∅}. In the first case, we get a contradiction
as in the ∅ case. In the second case, w = ∅ which is impossible as TC(w) contains a
nonbinary set x.

Suppose that t is {s(v) : v ∈ r : g(v)}. Since w ∈ ValB(t), there is some a ∈
ValB(r) such that ValB(v 7→a)(g(v)) = true and ValB(v 7→a)(s(v)) = w. Recall that
x ∈ TCB(w). But Pre(t, B) has a node labeled (s(v), B(v 7→ a)) and thus there is a
node labeled (s(v), B(v 7→ a)) below n0 in Pre(Π, A). This contradicts the choice of
n0.

Finally, suppose that t is a variable v. As Π is a program and thus has no free
variables, v is bound in Π. Since Π does not reuse variables, v is bound exactly once,
either by a {s(v) : v ∈ r : g(v)} construction or by a do-forall. Let r be the range of
v. By Lemma 7, B must be C(v 7→ a), where C is an expansion of Ai that involves
only variables different from v and where a ∈ ValC(r). So ValB(t) = ValC(v 7→a)(v) =
a ∈ ValC(r). Thus, x ∈ TC(ValC(r)). But Pre(Π, A) includes a copy of Pre(r, C),
whose top node is labeled with (r, C), below node n0. This contradicts the minimality
of n0.

2

Corollary 9 Let Π̄ be a PTime program (Π, p(n), q(n)), and let ρ be the run of Π̄ on
some input structure I. The number of objects active in ρ is bounded by the number
of microsteps plus the number of atoms plus two.

Proof Except for 0, 1, and atoms, everything active in ρ is activated in ρ. The
theorem and the observation preceding it immediately give the desired bound. 2

5.4 The Robustness of C̃PTime

We have considered two definitions of PTime programs: the official definition by
means of active elements, and the counting-microsteps definition. Even though de-
tails of the second definition have been skipped, we have shown in the previous two

28

subsections that the two definitions are equivalent in the sense that they give rise to
the same notion of C̃PTime.

There is another natural definition of PTime programs. Fix a program Π, and
call an object x relevant to a state A of Π if it is active at A or there exists a
dynamic function f such that x ∈ TC(Extent(f)) in A. (Extents were defined in
Subsection 4.2.) Call x relevant to a run ρ of Π if it is relevant to some state of ρ.

A PTime program can be defined as a pair (Π, r(n)) where Π is a program and
r(n) is a polynomial that bounds the number of relevant objects in Π’s runs. If ρ is
the run of Π on an initial structure I, then the run of (Π, r(n)) on I is the maximal
initial segment ρ0 of ρ such that (1) the number of objects relevant to ρ0 is bounded
by r(n), and (2) all states of ρ0 are distinct. The second clause is needed to ensure
that ρ0 is finite in the case when Π loops on I.

Theorem 10 The active-object and relevant-object definitions give the same notion
of C̃PTime

Proof First, let (Π, r(n)) be a PTime program with respect to the relevant-object
definition, and let ρ be the run of (Π, r(n)) on an input structure I of size n. Clearly,
r(n) bounds the number of active objects in Π’s runs. It suffices to show that the
length of ρ is bounded by a polynomial of n that is independent of I.

Let m be the number of dynamic names in Voc(Π), and let f range over dynamic
functions of Π. A state in ρ is uniquely determined by the relevant sets Extent(f).
Hence the number of different states in ρ is at most r(n)m.

Second, let (Π, p(n), q(n)) be a PTime program with respect to the active-object
definition, and let ρ be the run of (Π, p(n), q(n)) on an input structure I of size n. It
suffices to show that the number of objects relevant to ρ is bounded by a polynomial
of n that is independent of I.

Let m be the number of dynamic functions in Π and let j be the maximum of
their arities. A relevant object x has one of the following two forms. First, x may be
Extent(f) for some dynamic function f . There at most m · p(n) relevant objects of
that sort. Second, x may be a k-tuple of active objects, k ≤ j + 1, or a member of
the transitive closure of such a tuple. Obviously, there is a polynomial bound on the
number of such relevant objects. 2

6 Two Fixed-Point Theorems

The main purpose of this section is to show that any C̃PTime computation over an
input structure I can be described in the logic FO+LFP over any transitive set that
contains the active elements. (The relations of I are to be viewed as relations on that

29

transitive set.) This fact, along with the translation of FO+LFP into Lω
∞,ω, will be

used in obtaining our negative results about C̃PTime computability in Section 10.

6.1 Definable Set-Theoretic Functions

The ASM programming language allows one to use much of the usual set-theoretic
notation. Here are some examples.

Lemma 11 Over ASM states, every first-order formula with bounded quantifiers is
expressible by a Boolean term.

Proof An easy induction over the given formula. In particular, (∃v ∈ r) g(v) ⇐⇒
0 ∈ {0 : v ∈ r : g(v)}. 2

Lemma 12 The function

if y then x1 else x2 =
{

x1 if y 6= 0
x2 if y = 0

is definable

Proof

TheUnique
(
{v : v ∈ {x1, x2} : (y 6= 0 ∧ v = x1) ∨ (y = 0 ∧ v = x2)}

)
.

2

Lemma 13 Operations x ∪ y,
⋂

x, x− y are definable.

Proof

x ∪ y =
⋃{x, y}

⋂
x = {v : v ∈ ⋃

x : (∀w ∈ x)v ∈ w}
x− y = {w : w ∈ x : w /∈ y}

2

The standard Kuratowski definition of ordered pairs is

OP(x, y) = {{x}, {x, y}}.

30

Lemma 14 There are definable functions P1 and P2 satisfying the following condi-
tion. If z = OP(x, y), then P1(z) = x and P2(z) = y.

Proof

P1(z) = TheUnique
(⋂

z
)

P2(z) =
(
if

⋃
z =

⋂
z then P1(z) else TheUnique(

⋃
z −⋂

z)
)

2

We will use the following lemma. Every nonempty transitive set T is a natural
model of the vocabulary {∈, ∅}; this model will be also called T .

Lemma 15 There exists a formula PosInteger(x) in the vocabulary {∈, ∅} such that,
for every transitive set T and every x ∈ T ,

T |= PosInteger(x) ⇐⇒ x is a positive integer.

Proof First express that x is a natural number: x is transitive and either 0 or of
the form z ∪ {z}, and the same is true for each y ∈ x. PosInteger(x) asserts that x is
a natural number and x 6= 0. 2

6.2 First-Order Semantics

The sequel of a given state with respect to a given program can be described in the
given state by means of first-order formulas [Glavan and Rosenzweig 1993]. We need
here a related result.

Lemma 16 For every rule R and every dynamic function name f , there is a first-
order formula UpdateR,f (x̄, y) such that

A |= UpdateR,f (x̄, y) ⇐⇒ (f, x̄, y) ∈ Den(R,A) and Den(R,A) is consistent

for all appropriate expanded states A.

The appropriateness of A means that A is appropriate for R and its vocabulary
contains the name f which may or may not occur in R.

31

Proof We first define a simpler formula Update′R,f (x̄, y) expressing that (f, x̄, y) ∈
Den(R,A) without worrying about consistency, and then we adjust it to take consis-
tency into account.

Update′R,f is defined by induction on R. If R is Skip or an update rule with head
name different from f , then Update′R,f is any logically false formula. If R is f(t̄) := t0,
then Update′R,f is

(x̄ = t̄ ∧ y = t0).

If R is “if g then R1 else R2 endif”, then Update′R,f is

(g = true ∧ Update′R1,f) ∨ (g = false ∧ Update′R2,f).

If R is “do-forall u ∈ r, R0(u) enddo”, then Update′R,f is

(∃u ∈ r)Update′R0(u),f .

Next, to take consistency into account, let

ClashR =
∨

h∈Υ

ClashR,h

where ClashR,h is

∃z̄∃w∃w′[Update′R,h(z̄, w) ∧ Update′R,h(z̄, w
′) ∧ w 6= w′]

Here Length(z̄) = Arity(h).

Finally, define UpdateR,f (x̄, y) to be Update′R,f (x̄, y) ∧ ¬ClashR. 2

6.3 Time-Explicit Programs

Call a PTime program Π time-explicit if every positive integer i is active in all runs
of Π of length ≥ i.

Lemma 17 Every PTime program can be simulated by a time-explicit PTime pro-
gram.

Proof Just alter the given program Π to

do-in-parallel

Π
if not(Halt) then

CT := CT ∪ {CT}
endif

enddo

32

where CT (an allusion to Current Time) is a fresh nullary dynamic function name
(automatically initialized to 0, according to our conventions). The polynomial bounds
attached to the original program Π must be increased somewhat to accommodate the
additional work done by the CT clock. It does no harm to increase those bounds
somewhat generously, since the definition of simulation at the end of Section 3 allows
the simulating machine to accept or reject inputs for which the original machine did
neither. 2

6.4 Fixed-Point Definability

Fix a PTime program Π̄ = (Π, p(n), q(n)) where Π is time-explicit. Let I range over
input structures for Π. Define Active(I) to be the collection of active objects in the
run of Π̄ on I. It is easy to see that Active(I) is transitive. We also denote by
Active(I) the structure (Active(I),∈, ∅, R̄) where R̄ stands for all the relations of the
input structure I.

Theorem 18 (First Fixed-Point Theorem) Let 〈Ai : i ≤ l〉 be the run of Π̄ on
an input structure I. Relations

Df (i, x̄, y) ⇐⇒ Ai |= f(x̄) = y 6= 0,

where f ranges over the dynamic function symbols in Π, are uniformly FO+LFP
definable in Active(I).

The uniformity means that the defining formulas are independent of I.

Proof Notice that if i is a positive integer then i− 1 =
⋃

i. For clarity, we will use
i− 1 instead of

⋃
i in the situations where i is a positive integer.

Call a first-order formula ϕ simple if every atomic subformula of ϕ has the form
f(x̄) = t where x̄ is a tuple of variables and t is either a variable or true or false.
It is easy to see that every first-order formula whose vocabulary consists of function
names is logically equivalent to a simple formula. Without loss of generality, we may
assume that the formulas UpdateR,f (x̄, y), constructed in the previous subsection, are
simple.

By simultaneous recursion, we define relations Df , where f ranges over the dy-
namic function names of Π:

Df (i, x̄, y) ⇐⇒ PosInteger(i) ∧ y 6= 0 ∧[(
Df (i− 1, x̄, y) ∧ ¬(∃z 6= y)Uf (i− 1, x̄, z)

)
∨ Uf (i− 1, x̄, y)

]

33

Here Uf (j, x̄, y) is the formula UpdateΠ,f (x̄, y) where each atomic subformula h(ū) = t
is replaced with

Dh(j, u, t) ∨ [t = 0 ∧ ¬(∃y)Dh(j, u, y)].

2

The First Fixed-Point Theorem remains true if the computation time of the given
program is bounded by any other function (not necessarily a polynomial) or is not
bounded at all. Also, we get the same definability in any transitive T that includes
Active(I).

Theorem 19 (Second Fixed-Point Theorem) Restrict attention to input struc-
tures I such that Π̄ halts on I. Then the set Active(I) is uniformly FO+LFP definable
in HF(BaseSet(I)).

Proof We first produce an FO+LFP formula expressing that x is critical in the run
of Π̄ on I. This formula asserts that x is an atom, or

x ∈ {0, 1}, or the following is true for some dynamic function f where k =
Arity(f).

(∃i, v0, . . . , vk)
[
Df (i, v0, . . . , vk) ∧ (v0 = x ∨ · · · ∨ vk = x) ∧ (∀j ∈ i)¬DHalt(j, true)

]
.

Using this definition of critical, we can define Active(I) by a formula saying that x
belongs to every transitive set that contains every critical y. 2

7 On the Extent of C̃PTime

We show, in particular, that PTime abstract state machines are more powerful than
the PTime relational machines of Abiteboul–Vianu.

Theorem 20 For every PTime relational machine Ξ, there exists a PTime ASM pro-
gram Π that accepts all input structures accepted by Ξ and rejects all input structures
rejected by Ξ.

Proof If Ξ has m instructions, then the desired program Π is a do-in-parallel rule
with m components. Each component simulates one instruction of Ξ. 2

To show that choiceless polynomial time computations are strictly more powerful
than polynomial time relational machines, we shall exhibit two classes of structures
that can be separated by the former but not by the latter.

34

It would be easy to give a trivial example, based on the fact that for relational
machines “polynomial time” is measured relative to the size of a quotient structure
obtained by identifying indistinguishable elements of the input structure. If this
quotient is much smaller than the actual input structure, then “polynomial time” is
a much more stringent restriction for the relational machine than for our framework.
We are interested, however, not in this trivial difference between the conventions
of the two models but in actual computational differences. We therefore use in our
example only structures where the quotient structure is nearly as large as the original,
so that “polynomial” has the same meaning for both models.

The vocabulary for our example consists of a unary predicate symbol P and a
binary predicate symbol <. Let K be the class of structures A in which (1) the
interpretation PA of P is small in the sense that |PA|! ≤ |A| and (2) < linearly orders
A− PA. Thus a structure in K consists of a large linearly ordered part plus a small
naked set PA. Let K0 resp. K1 be the subclasses of K consisting of structures where
the cardinality of PA is even resp. odd.

Because A−PA is ordered, all its elements remain distinct in the quotient structure
used as the measure of input size in the relational model. Since PA is small, the
quotient is of size comparable to A; in particular, polynomial relative to the quotient
structure is the same as polynomial relative to the original structure. This observation
is our only reason for including < in our structures.

Theorem 21 The classes K0 and K1 can be separated by C̃PTime.

Proof Let us begin with some wishful thinking. If the structures included an or-
dering of PA, then we could use it to obtain the parity of |PA| just by counting. For
example, we could use two 0-ary names p and q, where p is a set that is initially empty
and, in each execution of the program, acquires as a new member the first element of
PA not already in p (until p = PA), while q alternates between 0 and 1. (This wish-
ful thinking is, of course, just a special case of the fact that, on ordered structures,
C̃PTime captures PTime because it can simulate the least fixed point operator.)

In reality, however, no ordering of PA is available, so the wishful thinking of the
preceding paragraph cannot succeed. Our ASM model can, however, produce the set
X of all linear orderings of PA; the following program does the job in a run of length
|PA|.

if Mode = Final then

skip

elseif (∀x ∈ Atoms)(∀u ∈ X) [P (x) ⇒ (x, x) ∈ u] then

Mode := Final

else

X := {u ∪ {(x, y) : (x, x) ∈ u ∨ x = y} : u ∈ X ∧ P (y) ∧ (y, y) /∈ u}
endif

35

The number of objects activated by this program is bounded by a linear function
of |PA|! and is therefore bounded by a polynomial (in fact linear) function of |A| for
A ∈ K. This is the reason for considering structures that are so much bigger than
the interpretation of P ; polynomial time relative to |A| is enough to produce all the
linear orderings of PA.

Finally, after producing the set X of all linear orderings of PA, we can run many
copies of the “wishful thinking” algorithm in parallel, one copy for each ordering in
X. When they all halt, i.e., when their p’s stop growing, their q’s all agree, and this
common value gives the parity of PA. 2

Lemma 22 The classes K0 and K1 cannot be separated by a polynomial time rela-
tional machine.

Proof It is known [Abiteboul and Vianu 1991] that the operation of any polynomial
time relational machine can be described by a sentence of the finite variable infinitary
language Lω

∞ω. But an easy pebble-game argument shows that an m-variable infini-
tary sentence cannot distinguish two structures A,B ∈ K as long as their ordered
parts A− PA and B − PB have the same size and their unordered parts PA and PB

have size at least m. Thus, such a sentence cannot separate K0 from K1. 2

Thus PTime abstract state machines are more powerful than PTime relational
machines.

Remark Theorem 21 can be strengthened by replacing the restriction |PA|! ≤ |A|
with 2|P

A| ≤ |A|. The idea is to compute the set of 2-element subsets of PA, then
extend it with the set of all 4-element subsets of PA, then extend the result with
the set of all 6-element subsets of PA, and so on. When this computation converges,
check if the result contains PA.

Theorem 21 and its proof apply in much greater generality than stated above.
Once the set X of linear orderings of PA has been produced, the program can go on to
simulate any PTime Turing machine operating on input PA. Thus, any PTime com-
putable property of structures becomes C̃PTime computable when the input structure
for the C̃PTime computation has the input of the Turing computation as a small,
definable substructure. Here “small” is defined using the factorial function, as in the
theorem.

Furthermore, the theorem and its proof can be extended to cover the situation
where PA is not merely a subset of the input structure but rather a set that can be
produced in polynomial time by an ASM. For example, if the input structures are
groups G then it might be the commutator subgroup G′ or the quotient G/G′. 2

36

8 The Support Theorem

The goal of this and the next sections is to show that the parity of a naked set is not
C̃PTime computable. Thus the inclusion of C̃PTime in PTime (see Theorem 3) is
proper; “choiceless” is a real restriction. The present section is devoted to establishing
a limitation on the sets that can be activated by a C̃PTime computation over a naked
set. This limitation is used in the next sections to prove the negative result about
parity. The same method will also yield other negative results.

Consider a PTime program Π and let I be an input structure for Π. The recipe
θ(x) = {θ(y) : y ∈ x} extends any automorphism θ of I to an automorphism of the
whole initial state State(I) generated by I. It is easy to see that every automorphism
of State(I) can be obtained this way. Indeed, an automorphism θ′ of State(I) coin-
cides, on I, with some automorphism θ of I; by induction on Rank(x), check that
θ′(x) = θ(x) for all x ∈ State(I).

Definition 23 A set X of atoms of I is a support of an object y ∈ State(I) if every
automorphism of I that pointwise fixes X fixes y as well.

For example, the set of atoms in TC(y) is a support of y. But y may also have
other, far smaller supports. For example, the empty set is a support of the set of all
atoms.

Let Active(I) be the set of active objects in the run of Π on I. It is easy to see that
Active(I) is transitive and closed under automorphisms of State(I). Let Active+(I)
be the substructure of State(I) with base set Active(I).

Theorem 24 (Support Theorem) Assume that the input vocabulary of Π is
empty. There exists a number k such that, for all sufficiently large I, every object in
Active(I) has a support of cardinality ≤ k.

To avoid interruption of the natural flow of the proof, we start with a version of
a known combinatorial lemma which will be used later in the proof. Recall that a
∆-system is a collection K of sets such that X ∩ Y is the same set for all X 6= Y in
K.

Lemma 25 Any indexed family F of ≥ l!pl+1 sets (not necessarily distinct), each of
size ≤ l, includes a ∆-system of p sets.

Proof Induction on l. If l = 0, then F itself is a ∆-system. Assume that l > 0 and
the results holds for l − 1.

Case 1: There exists a point x that belongs to ≥ (l − 1)!pl sets in F , say sets Xi,
i ∈ I. Apply the induction hypothesis to the family {Xi − {x} : i ∈ I}, to extract

37

a ∆-system of p sets {Xi − {x} : i ∈ J}. The family {Xi : i ∈ J} is the desired
∆-system.

Case 2: Each point belongs to < (l−1)!pl sets in F . In this case, we find p pairwise
disjoint members of F ; they form the desired ∆-system. Notice that each member of
F intersects < l(l − 1)!pl = l!pl other members and that Card(F)/(l!pl) ≥ p. Pick
a member X1 arbitrarily, and then eliminate those members that meet X1. Pick
a member X2 among the remaining members arbitrarily, and then eliminate those
members that meet X2. And so on. 2

Proceeding toward the proof of the support theorem, let Π be as in its hypoth-
esis. So the input structure I is a naked set and automorphisms of I are simply
permutations of I. Let A = Active(I).

Lemma 26 If X1, X2 support y and X1 ∪X2 6= I, then X1 ∩X2 supports y as well.

Proof Suppose that X1, X2 support y. Fix an atom a ∈ I − (X1 ∪X2). Let b range
over I − (X1 ∩X2) and πb be the transposition of atoms that interchanges a and b.
For each b, either b /∈ X1 or b /∈ X2. In the first case πb pointwise fixes X1, and in
the second it pointwise fixes X2. In either case, it fixes y. It is easy to see that the
transpositions πb generate all permutations of atoms which pointwise fix X1 ∩ X2.
Hence the automorphisms induced by permutations πb generate all automorphisms of
A that fix X1 ∩X2. Hence every such automorphism fixes y. 2

Let n = Card(I). Lemma 26 justifies the following definition. If object y has a
support X with |X| < n/2, then the set

Supp(y) =
⋂{X : X supports y and |X| < n/2}.

is the smallest support of y.

Since Π is PTime, there exists a bound nk on Card(A). Fix such a k and assume

that n is so large that

(
n

k + 1

)
> nk.

Lemma 27 If x ∈ A has a support of size < n/2, then |Supp(x)| ≤ k.

Proof Suppose that x has a support of size < n/2 and s = |Supp(x)|. If an au-
tomorphism θ moves x to some y, then it moves Supp(x) to Supp(y). If s > k, we
have

38

nk ≥ Card(A) ≥ Card{θ(x) : θ ∈ Aut(A)}
≥ Card{θ(Supp(x)) : θ ∈ Aut(A)}
=

(
n

s

)
≥

(
n

k + 1

)
> nk

2

In order to prove the theorem, it suffices to prove the following lemma.

Lemma 28 If n is sufficiently large, then every member of A has a support of size
< n/2.

Proof Toward a contradiction, assume that the lemma fails and let x be an object
of minimal rank in A without support of size < n/2. Clearly, x is a set and each
member of x has a support of size < n/2. Let m = bn/(4k)c.

Claim 29 There exists a sequence 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ m〉 such that every
initial segment 〈(θi, yi, zi, Yi, Zi) : 1 ≤ i ≤ j〉 satisfies the following conditions:

• θj is an automorphism of A, and yj, zj are objects in A, and Yj = Supp(yj),
Zj = Supp(zj).

• yj ∈ x, zj /∈ x.

• θj fixes Yi∪Zi pointwise for all i < j, and θj(yj) = zj, and θj maps Yj onto Zj.

Proof of the claim. We construct the tuples by induction on j. Suppose that a
sequence 〈(θi, yi, zi, Yi, Zi) : 1 ≤ i < j〉, satisfying all the conditions, has been con-
structed. By the minimality of x, each yi has a support of size < n/2. Since zi is an
automorphic image of yi, the same applies to zi. By the previous lemma, |Yi|, |Zi| ≤ k.

Let Xj =
⋃

i<j(Yi ∪Zi). We have |Xj| ≤ (j − 1) · 2k < (n/4k) · 2k = n/2. If every
automorphism θ that pointwise fixes

⋃
i<j(Yi∪Zi) fixes x as well, then x has a support

of size < n/2 and we have a contradiction. So there exists an automorphism θ that
pointwise fixes Xj but moves x. It follows that there exists y ∈ x such that the element
z = θ(y) does not belong to x. (Otherwise θ(x) = θ{y : y ∈ x} = {θ(y) : y ∈ x} = x.)
Since θ(y) = z, θ maps Supp(y) onto Supp(z). Choose, θj = θ, yj = y and zj = z. 2

Let p be the largest integer with (2k)!p2k+1 ≤ m. As n grows, both m and p grow
(but k is fixed). For large enough n, we have

2p−1 >
[(

(2k)!(p + 1)2k+1 · 4k
)k]

≥
[(

(m + 1) · 4k
)k]

> nk

Assume that n is sufficiently large, so that 2p−1 > nk.

39

Claim 30 There exists a sequence 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ p〉 such that

• every initial segment 〈(θi, yi, zi, Yi, Zi) : 1 ≤ i ≤ j〉 of the given sequence satisfies
the three conditions of Claim 29, and

• The sets Yi ∪ Zi form a ∆-system.

Proof of the claim. Let 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ m〉 be as in Claim 29. By the
induction hypothesis, each Yi is of cardinality ≤ k. Since Zi is an automorphic image
of Yi, the same applies to Zi. Thus Yi ∪ Zi ≤ 2k. Now apply Lemma 25. 2

Fix a sequence 〈(θj, yj, zj, Yj, Zj) : 1 ≤ j ≤ p〉 as in Claim 30, and let X0 =
(Yi ∪Zi)∩ (Yj ∪Zj) for all i 6= j in [1, . . . , p]. Let U be the integer interval [2, . . . , p].
If i ∈ U , then θi pointwise fixes Y1 ∪ Z1 and therefore pointwise fixes X0.

Claim 31 For each V ⊆ U , there exists an automorphism θV such that

• if i ∈ V , then zi = θV (zi).

• if i ∈ U − V , then zi = θV (yi).

Proof of the claim. Construct a permutation π(a) of atoms as follows. If a ∈ X0

then π(a) = a. If a ∈ Yi ∪ Zi for some i ∈ V , then π(a) = a. If a ∈ Yi for some
i ∈ U − V but a /∈ X0, then π(a) = θi(a), so that π maps Yi onto Zi. We do not care
how π behaves on the remaining atoms. The desired θV is the automorphism induced
by π. To see that it sends yi to zi for i ∈ U −V , observe that it agrees with θi on the
support Yi of yi, that therefore π−1θi fixes yi, that θi sends yi to zi, and that therefore
π−1 must send zi to yi. 2

Let the automorphisms θV be as in Claim 31.

Claim 32 If V, W are different subsets of U , then θV (x) 6= θW (x).

Proof of the claim. Suppose that V and W are distinct. Without loss of generality,
V −W 6= ∅. Pick some i ∈ V −W . We show that zi ∈ θW (x)− θV (x).

Since zi /∈ x, θV (zi) /∈ θV (x). Since i ∈ V , zi = θV (zi) /∈ θV (x).

Since yi ∈ x, θW (yi) ∈ θW (x). Since i ∈ U −W , zi = θW (yi) ∈ θW (x). 2

By Claim 31, there are 2p−1 different automorphic images of x. Recall that n is
sufficiently large, so that 2p−1 > nk. Hence Card(A) ≥ 2p−1 > nk ≥ Card(A). This
gives the desired contradiction. The Support Theorem is proved. 2

40

Define a colored set to be an input structure with only unary relations, called
colors, which partition the base set, so that every atom (that is every element of the
base set) belongs to exactly one color. We shall be interested in colored structures
with a fixed number c of colors (i.e., the vocabulary is fixed), none of which are too
small in proportion to the size of the whole set. Specifically, for any real number
ε > 0, we call a colored set of size n ε-level if each color has cardinality at least ε · n.

Corollary 33 Assume that input structures for the PTime program Π are ε-level
colored sets with c colors. There exists a number k, depending only on Π, ε, and c,
such that, whenever the input structure I is sufficiently large, then every object in
ActiveΠ(I) has a support of cardinality ≤ k.

Proof The proof is similar to the proof of the theorem. We indicate the more im-
portant changes. Throughout the proof, require permutations to preserve the colors,
i.e., to be automorphisms of the colored set. In Lemma 26, require that I− (X1∪X2)
contains at least one atom of every color, so that the transpositions used in the proof
can be taken to preserve colors.

In the definition of Supp(y), replace |X| < n/2 with the requirement

|X ∩ C| < |C|/2 for all colors C (*)

Accordingly, in Lemma 27 and Lemma 28, instead of supports of size < n/2, speak
about supports satisfying (*). In connection with Lemma 27, first choose k′ (rather
than k) so that nk′ bounds the number of active elements, and take n so large that(

εn

k′ + 1

)
> nk′ . The lemma then asserts that if (*) holds then the support of X has

at most k′ elements in each color and therefore at most k = c ·k′ elements altogether.
This is the k needed for the support theorem.

In the definition of m, replace n with the minimum of the color sizes. The rest of
the proof remains valid. 2

Finally, let us note that, over some input structures, a PTime program can activate
sets with no bounded support, so that the minimal support size depends on the input
structure I, not only on the PTime program.

Example 34 Let I be the disjoint union of (i) a vector space V over the two-element
field and (ii) a disjoint set S of size ≥ 2|V |. Let the program do the following with a
dynamic nullary function Q. Initialize Q to {{0̄}} where 0̄ is the zero of V . Thereafter,
for each q ∈ Q and each v ∈ V − q, put into Q the subspace generated by q ∪ {v},
except if this would make V ∈ Q, in which case halt and accept. On the first step,
the program activates all one-dimensional subspaces of V ; on the second, all two-
dimensional subspaces; on the third, all three-dimensional subspaces, and so on. The
length of the run equals the dimension of V . The number of active objects in the run
is

41

|V |+ |S|+ |Subspaces of(V)| ≤ |V |+ 2|S| < 2|I|.

Thus a PTime version of Π accepts I. Notice that every hyperplane H of V is
activated. But H has no support smaller than dim(V)− 1.

9 The Equivalence Theorem

Fix an input vocabulary Υ0 and let I, J denote input structures of vocabulary Υ0.
Recall that every automorphism of I naturally extends to an automorphism of HF(I)
and that a subset X of BaseSet(I) supports an object y ∈ HF(I) if every automor-
phism of I that pointwise fixes X also fixes y. Given a positive integer k, call an
object y ∈ HF(I) k-symmetric if every z ∈ TC(y) has a support of size ≤ k. This
terminology makes sense in the case of interest to us when many permutations of I fix
a k-symmetric object y. Notice that every atom has a support of size one and thus is
k-symmetric. Also the set of atoms has empty support, so it is k-symmetric for any
k. But a linear ordering of the atoms is not k-symmetric unless k is at least equal to
the number of atoms (in which case everything is k-symmetric). Let Īk denote the
collection of k-symmetric objects in HF(I) as well as the corresponding structure of
vocabulary Υ0 ∪ {∈, ∅}.

We are interested in a special case when Υ0 is empty and thus I, J are naked sets.

Theorem 35 (Equivalence Theorem) Fix positive integers k and m. If naked
sets I, J are sufficiently large, then structures Īk and J̄k are Lm

∞,ω-equivalent.

The theorem is proved in the rest of this section. We drop the subscript k and
abbreviate “k-symmetric” to “symmetric”. Without loss of generality, m ≥ 3. We
assume that the naked sets I, J have size ≥ km and construct a winning strategy for
the Duplicator in Gamem(Ī , J̄). The idea is to represent every symmetric object x
as a combination of a form and matter. The form of an object x reflects a definition
of x independent from the underlying sets of atoms. The matter of x is an ordered
support of x.

9.1 Matter

Molecules A molecule over a naked set I is an injective map σ : k −→ I. In other
words, a molecule is a sequence of k distinct atoms.

The Configuration of a Sequence of Molecules Consider a naked set I. The
configuration C(σ̄) of a finite sequence σ̄ = (σ0, . . . , σl−1) of molecules over I is the
equivalence relation on l × k given by

42

(i, p)C(σ̄)(j, q) ⇐⇒ σi(p) = σj(q).

The configuration describes how the ranges of the molecules overlap. By the injec-
tivity, (i, p)C(σ̄)(i, q) ⇐⇒ p = q. Notice that C(σ̄) is uniquely determined by the
configurations C(σi, σj).

Abstract Configurations Let l be a natural number. An l-ary configuration is
an equivalence relation E on l × k such that (i, p)E(i, q) ⇐⇒ p = q. Every
C(σ0, . . . , σl−1) is an l-ary configuration, and every l-ary configuration can be realized
in this way. To prove the latter, assign a different atom [i, p] to every equivalence
class (i, p)E of E. Then set σi(p) = [i, p].

Lemma 36 Suppose that l < m, and σ0, . . . , σl are molecules over I, and τ1, . . . , τl

are molecules over J ; Q = C(σ0, . . . , σl) and Q′ = C(σ1, . . . , σl) = C(τ1, . . . , τl).

There exists a molecule τ0 over J with C(τ0, . . . , τl) = Q.

Proof Define the desired τ0 by setting

τ ′0(p) =





τ1(q1) if (0, p)Q(1, q1)
τ2(q2) if (0, p)Q(2, q2)
. . .
τl(ql) if (0, p)Q(l, ql)

and then extending τ ′0 to a full molecule τ0 by using distinct values in J −⋃l
i=1 Range(τi). It is obvious that C(τ0, . . . , τl) = Q provided that τ0 is well-defined.

Recall that Card(J) ≥ km and thus there exist enough distinct values to extend τ ′0
to τ0. In the rest of the proof, we check that τ ′0 is well-defined.

First, we check that each τ ′0(p) is defined uniquely. Let 1 ≤ i, j ≤ l and suppose
(0, p)Q(i, q) and (0, p)Q(j, s). Then (i, q)Q(j, s), (i, q)Q′(j, s), and therefore τi(q) =
τj(s).

Second, we check that τ ′0 is injective. Let 1 ≤ i, j ≤ l and suppose that τ ′0(p) =
τ ′0(p

′) where τ ′0(p) = τi(q) and τ ′0(p
′) = τj(s). By the definition of τ ′0, we have

(0, p)Q(i, q) and (0, p′)Q(j, s). Further, τi(q) = τ ′0(p) = τ ′0(p
′) = τj(s), and hence

(i, q)Q′(j, s) and therefore (i, q)Q(j, s). Putting this together, we have

(0, p) Q (i, q) Q (j, s) Q (0, p′)

which implies p = p′. 2

43

9.2 Forms

The Definition of Forms Fix a list c0, c1, . . . , ck−1 of new symbols. The set of
forms is defined recursively as the smallest set containing the symbols cp and contain-
ing every finite set of pairs (ϕ,E) where ϕ is a form and E is a binary configuration.
If ϕ = cp then Rank(ϕ) = 0; otherwise

Rank(ϕ) = 1 + max{Rank(ψ) : some (ψ, E) ∈ ϕ}.

Denotations A form ϕ and a molecule σ over a naked set I uniquely define an
object ϕ ∗I σ ∈ HF(I), which we may think of as the denotation of ϕ with respect
to σ. The subscript may be omitted in ∗I if the naked set is clear from the context.
The definition is given by induction on ϕ.

• cp ∗ σ = σ(p).

• If ϕ is a set, then ϕ ∗ σ = {ψ ∗ τ : (ψ, C(τ, σ)) ∈ ϕ}.

Permutations Recall that any permutation π of I extends to an automorphism,
also called π, of the structure (HF(I),∈) by means of the following rule: π(x) =
{π(y) : y ∈ x}. Recall also that every automorphism of HF(I) is obtained this way.

Lemma 37 If π is a permutation of I, then π(ϕ ∗ σ) = ϕ ∗ πσ.

Proof by induction on ϕ. π(cp ∗σ) = πσ(p) = (πσ)(p) = cp ∗ (πσ). If ϕ is a set, then

π(ϕ ∗ σ) = π{ψ ∗ τ : (ψ, C(τ, σ)) ∈ ϕ} = {π(ψ ∗ τ) : (ψ, C(τ, σ)) ∈ ϕ}
= {ψ ∗ πτ : (ψ, C(τ, σ)) ∈ ϕ} (by induction hypothesis)

= {ψ ∗ ρ : (ψ, C(π−1ρ, σ)) ∈ ϕ} (ρ = πτ)

= {ψ ∗ ρ : (ψ, C(ρ, πσ)) ∈ ϕ} (see below)

= ϕ ∗ πσ

It remains to verify that C(π−1ρ, σ) = C(ρ, πσ):

(0, p)C(π−1ρ, σ)(1, q) ⇐⇒ (π−1ρ)(p) = σ(q) ⇐⇒
ρ(p) = (πσ)(q) ⇐⇒ (0, p)C(ρ, πσ)(1, q)

2

44

Corollary 38 Every ϕ ∗I σ is symmetric and thus belongs to Ī.

Proof Indeed, every ϕ ∗I σ is supported by Range(σ) and thus has a support of size
≤ k. The same conclusion applies to the members of the transitive closure of ϕ ∗I σ
because they are of the form ψ ∗ τ . 2

Recall that I is a naked set of cardinality ≥ km.

Lemma 39 Every symmetric object x over I is equal to ϕ ∗I σ for some form ϕ and
some molecule σ over I.

Proof Any atom x equals c0 ∗ σ where σ is an arbitrary molecule with σ(0) = x.
Proceeding inductively, suppose that x is a symmetric set with elements y = ψy ∗ τy.
Since x is symmetric, there is a molecule σ whose range supports x. We will prove
that x = ϕ ∗ σ where ϕ = {(ψy, C(τy, σ)) : y ∈ x}. One inclusion is easy. Suppose
that y ∈ x. By the definition of ∗I , ϕ ∗ σ = {ψ ∗ τ : (ψ, C(τ, σ)) ∈ ϕ}. By the
definition of ϕ, (ψy, C(τy, σ)) ∈ ϕ. Hence y = ψy ∗ τy ∈ ϕ ∗ σ.

For the difficult direction, consider any z ∈ ϕ ∗ σ. By the definition of ∗I , z is a
composition ψ ∗ ρ such that (ψ, C(ρ, σ)) ∈ ϕ. By the definition of ϕ, there exists a
y ∈ x such that ψ = ψy and C(ρ, σ) = C(τy, σ). The latter equality does not imply
that ρ = τy and we are not going to prove that z = y. Instead we construct an
automorphism π of Ī that pointwise fixes σ and moves y to z. Since σ supports x, π
fixes x; hence z ∈ x. It remains to construct such π.

We want that πτy = ρ and that π pointwise fixes Range(σ). To this end, define a
function π0 : Range(τy) ∪ Range(σ) −→ I by

π0(a) =
{

ρ(p) if a = τy(p);
a if a = σ(q)

Even though the two cases are not mutually exclusive, π0 is well-defined. Indeed,

τy(p) = σ(q) ⇒ (0, p)C(τy, σ)(1, q) ⇒ (0, p)C(ρ, σ)(1, q) ⇒ ρ(p) = σ(q).

Furthermore, π0 is injective. Indeed, assume that π0(a) = π0(b). If π0(a) =
ρ(p1), π0(b) = ρ(p2) then p1 = p2 (because ρ is injective) and therefore a = τy(p1) =
τy(p2) = b. In case a = σ(q1), b = σ(q2), we have a = π0(a) = π0(b) = b. Finally
suppose that a = τy(p), b = σ(q). Then

π0(a) = π0(b) ⇒ ρ(p) = σ(q) ⇒ (0, p)C(ρ, σ)(1, q) ⇒
(0, p)C(τy, σ)(1, q) ⇒ τy(p) = σ(q) ⇒ a = b

45

Thus, function π0 is one-to-one. Extend it to a permutation π over I in an
arbitrary way. Since π extends π0, it pointwise fixes Range(σ) and πτy = ρ. In the
standard way, π extends to an automorphism of Ī which will be denoted π as well.
Since σ supports x (by the choice of σ), π(x) = x. By Lemma 37,

π(y) = π(ψy ∗ τy) = ψy ∗ (πτy) = ψy ∗ ρ = z.

2

9.3 The In and Eq Relations

Lemma 40 There are ternary relations Eq and In such that, in every Ī,

ψ ∗ τ ∈ ϕ ∗ σ ⇐⇒ In(ψ, ϕ, C(τ, σ)) (1)

ψ ∗ τ = ϕ ∗ σ ⇐⇒ Eq(ψ, ϕ, C(τ, σ)) (2)

for all forms ϕ, ψ and all molecules σ, τ .

The crucial points here are that σ and τ are involved in In and Eq only via their
configurations and that In and Eq don’t depend on I.

Proof We define In(ψ, ϕ, E) and Eq(ψ, ϕ, E) by recursion on Rank(ψ) + Rank(ϕ).
It will be convenient to use the following notation. If Q is a ternary configuration and
thus an equivalence relation on 3× k, and if i and j are distinct elements of 3, then
Qij is the binary configuration obtained by restricting Q to {i, j}×k and re-indexing
i and j as 0 and 1, respectively. Thus, (0, p)Qij(1, q) if and only if (i, p)Q(j, q). With
this notation, In and Eq are defined as follows.

In(ψ, ϕ, E) ⇐⇒ ϕ is a set and (∃ form χ)

(∃ ternary configuration Q with Q12 = E)[
(χ,Q02) ∈ ϕ) and Eq(ψ, χ, Q10)

]

Eq(ψ, ϕ, E) ⇐⇒ either (∃p, q ∈ k)
[
ψ = cp ∧ ϕ = cq ∧ (0, p)E(1, q)

]
,

or ϕ, ψ are sets and (∀ form χ)

(∀ ternary configuration Q with Q12 = E)[
if (χ,Q02) ∈ ϕ then In(χ, ψ, Q01), and

if (χ,Q01) ∈ ψ then In(χ, ϕ, Q02)]

Assertions (1) and (2) of the lemma are proved simultaneously by induction on
Rank(ψ) + Rank(ϕ).

46

Proof of (1). If ϕ is a symbol cp, then ϕ ∗ σ is an atom, so the left side of (1) is
false. So is the right side, by the definition of In. Thus, we may assume from now on
that ϕ is a set.

Suppose first that ψ ∗ τ ∈ ϕ∗σ. By the definition of ∗I , ψ ∗ τ = χ∗ρ for some χ, ρ
with (χ,C(ρ, σ)) ∈ ϕ. By the induction hypothesis, Eq(ψ, χ, C(τ, ρ)). We check that
this χ and the ternary configuration Q = C(ρ, τ, σ) witness In(ψ, ϕ, C(τ, σ)). Indeed,
Q12 = C(τ, σ), (χ,Q02) = (χ,C(ρ, σ)) ∈ ϕ, and Eq(ψ, χ, Q10) is Eq(ψ, χ, C(τ, ρ)).

Conversely, suppose that In(ψ, ϕ, C(τ, σ)) is witnessed by χ and Q. By Lemma 36,
there exists ρ such that Q = C(ρ, τ, σ). We have:

(χ,C(ρ, σ)) = (χ,Q02) ∈ ϕ, so that χ ∗ ρ ∈ ϕ ∗ σ; and

Eq(ψ, χ, Q10) holds, that is Eq(ψ, χ, C(τ, ρ)) holds.

By the induction hypothesis, ψ ∗ τ = χ ∗ ρ ∈ ϕ ∗ σ. Part (1) is proved.

Proof of (2). Both sides of (2) are false if one of ψ, ϕ is a symbol cp while the
other is a set. If ϕ = cq, ψ = cp, then

ψ ∗ τ = ϕ ∗ σ ⇐⇒ τ(p) = σ(q) ⇐⇒ (0, p)C(τ, σ)(1, q)

⇐⇒ Eq(ψ, ϕ, C(τ, σ))

So we may assume from now on that both ψ and ϕ are sets.

Suppose first that ψ ∗ τ = ϕ ∗ σ. Let χ be any form and Q be any ternary
configuration with Q12 = C(τ, σ). We must prove

(χ,Q02) ∈ ϕ ⇒ In(χ, ψ, Q01)

(χ,Q01) ∈ ϕ ⇒ In(χ, ψ, Q02).

By symmetry, it suffices to prove only the first of these two implications. So
assume (χ,Q02) ∈ ϕ. By Lemma 36, there exists ρ such that C(ρ, τ, σ) = Q. Then
(χ,C(ρ, σ)) = (χ,Q02) ∈ ϕ, so χ ∗ ρ ∈ ϕ ∗ σ = ψ ∗ τ . By the induction hypothesis,
In(χ, ψ, C(ρ, τ)), that is In(χ, ψ, Q01), as required.

Conversely, suppose that Eq(ψ, ϕ, C(τ, σ)) holds. By symmetry, it suffices to prove
only that ψ∗τ ⊆ ϕ∗σ. Let χ∗ρ, with (χ,C(ρ, τ)) ∈ ψ, be an arbitrary element of ψ∗τ .
Apply the definition of Eq(ψ, ϕ, C(τ, σ)) with this χ and with Q = C(ρ, τ, σ), which
satisfies Q12 = C(τ, σ). Since (χ,Q01) = (χ,C(ρ, τ)) ∈ ψ, we have In(χ, ϕ, Q02), that
is In(χ, ϕ, C(ρ, σ)). By the induction hypothesis, χ ∗ ρ ∈ ϕ ∗ σ, as required. 2

47

9.4 The Winning Strategy

Now we are ready to construct a winning strategy for the Duplicator in Gamem(Ī , J̄).
The strategy is to ensure that, after every step, there exist forms ϕi, I-molecules σi

and J-molecules τi, i ∈ m, such that

xi = ϕi ∗ σi, yi = ϕi ∗ τi, C(σ̄) = C(τ̄) (*)

where xi, yi are elements covered by pebbles i in Ī , J̄ respectively. (Without loss of
generality, we assume that, in the beginning, all 2m pebbles are on the board with
all xi = yi = ∅.)

First we check that Duplicator can always play in the required manner. Clearly
(*) holds in the initial position, as we can take all ϕi = ∅, all σi = σj and all
τi = τj. Now suppose that, after some number of steps, (*) holds witnessed by
ϕ̄, σ̄, τ̄ , and then Spoiler moves. By symmetry, we may assume that Spoiler moves
pebble 0 on Ī from x0 to x′0. By Lemma 39, x′0 = ϕ′0 ∗I σ′0 for some form ϕ′0 and
some molecule σ′0 over Ī. By Lemma 36, there exists a molecule τ ′0 over J̄ such that
C(σ′0, σ1, . . . , σm−1) = C(τ ′0, τ1, . . . , τm−1). Duplicator can move pebble 0 on J̄ from
y0 to y′0 = ϕ′0 ∗J τ ′0 and (*) will be restored.

Second, we check that (*) ensures that the map xi 7→ yi is a partial isomorphism
and thus the proposed strategy of Duplicator is winning. For each i, j ∈ m, (*)
implies C(σi, σj) = C(τi, τj). By Lemma 40,

xi ∈ xj ⇐⇒ ϕi ∗ σi ∈ ϕj ∗ σj ⇐⇒ In(ϕi, ϕj, C(σi, σj))

⇐⇒ In(ϕi, ϕj, C(τi, τj)) ⇐⇒ ϕi ∗ τi ∈ ϕj ∗ τj

⇐⇒ yi ∈ yj

and similarly with = and Eq in place of ∈ and In.

The Equivalence Theorem is proved. 2

9.5 A Generalization

Until now we have considered the case when the input vocabulary Υ0 is empty. Now
we consider the case when Υ0 consists of unary predicates, say P0, . . . , Pc−1. Restrict
attention to input structures where the c basic relations partition the base set; recall
that such input structures are called colored set with colors P0, . . . , Pc−1. An auto-
morphism of a colored set I is simply a color preserving permutation of the elements
of I. Recall that Īk is the collection of k-symmetric elements of HF(I) as well as the
corresponding structure of vocabulary {P0, . . . , Pc−1,∈, ∅}. We shall indicate how to
modify the proof of the Equivalence Theorem to obtain the following version of it for
colored sets.

48

Corollary 41 Fix positive integers c, k,m. If I and J are colored sets, in each
of which all the colors P0, . . . , Pc−1 are sufficiently large, then Īk and J̄k are Lm

∞,ω-
equivalent.

Proof To prove this, we need only make the following changes in the proof of the
Equivalence Theorem for naked sets.

First, a configuration should specify not only how the ranges of molecules overlap
but also the colors of the atoms in the molecules. Thus, the configuration C(σ̄)
of a finite sequence σ̄ = (σ0, . . . , σl−1) of molecules should be defined as a pair
(C=(σ̄), C∗(σ̄)) where C=(σ̄) is the equivalence relation on l × k that we previously
called the configuration and where C∗(σ̄) is the function l×k −→ c sending each pair
(i, p) to the unique r with σi(p) ∈ Pr. An abstract l-ary configuration is a pair E
whose first component E= is what we previously called an abstract l-ary configuration
and whose second component E∗ is a function from l × k into c that is constant on
every equivalence class of E=.

Next, we check that Lemma 36 still holds with this new notion of configuration.
Two things must be added to the earlier proof of the lemma: τ ′0 and σ0 agree as to
colors, and τ ′0 can be extended to τ0 so as to maintain agreement with σ0. The latter
is clear because the colors Pr in our input structures are large enough. As for the
former, we must prove that, if i ≥ 1 and (0, p)Q=(i, q) then τi(q) has the same color
as σ0(p). But from (0, p)Q=(i, q) we get σ0(p) = σi(q), and this element has the same
color as τi(q) because C(σ1, . . . , σl)∗ = C(τ1, . . . , τl)∗.

In the statement of Lemma 37, “permutation” must be changed to “automor-
phism”. The proof of that lemma is unchanged except that the computation veri-
fying that C(π−1ρ, σ) = C(ρ, πσ) now verifies only that the C= components of the
configurations agree. To get agreement of the C∗ components, we use the fact that π
is an automorphism and thus preserves colors.

The only other change in the earlier proof occurs in Lemma 39, where the difficult
direction involved constructing a certain permutation π. In the colored situation, we
must make sure that π is an automorphism. For this purpose, we first verify that
the π0 defined in the earlier proof preserves colors. For atoms a with π0(a) = a, this
is trivial, so we consider an atom a for which a = τy(p) and π0(a) = ρ(p). Because
C(τy, σ) = C(ρ, σ), in particular the C∗ components agree. So τy(p) has the same
color as ρ(p). But these atoms are a and π0(a), so π0 preserves the color of a. Finally,
when extending the map π0 to an automorphism π, we must choose the extension so
as to preserve colors, but this is trivially possible. 2

49

10 Negative Results

10.1 Parity

Recall that a naked set is an input structure of the empty vocabulary.

Theorem 42 (Parity Theorem) Parity is not in C̃PTime. Moreover, suppose that
K1, K2 are disjoint infinite classes of naked sets, each containing sets of infinitely
many cardinalities; then (K1, K2) is not C̃PTime.

Proof Let Π̄ be any PTime ASM program with empty input vocabulary. We show
that there are I1 ∈ K1 and I2 ∈ K2 such that Π̄ does not distinguish between I1 and
I2. By the Support Theorem in Section 8, there is a positive integer k such that,
in every run of Π̄, every active set has a support of size ≤ k. Fix such a k. Since
activeness is hereditary by definition, it follows that every active set is k-symmetric.

Let Active(I) be as in Section 6. By the First Fixed-Point Theorem in Section 6,
there exists an FO+LFP sentence ϕ that asserts that Π̄ accepts I. The sentence
ϕ asserts that there exists i such that Df (i, true) holds in Active(I) where f is
Output and also when f is Halt. Then Π̄ accepts I if and only if ϕ is true in some
or equivalently in every transitive substructure of HF (I) containing all the active
elements. In particular, Π̄ accepts I if and only if Īk satisfies ϕ. By Proposition 2 in
Section 2, there is m such that ϕ is expressible in Lm

∞,ω. By the Equivalence Theorem
in Section 9, ϕ does not distinguish between any sufficiently large input structures
I1, I2. 2

10.2 Bipartite Matching is not in Choiceless PTime

Bipartite Matching is the following decision problem.

Instance: A bipartite undirected graph G = (V, E) with the two parts (of boys
and girls respectively) of the same size.

Question: Does there exists a perfect matching for G?

Recall that a perfect matching is a set F of edges such that every vertex is incident
to exactly one edge in F . A partial matching is an edge set F such that every vertex
is incident to at most one edge in F . The standard perfect-matching algorithm starts
with the empty partial matching F and then enlarges F in a number of iterations.
During each iteration, one constructs an auxiliary set D of directed edges, then seeks
a D-path P from an unmatched boy to an unmatched girl, and then modifies F by
means of P .

50

We use variables b, g to vary over boys and girls respectively. If X is a set of edges,
let

Boys-to-girls(X) = {(b, g) : {b, g} ∈ X}
Girls-to-boys(X) = {(g, b) : {b, g} ∈ X}

And if X is a set of ordered pairs of the form (b, g) or (g, b), let

Unordered(X) = {{b, g} : (b, g) ∈ X ∨ (g, b) ∈ X}.

In Table 1, we give a self-explanatory program in the ASM language with the
the choice construct for the perfect matching algorithm. It is customary to omit
the keywords do-in-parallel/enddo. For readability, we take some little additional
liberties with the ASM syntax.

The relation REACHABLE and the function PATH in the fourth transition rule
are external. In other words, we take for granted algorithms that, given a boy b, a
girl g and set D of directed edges over V , check whether there exists a D-path from
b to g and if yes then construct such a path. For simplicity, we identify a path with
the set of its edges.

For the benefit of those unfamiliar with the algorithm, let us explain one iteration
of the algorithm in the case when the given bipartite graph has a perfect matching
M . Suppose that F is the current partial matching, and there are some F -unmatched
boys. Abusing notation, let M(b) be the girl M -matched to b and let F (g) be the
boy F -matched to g. Let D be as in the Build-Digraph rule. For any F -ummatched
boy b0, there exists a D-path P from b0 to some F -unmatched girl. Indeed, construct

g1 = M(b0), b1 = F (g1)

g2 = M(b1), b2 = F (g2)

. . .

gk = M(bk−1), bk = F (gk)

gk+1 = M(bk)

until you encounter an F -unmatched girl gk+1. It is easy to see that, if X =
Unordered(P), then (F − X) ∪ (X − F) is a partial matching involving one more
boy than F did.

Theorem 43 (Bipartite Matching Theorem)
Bipartite Matching is not in C̃PTime.

51

if Mode = Initial then

F := ∅, Mode := Examine

endif

if Mode = Examine then

if there is an unmatched boy then

Mode := Build-Digraph

else Output := true, Halt := true, Mode := Final

endif

if Mode = Build-Digraph then

D := Girls-to-boys(F) ∪ Boys-to-girls(E-F)

Mode := Build-Path

endif

if Mode = Build-Path then

choose an unmatched boy b

if (∃ unmatched girl g) REACHABLED(b,g) then

choose an unmatched girl g with REACHABLE(D,b,g)

P := PATHD(b,g), Mode := Modify-Matching

endchoose

else Output := false, Halt := true, Mode := Final

endchoose

endif

if Mode = Modify-Matching then

F := (F - Unordered(P)) ∪ (Unordered(P) - F)

Mode := Examine

endif

Table 1: The perfect matching algorithm

52

Proof Given an even integer n = 2p > 2, we construct two bipartite graphs G0 and
G1 on a set

Vn = {b0, . . . , bn−1} ∪ {g0, . . . , gn−1}

of n boys and n girls. In G0, (1) the first p boys and the first p girls form a complete
bipartite graph, (2) the last p boys and the last p girls form a complete bipartite
graph, and (3) there are no other edges. Clearly, G0 has a perfect matching. In G1,
(1) the first p + 1 boys and the first p girls form a complete bipartite graph, (2) the
last p− 1 boys and the last p girls form a complete bipartite graph, and (3) there are
no other edges. Clearly, G1 has no perfect matching.

Notice that the two graphs are essentially 4-colored sets; “adjacency” is definable
from the colors. The rest of the proof is similar to the proof of the Parity Theo-
rem, except that, instead of the Support Theorem and Equivalence Theorem, we use
Corollary 33 and Corollary 41 respectively. 2

10.3 An Enriched C̃PTime

In the rest of this section, we consider a modified computation model, designed to
overcome the non-computability of Parity in C̃PTime in the simplest natural way,
namely by making the system “aware” of the cardinality of its input.

Enrich the computation model with a static nullary function InputSize. In the
definition of initial states with n atoms require that InputSize is the von Neumann
ordinal for n. That changes the notion of C̃PTime; indeed, there is an obvious PTime
ASM program with InputSize that accepts all naked sets of odd cardinality and rejects
all naked sets of even cardinality. Let us call the new complexity class C̃PTime+. We
show that Bipartite Matching is outside C̃PTime+.

Remark C̃PTime+ is still defined in terms of pairs (K1, K2) of classes of finite
structures of the same vocabulary which are disjoint but not necessarily complemen-
tary. It is not clear whether the machines of this extended model can detect when a
polynomial time bound expires; the difficulty is in counting the steps performed by
parallel subcomputations. 2

We start with the observation that Corollary 33, the Support Theorem for colored
structures, remains true when InputSize is allowed, as a static nullary function, in
programs. Indeed since the value of InputSize is a von Neumann ordinal, it involves
no atoms and is therefore fixed by all permutations of the atoms. It follows that,
when any program Π is run with a colored set I as the input structure, the set A of
active elements is invariant under all automorphisms of I. With this observation, the
proof of the Support Theorem for colored structures goes through as before.

53

Recall from Section 9 that, for any colored set I and any positive integer k,
Īk denotes the set of k-symmetric elements of HF(I) as well as the corresponding
structure with ∈, ∅, and the colors. For our present purposes, we must consider
the expansion (Īk, |I|) of the structure Īk where the cardinality |I| of the input set
is named by the nullary symbol InputSize. We show next that the only effect of
this extra constant on the equivalence theorem is to restrict the result (as one might
expect) to input structures of equal cardinality.

Lemma 44 Fix positive integers c, k, and m. If I and J are c-colored sets of the
same cardinality, and if all the colors P0, . . . , Pc−1 are sufficiently large in both of
them, then (Īk, |I|) and (J̄k, |J |) are Lm

∞,ω-equivalent.

Proof Observe first that, for each natural number n, there is a form ϕn such that
ϕn ∗ σ = n for every molecule σ. Such ϕn can be defined inductively by

ϕn = {(ϕr, E) | r < n and E is a binary configuration}.

The verification that ϕn ∗ σ = n is a trivial induction on n.

Now suppose I and J are as in the hypothesis of the lemma. The m-pebble game
for the structures (Īk, |I|) and (J̄k, |J |) is the same as the (m + 1)-pebble game for
Īk and J̄k with one pebble located permanently at the natural number |I| = |J | = n
in both structures. Since this number is the denotation of the same form ϕn in both
structures, Duplicator can still use the winning strategy described in Section 9: match
the forms and the configurations of molecules. 2

Let Subset Parity be the following decision problem.

Instance: A structure (I, U) where U is a unary relation on I (i.e., U ⊆ I).

Question: Is |U | odd?

Corollary 45 Subset Parity is not in C̃PTime+.

Proof An instance of Subset Parity can be regarded as a 2-colored set, the colors
being U and its complement. Fix some ε with 0 < ε < 1/2, say ε = 1/4, and
consider those instances of Subset Parity that are ε-level, as defined in our discussion
of colored sets at the end of Section 8. By the results there, along with Proposition 2,
Theorem 4, and Corollary 3, if Subset Parity were in C̃PTime+ then there would be
positive integers m and k such that, whenever (I, U) is a positive instance and (J, V)
a negative instance of Subset Parity, both instances being ε-level, then Duplicator
has no winning strategy in the m-pebble game for (Īk, |I|) and (J̄k, |J |) (where I
abbreviates (I, U) and similarly for J).

54

On the other hand, by Lemma 44, Duplicator has a winning strategy provided
|I| = |J | and all of |U |, |V |, |I − U |, and |J − V | are large enough. This situation
and ε-levelness are clearly compatible with |U | being odd and |V | even, so we have a
contradiction. 2

Theorem 46 Bipartite Matching is not in C̃PTime+.

Proof We can use exactly the same proof as for Theorem 43, because the two
structures used in that proof had the same cardinality. 2

References

Abiteboul, Papadimitriou and Vianu 1994 Serge Abiteboul, Christos H. Pa-
padimitriou, and Victor Vianu, “The power of reflective relational machines”,
9th IEEE Symposium on Logic in Cmoputer Science, 1994, 230–240.

Abiteboul, Vardi and Vianu 1997 Serge Abiteboul, Moshe Y. Vardi and Victor
Vianu, “Fixpoint Logics, Relational Machines, and Computational Complex-
ity”, Journal of ACM, 44 (1997), 30–56.

Abiteboul and Vianu 1991 Serge Abiteboul and Victor Vianu, “Generic Compu-
tation and its Complexity”, ACM Symposium on Theory of Computing, 1991,
209–219.

Barwise 1975 Jon Barwise, “Admissible Sets and Structures”, Springer 1975.

Blass and Gurevich 1997 Andreas Blass and Yuri Gurevich, “The Linear Time
Hierarchy Theorem for RAMs and Abstract State Machines”, Journal of Uni-
versal Computer Science (Springer), Vol. 3, No. 4 (1997), 247–278.

Chandra and Harel 1982 Ashok Chandra and David Harel, “Structure and Com-
plexity of Relational Queries”, J. Comput. and System Sciences 25 (1982),
99–128.

Dahlhaus and Makowsky 1992 Elias Dahlhaus and Johann A. Makowsky,
“Query languages for hierarchic databases”, Information and Computation, 101
(1992), 1-32.

Ebbinghaus 1985 Heinz Dieter Ebbinghaus, “Extended Logics: The General
Framework”, “Model-Theoretical Logics” (ed. J. Barwise and S. Feferman),
Springer-Verlag, 1985, 25–76.

Ebbinghaus and Flum 1995 Heinz-Dieter Ebbinghaus and Jörg Flum, “Finite
Model Theory”, Springer 1995.

55

Fagin 1993 Ron Fagin, “Finite Model Theory — A Personal Perspective”, Theoret-
ical Computer Science 116 (1993), 3–31.

Glavan and Rosenzweig 1993 Paola Glavan and Dean Rosenzweig, “Communi-
cating Evolving Algebras”, in “Computer Science Logic”, eds. E. Börger et al.,
Lecture Notes in Computer Science 702, Springer, 1993, 182–215.

Gurevich 1988 Yuri Gurevich, “Logic and the Challenge of Computer Science”, In
“Current Trends in Theoretical Computer Science” (Ed. E. Börger), Computer
Science Press, 1988, 1–57.

Gurevich 1995 Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide”, in “Spec-
ification and Validation Methods”, Ed. E. Boerger, Oxford University Press,
1995, 9–36.

Gurevich 1997 Yuri Gurevich, “May 1997 Draft of the ASM Guide”, Tech. Report,
EECS Dept, University of Michigan, May 1997.

Immerman 1989 Neil Immerman, “Descriptive and Computational Complexity”,
Proc. of Symposia in Applied Math. 38 (1989), 75–91.

Kolaitis and Vardi 1992 Phokion G. Kolaitis and Moshe Y. Vardi, “Infinitary
Logic and 0–1 Laws”, Information and Computation 98 (1992), 258–294.

Leivant 1989 Daniel Leivant, “Descriptive Characterizations of Computational
Complexity”, Journal of Computer and System Sciences 39 (1989), 51–83.

Moschovakis 1974 Yiannis N. Moschovakis, “Elementary Induction on Abstract
Structures” North-Holland, 1974.

Otto 1997 Martin Otto, “The logic of explicitly presentation-invariant circuits”,
Computer Science Logic (Utrecht, 1996), Springer Lecture Notes in Comput.
Sci., 1258 (1997) 369–384.

Sazonov 1997 Vladimir Sazonov, “On bounded set theory”, in “Logic and Scientific
Methods”, ed. Dalla Chiara et al., Kluwer, 1997.

Shelah 1997 Saharon Shelah, Manuscript 534.

56

