
Moving from MOOs to Multi-User Applications
Steven M. Drucker

Virtual Worlds Group
Microsoft Research

Microsoft Corporation

Abstract

This paper provides a brief description of the work we
have done on the V-Worlds project, a system that
facilitates the creation of multi-user applications and
environments. We have taken concepts originally found
in object oriented Multi-User Dungeons (MOOs) and
extended them to deal with more general multi-user and
in particular multi-media applications. We present
reasons behind the architectural decisions of the
platform and show that it has been used successfully for
a wide range of examples.

Keywords

MOOs, Virtual Environments, Rapid Prototyping,
Shared environments, Multiuser Applications, DIS,
CSCW, Distance Learning, DHTML, ActiveX.

1. Introduction

Computers are increasingly being used as
communication devices as opposed to only information
processing and retrieval devices. In addition to text or
voice over the Internet, entirely new modes of use are
developing that allow for communication in conjunction
with shared data manipulation.

Software systems are being constructed that enable
synchronized modification of data at many different
locations at once with the changes presented to multiple
users in real time. These types of systems span a wide
range of applications: simple chat systems, buddy lists,
textual MUDs, graphical MUDs, distance learning
applications, cooperative work systems, and more.
However, the development of such applications is often
hindered by the difficulty in implementing precisely the
features that make them attractive - synchronous
updating across multiple clients, and persistence of
information across sessions.

The Virtual Worlds Platform grew out of concepts used
in object-oriented multi-user dungeons (MUDs &
MOOs) but have been applied to a wide variety of
applications. MOOs are early examples of textual multi-
user environments with persistence and the addition of
convenient end-user extensibility. Many of the original
decisions in the design of MOOs provide a strong basis
for rapid prototyping of multi-user applications, albeit
with text-only interfaces. This model faces serious

limitations when the user interface is extended to
include multi-media.

In this paper I will address the limitations of prior work,
highlight the unique features of our current work and
discuss applications of this system.

2. Background and related work

An object-oriented MUD, such as White and Curtis’
MOO [1,2], is a network database server that stores
objects having properties and methods. The topology of
the space is defined by “room” objects, representing
discrete locations, interconnected by portal objects.

Objects in a MOO can also represent things located in a
room, and objects called “players” or “avatars”
represent the user’s character in the world and are
intimately associated with a user’s connection into the
world. Users in the same room are able to talk by typing
text and reading the text that others type. Each MUD
room is superficially similar to an Internet chat room or
IRC channel, but there is no persistence of objects or
their behaviors within IRC. The room metaphor
generalizes quite well to a variety of applications. A
room could be a classroom for a distance learning
application, or a team-room for cooperative work.

Other related work includes some systems exclusively
focused on graphical multi-user environments including
the Spline system from MERL [3], which uses a similar
update region to confine the amount of information that
needs to be distributed. Zyda et al [4] also discuss
building multi-user graphical environments. Yet another
related work is discussed in Singh et al [5]. This work
does not look at rapid development or end user
extensibility and is focused primarily on graphical
environments.

There are now massive multiplayer gaming worlds such
as Ultima Online [6] and Everquest [7] that are based
on MUDs, but don’t allow for end user modification or
programming. Curtis et al [8] have since developed
LambdaMOO themselves towards more multimedia
architectures making many similar design tradeoffs that
we do. Greenberg et al. provide a good summary of
toolkits for synchronous collaboration for cooperative
work [9].

3. Development on the V-Worlds platform

Our most fundamental departure from MUDs is the
support for generalized interfaces at end-user clients.
This support necessitates distribution of information
updates to the extent that there is sufficient data to
render graphics, sound and other UI at the local clients.
Our architecture is based on extending the Microsoft
Component Object Model (COM) and OLE
Automation, which allows us to easily extend the
system in any COM compatible language including C++
and Java, or any ActiveScripting language (VBScript,
JScript, PerlScript, etc).

An earlier architecture document is discussed in Vellon
et al [10]. The exemplar inheritance mechanism widely
used in MOOs and also in our system is similar to that
used in the SELF system [11].

Programming behavior in V-Worlds can be
accomplished in three ways by: (1) defining methods
attached to objects within a shared environment; (2)
adding generalized DHTML to handle user interface
changes on a particular client, or (3) the addition of
ActiveX controls (either preexisting or special purpose)
on clients that can communicate within a shared
environment.

The V-Worlds Platform supports rapid prototyping in
the following fundamental ways:

• UI development via DHTML/scripting
• Delegation-based dynamic object model

changeable at run-time
• Automatic distribution of appropriate

information and procedure calls.
• Automatic persistence of information

These are explored in further detail in the sections that
follow.

3.1 DHTML/Scripting UI

The V-Worlds System Object (described in the next
section) is embedded in a web page, which allows
authors to rapidly develop different UIs using existing
DHTML development techniques.

Dynamic HTML (DHTML) is composed of the Internet
standards Hypertext Markup Language (HTML) 4.0,
Cascading Style Sheets (CSS) 1.0, and the associated
document object model. Taken together, these provide a
powerful system for quickly building and modifying an
application user interface.

By adding the V-Worlds System Object to the web
page, it can interact with the rest of the web page and
thereby any object accessible from within the page’s

document object model. DHTML can be used so that
objects can be manipulated from or cause changes to the
shared world. These changes can then be automatically
reflected on the clients of other users as explained
below.

Additional ActiveX objects, either already existing
objects or specifically designed ones, can easily be
added to the web page and hence be controlled through
the shared world.

We have also used other containers for the V-Worlds
System Object such as Visual Basic and MFC, which
allowed us to exploit these rapid UI development
platforms in conjunction with the v-worlds for
development of multi-user applications.

3.2 Delegation-based Dynamic Object Model

To facilitate the development of new types of objects,
V-Worlds implements object inheritance in a
delegation-based fashion. A V-Worlds object has a
property that references its exemplar. The object’s
exemplar is similar (but not identical) to the class of a
C++ or Smalltalk object, and quite a bit like the SELF
system [11]. When V-Worlds accesses a property or a
method of an object, it first looks in the object itself for
that property or method. If it does not find it there, it
then looks in the object’s exemplar. The search
continues up the exemplar hierarchy until the property
or method is found or the top of the hierarchy is reached
(in which case an error results). This mechanism differs
from C++’s in several ways:

• The search is done by name, at run-time (i.e., late-
bound)

• An object instance can have methods and properties
attached to it (beyond those introduced by its
exemplar)

• An object’s exemplar is, itself, another object
instance

• An object’s exemplar can be changed at run-time
• V-Worlds does not support multiple inheritance

Inheritance facilitates development because it allows
content authors to create new objects by specializing
existing ones. Having created a new object, an author
can allow others to further specialize by declaring his
object an exemplar and allowing others to instantiate it
or create additional exemplars that inherit from it.

V-Worlds does not support multiple inheritance,
primarily, to keep the programming model simple.
Supporting multiple inheritance requires that users be
prepared to handle unintentional name collisions and

classes encountered multiple times through different
base classes (the C++ “virtual base class” problem).

Room

Thing

Exemplar

Exemplar

BarRoom

Property Map

Method Map

Property Map

Method Map

Property Map

Method Map

properties

properties

properties

methods

methods

methods

Exemplar:
Name:
Description:
Geometry:
Container:
Contents:
Owner:

Exemplar: Thing
Name: Room
Exits:
Entrances:

Exemplar: Room
Name: BarRoom
Bartender:
Recipes:

MoveTo:
Tell:

Announce:

OrderDrink:
RequestMusic:

Figure 1. Property and Method Inheritance

Figure 1 illustrates the delegation-based mechanism for
dispatching a reference to an object’s properties and
methods. It is a straightforward implementation of
dynamic inheritance.

3.3 Basic Object Model

Similar to MOOs, a few basic objects are provided,
such as “Rooms, Avatars,” and several others. Not all of
these are used in every application built on the platform.
These objects, in fact, are all based on the single generic
object “Thing”. Users of the system can add properties
and methods to instances of the objects, or change the
inheritance chain dynamically.

The Thing exemplar is the parent of all objects and
defines properties and methods shared by all. These
include a unique ID for the object, properties that can be
overridden such as the name, a reference to the
exemplar parent object, and other generic information.
It also defines a container object and a contents list of
objects, defining a containment relationship that is used
for a variety of purposes - the contents of an avatar can
be its inventory of carried objects, the avatars in a room
are contained in the room’s contents list. This is an
example of logical structure that makes the world more
accessible to scripting. Thing also defines methods like
MoveInto, which changes the container the object is
located in.

Avatar has a variety of properties and methods to
specify the object representing the user in the world.
These include properties such as gender (of the avatar,
not necessarily of the user), list of friends, list of users
being muted, its home room, optional user information,
log-in password, etc. Avatar methods include a Tell

function that allows strings of text to be transmitted to
the user’s client, and an IsConnected property, allowing
scripts to determine if the avatar is actively attached to a
logged-in user. There is a one-to-one correspondence
between a connected avatar and a client application.

Rooms define the topology of the world in much the
same way as rooms in MUDs do. This topology is
especially important to help manage the amount of
information that needs to be updated for any specific
change in the world. Only the avatars (and hence the
clients connected with those avatars) within a certain
room need to be updated synchronously with the
changes that take place in that room.

3.4 Event Mechanism

In addition to providing inheritance, V-Worlds also
provides an event mechanism that facilitates writing
methods that respond to actions in the environment. V-
Worlds objects support a method called FireEvent. This
method is passed an event name and results in a
prescribed sequence of method invocations. When
Bob.FireEvent(“Foo”) is called, the following
methods are invoked:

• Each of the objects in Bob’s contents has its
OnContainerFoo method called

• Bob’s container object has its OnContentFoo
method called

• Bob’s OnFoo method is called
• Each of the other objects in Bob’s container has its

OnPeerFoo method called

Events are fired for all key V-Worlds activities:
connecting and disconnecting, talking, moving, entering
and exiting Rooms, user interface events, etc. This
event routing mechanism allows objects to sense key
activities in the environment and to respond to them.

By making this event mechanism extremely late-bound,
new objects and behaviors can be introduced into the
system without modifying the system itself. For
instance, an object that listens to what a user says and
translates it into another language has been added to the
system simply by adding an object to the contents of an
avatar and implementing the OnContainerTell method.

3.5 Run-time Editing

Another aspect of MUDs that we have adopted in V-
Worlds is the ability to perform live editing of content.
V-Worlds allows objects to be created and modified
while those objects (and others in the same
environment) are in use (on the server and connected
clients).

Most Web content cannot be edited in such a manner.
Web pages, for example, are usually authored off-line
and then posted on public servers during times when
users are not likely to be accessing them (to avoid
missing pages or incorrect links during the posting
process).

The live-editing capability of V-Worlds includes more
than just the ability to create object instances and to
modify their properties. V-Worlds allows methods and
properties to be added and deleted from objects and
object exemplars to be changed. As with property
changes and method invocations, V-Worlds will
propagate these changes to all the clients affected by the
changes. (Note: in practice, these types of changes are
usually made to exemplar objects and all client
machines typically cache exemplar objects. Thus,
changes to object structure are usually replicated in all
connected clients.) In addition to replicating these
changes, V-Worlds will also persist them by writing out
the necessary log records.

The replication and logging of these changes occurs
automatically as an object’s structure is maintained in
its properties. An object’s exemplar is referenced by a
property. An object’s methods are kept in a single
“map-” (dictionary-) valued property. An object’s
properties are kept in a single map-valued property.
Thus, changes to an object’s structure are really
modifications to an object’s properties. As V-Worlds
automatically replicates and persists any property
changes, this mechanism also replicates and persists
changes in object structure.

The ability to change an object’s structure at run-time is
very valuable. First, it allows changes to be made to an
environment without having to shut down access to it.
Second, it allows a system to be extended by content
providers and, ultimately, end-users without having to
teach them about interface description language (IDL)
files and recompiling a complicated system. Together,
these features facilitate long-term operation,
maintenance and enhancement of multi-user
applications by content developers requiring less
knowledge of the underlying mechanisms.

3.6 Automatic Distribution

V-Worlds is a multi-user multimedia system. Users can
“enter” a world and interact with other users in the
world. To facilitate the coordination of activity and the
implementation of persistent world state, we chose a
client/server architecture for V-Worlds. In addition to
using the V-Worlds server to continuously update the
clients, large “out-of-band” content (geometry, sound,

other DHTML pages) is served from a standard web-
server.

V-Worlds support for client-server programming is
inherently built into its object model:

• Client-side V-Worlds objects “know” that they are
proxies of server objects

• Client-side changes to object properties are
automatically propagated to the server and to other
clients (except as noted below)

• Server-side changes to object properties are
automatically propagated to clients

• V-Worlds object methods can be marked as “client-
side” or “server-side”(described below)

• Client-side invocations of server-side methods are
automatically remoted to the server

• Server-side invocations of client-side methods are
automatically remoted to clients

From the V-Worlds user’s perspective (“user” here
referring to a content developer using the V-Worlds
SDK) the client server communication is invisible.
Once the client has been connected to the server,
modifications to properties are automatically replicated
(to the server and other clients) and methods
automatically run on the designated machine. The only
awareness that is required of the user is that remoted
methods are executed asynchronously (there is a way to
perform synchronous client-to-server communications,
but it requires explicit coding).

Because client server communications are handled
automatically, it is important that unintended and
unnecessary communications be avoided. V-Worlds
provides a mechanism for this purpose. Properties can
be marked as local, indicating that changes to them
should not be automatically propagated.

The most important mechanism that V-Worlds provides
for limiting communication needs is its bystander
algorithm. This algorithm determines what information
needs to be provided to clients and updates only this
information when necessary. The bystander algorithm
relies on a hierarchy of containment of V-Worlds
objects. In the most common case, changes to an object
need only be communicated with avatars (and hence the
clients) in the same room as that object.

3.7 Automatic Persistence

The ability for users to exit and re-enter the
environment with changes kept from one session to the
next is of fundamental importance in multi-user
communication systems. In addition, modifications

made by other users while a particular user is not
presence are also important.

V-Worlds implements persistence by allowing entire
objects to be marshaled into a serial stream and by
automatically logging changes to object properties.

Storing the state of an entire object is relatively
straightforward - V-Worlds stores the values of its
properties and a record of what methods it has.

V-Worlds automatically logs changes to object
properties. When a property value is changed on the
server, the server automatically records the change in a
log file. This file is a simple sequential file. To restore
the state of an environment, V-Worlds reads this log,
reapplying the property changes. If the server crashes,
only the unwritten change records are lost (although
expensive, the server can be told to immediately write
changes out to the log file in order to provide the
maximum robustness).

To avoid unnecessary logging, V-Worlds allows
properties to be marked as volatile indicating that
changes to them not be logged.

To avoid large log files, V-Worlds can write out its
entire state to a new log file (by writing out complete
objects) and then the old file can be deleted (or
archived).

4. Implementation Details

Providing a comprehensive description of how V-
Worlds works would exceed the objectives of this
paper. There are a few implementation aspects,
however, that are worth noting, specifically a
description of the IThing interface, the object that
enables the dynamic object model; its relationship with
scripting; and the embedding of the V-Worlds object
within a web page.

4.1 IThing Interface

As mentioned earlier in this paper, V-Worlds is
implemented on top of COM. At the heart of V-Worlds
is the IThing interface. All V-Worlds objects (Avatars,
Rooms, Artifacts, etc.), from the COM perspective, are
instances of IThing. The IThing interface provides
much of the key functionality of V-Worlds:

• The ability to add and delete methods and
properties to an object at run-time

• The ability to access methods and properties, taking
object inheritance into account

• Object-level persistence (serializing a whole object)

• The low-level properties required of all objects
(exemplar, owner, etc.)

• Easy access via OLE Automation

From a C++ perspective, IThing is straightforward.
Methods and properties are added by calling
AddProperty and AddMethod. Properties are read and
written to by calling get_Property and put_Property.
Methods are invoked by calling InvokeMethod. Note
that access to properties and methods is through helper
functions. These helper functions are key to providing
inheritance and the ability to dynamically modify
objects at run-time. Rather than binding statically
(during compilation), accessing properties and methods
through these helper functions allows V-Worlds to
perform late binding. The helper functions also enforce
V-Worlds security policies and automatically perform
any remoting (e.g. replicating property changes or
invoking remote methods). On the server, the
put_Property helper function is responsible for logging
property changes.

4.2 Scripting IThing

From scripting languages (and anything else that uses
OLE Automation), access to V-Worlds objects is even
easier. V-Worlds IThing objects implement IDispatch
by consulting the dynamically added properties and
methods in addition to the static OLE TypeLib
information. Essentially, the implementation of
IDispatch turns an x.y reference into an
x.get_Property(“y”),x.put_Property(“y”)or
x.InvokeMethod(“y”) helper function call. Thus, the
content developer can more naturally access added
methods and properties:

‘ In VBScript

‘ add a new property and initialize it
foo.AddProperty “Age”, 12

‘ access the property
DogYears = foo.Age * 7
foo.Age = DogYears

‘ add a new method
bServerSide = True
set method = world.CreateMethod(…,

bServerSide, …)
foo.AddMethod “newmethod”, method

‘ call it
foo.newmethod 7, “Bob”

4.3 Embedding V-Worlds in a web page

As mentioned previously, development using the V-
Worlds Platform exploits the ability of objects to be
embedded in web pages. Actually, the V-Worlds system
object can be embedded in any ActiveX container

application. By embedding it within a web page, we get
the benefits of DHTML and the web Document Object
Model. Once the V-Worlds System Object is in the web
page, users connect using it to the shared world. Once
connected, this object can communicate with the rest of
the object model on the web page.

Here is some HTML code for a typical V-Worlds web
page:

<html>
<head>

<object id="theclient"
 classid="clsid:…">
</object>

<SCRiPT LANGUAGE="VBScript">

sub window_onload
 logon "steven", password, worldURL
end sub

function logon(name, password, vws_url)
 dim world, user

 set world =
window.theclient.VWClient.Connect(vws_url)
 set user = world.Connect(name,
password)

 ' handle error codes here
end function

'Handle UI events generated from the client
sub theclient_OnUIEvent(who, what, args)

 if what = "OnTell" then
 HandleTell args.property(0),
args.property(1), args.property(2),
args.property(3)
 elseif
 if what = "Help" then
 HandleHelp who, what, args
 elseif what = "LookAt" then
 OnLookAt who
 elseif what = "ShowHTML" then
 elseif what = "ShowURL" then
 else

 End If

end sub

sub theclient_OnDisconnect(theworld)
end sub
.
.
.

</SCRIPT>

</head>
<BODY>
<IFRAME BORDER=0 FRAMESPACING=0
MARGINHEIGHT=0 MARGINWIDTH=0 name="mainwin"
scrolling="no" noresize height="100%" width
="100%" frameborder="no" style="DISPLAY:
none">
</IFRAME>
</BODY>
</html>

5. Sample Applications

In this section, we discuss five examples that have all
been written on top of the Virtual Worlds Platform that
demonstrate the wide variety of applications and
interfaces that are possible using the underlying
platform. The applications are:

• Generic Graphical V-Worlds SDK – a publicly
available research platform

• The Virtual Conference Room Project – a
research system for group communication

• The “Hutch” – a social support system

• “Flatland” – a distance learning system

• vMSR – a buddylist/application whiteboard
system

5.1 Generic Graphical V-Worlds SDK

The generic V-Worlds SDK as it is available publicly
over the web (http://vworlds.research.microsoft.com/) is
currently geared toward the creation of shared graphical
environments. The Graphics Viewer ActiveX control
uses Direct3D RM to exploit hardware acceleration and
is embedded in the web page along with the V-Worlds
System Object. Events for other user’s entry and exit
from the current room are captured by the V-Worlds
System Object and forwarded (along with pertinent
information about the objects geometry and position) to
the Graphics Viewer Control. The Graphics Control
then loads geometry via a standard http server and
places geometry within the scene. The control also
intercepts mouse and keyboard events, which update the
current users position and orientation. These properties
are automatically sent to other users in the same room
as the user and their displays are updated as appropriate.

The Graphics Control also loads a 2.5D boundary
representation to help manage collision detection as the
avatars move around the space. Currently, avatars are
represented as 2D sprites primarily because of the ease
in which end-users can customize the appearance of
their avatar.

The SDK is shipped with a number of wizards that
facilitate the creation of rooms and objects along with
sample content and simple editors for positioning
objects. In addition, an object browser allows the on-
the-fly addition and modification of properties and
methods.

5.2 The Virtual Conference Room Project

The Virtual Conference Room Project is an
experimental research project where we are examining a
better representation for characters to communicate
within a graphical environment. In this case, more
sophisticated behaviors have been programmed in COM
and attached to the avatars within the shared world. In
addition, a camera system watches the user and tries to
use a combination between a user’s own gestures and
high-level behaviors to control a user’s avatar. The
camera system was developed completely
independently and was added into the system in only a
few hours.

5.3 HUTCH

The “Hutch” project is a collaboration with the Fred
Hutchinson Cancer Research Center in Seattle,
Washington. The project explores the role that shared
environments can play in social support systems.
Originally, the Hutch interface was heavily focused on
immersive, 3D synchronous interaction. However, it
was found after performing user and site testing that a
less immersive interface was desired. A subsequent
iteration of the interface was designed. In this interface,
a 3D overview of the hospital allows the user to see
both areas of interest in the hospital space and other
users accessing that info. This configuration allows for
serendipitous encounters with other people in the space
while attending to other activities such as email and web
browsing.

5.4 Flatland

“Flatland” is a distance learning application built on top
of the V-Worlds platform. Instead of a 3D graphics
window as in the previous examples, streaming video
presentation in the form of a NetShow control is
embedded in the page along with the presenter’s slides.

Different layouts can easily be created, including
specialized layouts for the presenter that show
additional information than a typical client. Participants
can ask questions back to the presenter which can be put
in a question queue for the presenter to respond to.
Users can also vote on polls with immediate feedback.
Users can also raise hands or chat with other people in
the audience. Because of latency in the streaming video,
we needed to pay special attention to synchronization of
events between the streaming video and other channels
of information.

The development of Flatland followed a strict model-
view controller separation [12,13] to assist in
programming on top of the V-Worlds platform. The

model was kept entirely in-world using the V-Worlds
Object Model, while the view controller was
implemented entirely within DHTML.

5.5 vMSR

The vMSR application connects two shared virtual
worlds together. One shared world is run purely local to
a single computer and allows different applications to
easily share information with each other. Applications
can in turn communicate information amongst many
users via the global shared world. We easily prototyped
a buddy list application that accesses information about
a user’s activities and selectively shares that with other
users. Using this kind of information, one user can
request that a message be sent to another individual as
soon as the other user is not actively engaged in another
activity. We were also interested in experimenting in a
variety of different interfaces for buddy lists and chat
systems and a number of different prototypes have been
developed using this framework.

6. Summary

The Virtual Worlds Group has implemented a platform
that facilitates the development of distributed multi-user
applications. We started from the standpoint that MOOs
provide a good framework for rapid development of
applications. In extending that idea to multimedia
architectures, we incorporated concepts from DIS and
other graphical based VR systems, and from current
architectures for UI development. We found the
following aspects of our system design to be the most
valuable for rapid development of multi-user
applications:

• Dynamic delegation-based object model: This
allowed new authors to significantly leverage
objects built for other applications. Being able to
add properties on the fly was particularly important
for interactive debugging of the interfaces.

• Automatic distribution and persistence of
information: By freeing the author from having to
worry about the particulars of what was distributed
and when, the authors could concentrate more on
the interface behavior.

• Leveraging COM, OLE Automation, and DHTML:
This made it possible to incorporate existing
applications or easily implement new interfaces in a
variety of different languages.

Version 1.1 of the platform (oriented to graphical
environments and described in Section 4.1) is available
at (http://vworlds.research.microsoft.com/). Later
versions are being planned that better optimize server
performance and that better document the API for
custom UI development.

7. Acknowledgements

The Virtual Worlds Platform and examples described in
this paper represent the efforts of a large group of
people over several years. The author wishes to
acknowledge the efforts of the entire V-Worlds team,
past and present and several other teams on the various
projects. In particular, Don Mitchell, Manny Vellon and
Kirk Marple from the Virtual Worlds Group, the
following members of the Graphics Group for the
Conference Room Project (Michael Cohen, ZiCheng
Liu) along with Alex Colburn, Jim Mahoney.; members
of the Collaboration & Education Group (Anoop Gupta,
Steve White, Jonathan Grudin), along with Greg
Kimberly and Harry Chesley for work on Flatland; Lili
Cheng, Sean Kelly and Chris Liles for work on the
Hutch; and members of the DTAS Group (Eric Horvitz,
David Hovel) along with Dave Vronay, Harry Chesley
and Lili Cheng for work on vMSR. Extra thanks to Alex

Colburn for the DHTML example in section 3.3. and for
comments from Marc Smith, Matt Conway, Jim
Mahoney, Harry Chesley, Dave Vronay and Dianne
Berkeley.

8. References

1. Curtis, P. Mudding: Social Phenomena in Text-
Based Virtual Realities, Intertek Vol 3.3 1992.

2. lambda.parc.xerox.com:8888

3. David B. Anderson, John W. Barrus, John H.
Howard, Charles Rich, Chia Shen, Richard C.
Waters Building Multi-User Interactive Multimedia
Environments at MER. IEEE MultiMedia, 2(4):77-
82, Winter 1995.

4. Zyda, Michael J. D.R. Pratt, JG Monahan, K.P.
Wilson, NPSNET: Constructing a 3D Virtual World.
Proceedings of 1992 Symposium on Interactive 3D
Graphics. Computer Graphics. 1992.

5. Curtis, Pavel, M. Dixon, The Jupiter Audio/Video
Architecture: Secure Multimedia in Network Places
Ron Frederick, and David Nichols. Proceedings of
the 1995 ACM Multimedia Conference. 1995

6. Singh, G. L. Serra, W. Png, and H. Ng, BrickNet: A
Software Toolkit for Network-Based Virtual
Worlds. Presence Vol 3.No. 1. 1994.

7. http://www.ultimaonline.com/

8. http://www.station.sony.com/everquest/

9. Greenberg S. and Roseman M.. Groupware Toolkits
for Synchronous Work. in M. Beaudouin-Lafon
(ed.), Trends in CSCW, John Wiley & Sons Ltd..
1998.

10. Vellon, M., K. Marple, D. Mitchell, and S. Drucker.
The Architecture of a Distributed Virtual Worlds
System. Proc. of the 4th Conference on Object-
Oriented Technologies and Systems (COOTS).
April, 1998.

11. Ungar D., Randall B. Smith , Self: The power of
simplicity. ACM SIGPLAN Notices, Vol. 22, No. 12
(Dec. 1987), in: OOPSLA ’87. pp. 227-242

12. Glenn E. Krasner and Steven T. Pope, A Cookbook
for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80, Journal of Object-
Oriented Programming, 1(3), Aug./Sept., 1988.

13. Isaacs, E.A., Morris, T., and Rodriquez, T.K., A
Forum For Supporting Interactive Presentations to
Distributed Audiences, Proceedings of the
Conference on Computer-Supported Cooperative
Work (CSCW ’94), October, 1994, Chapel Hill, NC.

