
Formally Analyzing Two-User
Centralized and Replicated Architectures
Sasa Junuzovic, Goopeel Chung* & Prasun Dewan
Department of Computer Science
University of North Carolina at Chapel Hill, NC, USA
Department of Computer and Information Science
Westfield State College, MA, USA*
sasa@cs.unc.edu, gchung@cs.wsc.ma.edu, dewan@cs.unc.edu

Abstract. We have developed a formal performance model for centralized and replicated
architectures involving two users, giving equations for response, feedthrough, and task
completion times. The model explains previous empirical results by showing that (a) low
network latency favors the centralized architecture and (b) asymmetric processing
powers favor the centralized architecture. In addition, it makes several new predictions,
showing that under certain practical conditions, (a) centralizing the application on the
slower machine may be the optimal solution, (b) centralizing the application on the faster
machine is sometimes better than replicating, and (c) as the duration of the collaboration
increases, the difference in performances of centralized and replicated architectures gets
magnified. We have verified these predictions through new experiments for which we
created synthesized logs based on parameters gathered from actual collaboration logs.
Our results increase the understanding of centralized and replicated architectures and
can be used by (a) users of adaptive systems to decide when to perform architecture
changes, (b) users who have a choice of systems with different architectures to choose
the system most suited for a particular collaboration mode (defined by the values of the
collaboration parameters), and (c) users locked into a specific architecture to decide how
to change the hardware and other collaboration parameters to improve performance.

Introduction
Two main architectures have been used to support the sharing of a program
among multiple users: centralized and replicated. In the centralized architecture,

the shared program executes on a computer belonging to one of the collaborators,
receiving input from and broadcasting output to all users. In the replicated
architecture, a separate replica of the program executes on the computer of each
user, receiving input from all users and producing output for only the local user.

Both architectures have been popular in commercial and research systems. In
fact, often a single collaborative system supports both architectures. For example,
NetMeeting and Webex provide the centralized architecture for application
sharing and the replicated architecture for whiteboard sharing. Chung and Dewan
(2001) allow the choice of architecture to be made at application start time while
their later results (2004) allow it to change at runtime.

The choice of the architecture affects the semantics, correctness, and
performance of the shared program. In this paper, we focus on performance.
Previous studies on the performance of collaborative architectures have been
restricted to gathering empirical data. To the best of our knowledge, no previous
work has developed an analytical performance model.

An analytical model is an attractive idea for two main reasons. First, like
analytical models in other computer science fields, it increases our understanding
of the subject analyzed. In the case of collaboration architectures, it helps us better
understand and compare the event flow and performance of the centralized and
replicated architectures. Second, empirical data can inform us about the
performance of a collaborative application only under the collaboration conditions
used in the measurements. In general, there exists an infinite design space of
collaboration modes defined by a variety of collaboration parameters such as
network latency and processing power. An analytical model can predict the
performance for the entire design space modeled.

As a first step towards meeting these two goals, we have developed a formal
performance model for centralized and replicated architectures involving two
users, giving equations for response, feedthrough, and task completion times. Our
model takes into account collaboration parameters such as network latency,
processing powers of the computers used, command-processing time, think time,
and degree of participation of each user in the collaboration. The model provides a
better understanding of the event flow in the centralized and replicated
architectures. It also explains previous empirical results and makes several new
predictions. We have verified these predictions through new experiments for
which we synthesized logs based on parameters gathered from actual
collaboration logs.

The rest of this paper is organized as follows. We first present related work on
the performance of collaborative architectures. Next, we develop the
mathematical equations comprising the analytical model. We then validate our
model against empirical data shown in previous work and through new
experiments. Finally, we end with conclusions and directions for future work.

Related Work
Unlike in traditional computer science fields such as databases and operating
systems, there has been relatively little work in the collaboration domain on
studying the performance of system architectures, even though, arguably,
performance is more important in this field because of the human in the event-
processing loop. As mentioned earlier, existing studies have been confined to
gathering empirical data. Moreover, there have been very few studies that have
directly targeted collaboration. One can, however, make some collaboration
implications indirectly from studies of distributed window systems.

Nieh, Yang, Novik et al. (2000) conducted experiments that measured the
relative performances of two distributed window systems, the Linux
implementation of VNC (Hopper, 1998) and Microsoft’s Windows 2000 RDP
implementation. The architecture used was essentially a two-user centralized
architecture with the user at the hosting site inactive. Such a setup gives an idea of
the performance experienced by a remote user interacting with a centralized
program, assuming the host site does not become a bottleneck. These studies
compared two different implementations of the centralized architecture and do not
addresses the relative performances of different architecture configurations.

Wong and Seltzer (2000) measured the network load for various remote user
operations. Danskin and Hanrahan (1994) measured the frequencies of these
operations. Together, these two results give an idea of the actual bandwidth
requirements for a variety of remote desktop tasks. Two other studies, one
involving Microsoft’s Terminal Services (NEC, 2000) and the other by Droms
and Dyksen (1990) showed that average and maximum network bandwidth
requirements of remote desktop operations can vary greatly. Again, these studies
do not address the relative performances of different architecture configurations.
This limitation was addressed by the following two works.

Ahuja, Ensor, Lucco et al. (1990) performed experiments to compare the
network load imposed by the centralized and replicated implementations of a
shared drawing program. They found the following three results. (1) When output
was not buffered, there were 6 times as many output events as input events. (2)
When output was buffered, there were 3.6 times as many output events as input
events. (3) An output event was about the same size as an input event – about 25
bytes (presumably not including network headers).

Like Ahuja, Ensor, Lucco et al. (1990), Chung and Dewan (2004) compared
the centralized and replicated architectures, addressing response and task
completion times instead of network load. They showed that (a) low network
latency favors the centralized architecture and (b) asymmetric processing powers
favor the centralized architecture. As these conditions can change dynamically,
they developed a system that supports architecture changes at runtime. They also
performed experiments showing that when a user with a powerful computer joins

the collaboration, it is useful to dynamically centralize the shared program to the
new user’s computer.

We use previous work to identify collaboration parameters relevant to
performance, and we extend it by (a) defining an analytical model that explains
existing results about response, feedthrough, and task completion times, and (b)
performing new kinds of experiments that validate results predicted by the
analytical model not shown previously.

Formal Analysis
As mentioned above, we use response, feedthrough, and task completion times as
performance metrics. We define the response (feedthrough) time of a command to
be the time that elapses from the moment the command is input to the moment the
inputting (non-inputting) user views the corresponding output. We define the task
completion time for a particular user as the time that elapses from the moment the
collaboration session begins to the moment the user sees the final output. We have
not yet considered other important metrics such as jitter (Dyck and Gutwin, 2004).

Developing an analytical model is a complex task, especially when deriving
the task completion time for the replicated architecture. Therefore, we make
certain assumptions in this first cut at a performance model of collaboration
architectures. The major assumption we make is that the collaboration involves
only two users, who we denote as user1 and user2. We will describe other
assumptions as we introduce our collaboration parameters:

Processing powers of collaborators’ computers: As shown by earlier work, a
centralized architecture may offer better performance than a replicated
architecture when the difference between the processing powers of the users’
computers is high as the faster computer can act as a high-performance server for
compute-intensive tasks. Thus, it is important to consider processing powers in
our equations. We assume that user1’s and user2’s machines have processing
powers of p1 and p2 MHz, respectively. We assume that the work required,
measured in CPU cycles, is the same for all input commands and refer to it as w.
Without loss of generality, we assume that p1 > p2, that is, user1 has a faster
computer than user2. Thus, w/p1 < w/p2, or in other words, an input command is
processed faster on user1’s computer than on user2’s computer.

Network latency: Previous work has also shown the influence of network
latency on response and task completion times. In a centralized architecture,
network latency affects the feedback time of the remote user. In both
architectures, it influences both users’ feedthrough times, and hence the task
completion time when there is coupling between the two users, that is, when a
user cannot input the next command before he sees the output for the previous
command entered by the other user. For simplicity, we assume that the network
latency between the two machines is constant and denote it as d.

Number of input commands by each user: This can have a large impact on the
performance of an architecture. To illustrate, assume a centralized architecture in
which one of the users provides all the input. If the active user’s computer is
hosting the program, then the task completion time is independent of network
delays. This is not the case if the active user is on the other computer. We will see
later that not only is the degree of participation of each user important but also the
total of input commands by each user, as differences in the performances of
architectures can get magnified the longer the collaboration lasts. We let c1 and c2
denote the total number of input commands by user1 and user2, respectively.

Think time before each input command: We assume that the think time for each
input command is constant and denote it as t.

Number of answered user1’s input commands: An input command by user1 is
answered if user2 inputs a command after it. Thus, the number of user1’s
answered commands equals the number of input commands by user1 unless user1
inputs last. In this case, the last burst of input commands by user1 is not answered.
We let a denote the number of user1’s answered commands. Note that a ≤ c1.

Number of input subsequences: An input subsequence ends and a new one
begins every time user2’s input command is followed by user1’s command. Also,
an implicit start and end of the first and last subsequences occur at the start and
end of the collaboration session. As we will see, during each subsequence in the
replicated architecture case, there are periods of time during which user1’s faster
computer is waiting for user2’s slower computer to catch up. These idling periods
are important because they affect the replicated architecture’s task completion
time. We denote the number of subsequences by s.

Number of user input commands in a subsequence: We assume that user1 is the
first user to enter a command. Recall that user1 has c1 and user2 has c2 total input
commands, and that both users input in each subsequence, except when a < c1,
that is, when only user1 inputs in the last subsequence. We let c1,i and c2,i denote
the number of input commands in subsequence i by user1 and user2, respectively.

While we know of no data identifying the number of users in a computer-
supported collaborative session, we believe a significant number of such sessions
involve two users based on the fact that most telephone conversations are two-
way calls, many research papers have two authors, many games involve two
users, and pair programming requires exactly two users. Thus, our two-user
assumption does not make our work impractical. Assuming constant command-
processing times is reasonable in whiteboards, instant message clients, games, and
several other widely used programs that offer a small number of commands of
similar complexity. For example, a command to draw a rectangle is processed
very similarly to one that draws an oval. Assuming constant low think times is
reasonable in closely-coupled interactions in which it is considered impolite to
keep collaborators waiting. When think times are large, assuming they are
constant is less reasonable, but large think times dominate the task completion

time, and as a result, their specific values do not matter as much. Even if some of
these assumptions are considered somewhat simplistic, as mentioned above, the
main goal of this paper is to motivate research in analytical performance models
of collaboration architectures rather than be the last word on them.

In two-user collaborations there are three architectures to consider: (1) the
shared program is centralized on the faster computer, (2) the program is
centralized on the slower computer, and (3) the program is replicated. The reason
for considering (2) is that in a centralized system, the user initiating the
collaboration is the one whose computer hosts the program. By comparing (1) and
(2) we can estimate the benefit of (a) adding a constraint on users that requires the
one with the faster computer to initiate the session in a static system and (b)
changing the architecture at runtime in a dynamic system. Below, we derive the
response, feedthrough, and task completion times for these three architectures.

Response Times in Centralized Architectures

In cases where a user’s input commands are processed by processed by the local
program, the local program replica processes each input command immediately
after the local user provides it, keeps processing it without interruption, and
finally generates an output message. Hence, if user1 is hosting the centralized
architecture, his response time is w/p1, and if user2 is hosting the centralized
architecture, his response time is w/p2. Now, consider the case where a user’s
input commands are processed by processed by a remote program instance. Each
of his input commands must first travel to the remote program instance, which
then immediately starts processing the command upon receipt. The remote
program instance processes the input command without interruption, and finally
generates an output message, which, then, must travel back to the input provider’s
computer. Therefore, user2’s local response time is 2d+w/p1 in centralized
architectures with user1 hosting, and user1’s local response time is 2d+w/p2 in
centralized architectures with user2 hosting. Hence, we have

RespCentU1 = w/p1 if user1 is hosting [Eq. 1.1]
RespCentU1 = 2d+w/p2 if user2 is hosting [Eq. 1.2]
RespCentU2 = w/p2 if user2 is hosting [Eq. 1.3]
RespCentU2 = 2d+w/p1 if user1 is hosting [Eq. 1.4]

Response Times in Replicated Architectures

In the replicated architecture, each user’s input command is processed by the local
replica without synchronizing with the other replica. Thus, user1’s and user2’s
response times in the replicated case are w/p1, and w/p2, respectively. Hence,

RespRepU1 = w/p1 [Eq. 2.1]
RespRepU2 = w/p2 [Eq. 2.2]

Task Completion Times in Centralized Architectures

We calculate here the centralized architecture task completion time for user1 and
assume user1 inputs first. Figure 1(a) below illustrates the elements of an example
task completion time in a centralized architecture scenario where the shared
program is centralized on user1’s faster computer. In this interaction sequence,
user1 enters inputs 1, 2, 5, and 6, while user2 enters inputs 3, 4, and 7. Let Li
denote the ith contiguous period of time during which the centralized program is
busy locally processing or waiting for input commands from the local user, user1.

Let Ri denote the ith contiguous period of time during which the program is
waiting for input commands from the remote user, user2. Since a collaboration
session starts when the centralized program starts processing the first input
command of the session and ends when it finishes processing the last input
command of the session, Li must immediately be followed by Ri, which then must
be immediately followed by Li+1. Therefore, the total task completion time equals
Σ Li + Σ Ri.

Figure 1. Centralized Architecture Time Diagram

∑ Li: This term includes two components: the time used to locally process the
input commands of both users and the think times of the local user, user1. The
first component is (c1+c2)w/p1 and the second one is (c1-1)t as user1 spends t think
time before inputting a command for all commands but the first. Thus, we have

∑ Li = (c1+c2)w/p1+(c1-1)t [Eq. 3]
∑ Ri: As shown in Figure 1(a), waiting for an input command from user2

consists of three parts: the network delay in transmitting the output for the
previous command from user1’s computer to user2’s computer, the think time t of

User1 User2

output
input

User1 User2

(a) Centralizing to user1 (b) Centralizing to user2

t
w/p1 input 1

input 2
L1

t
d

L2

R1 d

tinput 4

input 3

t
tL3

t

input 5

input 6

R2

L4

R3

input 1

w/p2

d

input 2

t

t

w/p2

L1

L2

L3

L4

R2

R1

R3

R4

t

t

t

t

input 5

input 6

input 3

input 4

input 7

input 7

R5

user2 before inputting the next command, and finally the network delay in
transmitting user2’s input command to user1’s machine. Thus, we have

∑ Ri = c2(2d+t) [Eq. 4]
From equations 3 and 4, we can derive the total task completion time for a

centralized architecture in which the faster user, user1, is the host.
taskcentU1 = ∑ Li + ∑ Ri = (c1+c2)w/p1+(c1+c2-1)t+2c2d [Eq. 5.1]
As the three terms above show, it consists of the time required to process all

input commands, the time it takes to think before all commands but the first one,
and the network delays incurred in receiving the input commands from and in
sending the outputs of the previous commands to the remote user.

If we consider Figure 1(b), then we can similarly reason about the task
completion time of a centralized architecture in which the slower user, user2, is
the host. In this case, all the processing is done by user2’s computer, and the
delays are incurred for user1’s commands. As this the dual of the previous case,
the task completion time mirrors equation 5.1.

taskcentU2 = ∑ Li + ∑ Ri = (c1+c2)w/p2+(c1+c2-1)t+2c1d [Eq. 5.2]

Task Completion Time in Replicated Architecture

Deriving the replicated architecture task completion time is significantly different
and more complicated than deriving it for the centralized case for several reasons.
First, the faster computer may have to wait for the slower one to catch up because
of processing time differences. Second, this wait occurs, not after each input
command, but instead, when control switches from the user with the fast computer
to the user with the slow computer. Finally, the wait time depends not only on the
processing power difference but also on the network delays and think times.

Figure 2 below illustrates the elements of an example task completion time in
the replicated architecture scenario during which user1 enters inputs 1, 2, 5, and 6,
and user2 enters inputs 3, 4, and 7. This example illustrates our derivation of the
task completion time. We will calculate the task completion time for user1 only.
As before, let Li denote the ith contiguous period of time during which the program
on user1’s computer is busy locally processing input commands or waiting for
input from the local user, user1. Let Ri denote the ith contiguous period of time
during which the program on user1’s computer is waiting for input commands
from the remote user, user2.

∑ Li: As in the centralized case, the shared program on user1’s computer must
process all of the input commands and wait for the think time, t, before each
command entered by user1 except the first one. Thus, we have

∑ Li = (c1+c2)w/p1+(c1-1)t [Eq. 6]
∑ Ri: In order to calculate the time the faster computer waits for the slower

one, we divide the task completion time into subsequences and then add up the

time all the subsequences contribute. A subsequence i consists of c1,i user1’s
consecutive input commands followed by c2,i user2’s consecutive input
commands. In case user1 provides the last input command in a subsequence, the
last subsequence is composed only of user1’s input commands. We refer to such a
subsequence as a half subsequence as opposed to a full subsequence. Therefore, a
task sequence is composed of full subsequences and possibly another one half
subsequence. The first subsequence is different from the others in that both
computers are ready to process the first input command in the subsequence.
Therefore, we treat it differently from the others. We now calculate ∑ Ri in terms
of its components.

Figure 2. Replicated Architecture Time Diagram

∑ Ri in First Subsequence

C1: C1 is defined as the time that elapses from the moment user1’s program replica
finishes processing the last input command by user1 in the subsequence to the
moment it begins processing the first input command by user2 in the subsequence.
Figure 2 graphically shows that C1+E1=F1+G1+H1. Therefore, C1=(F1+G1+H1)-
E1. We next calculate the values on which C1 depends.

E1: E1 is defined as the time that elapses from the moment user1’s program
replica begins processing user1’s first input command in the subsequence to the

User1 User2

t
w/p1

L1 E1
F1

t

d

w/p2

G1

H1
d

input 1

input 2

L2

R1

input 3

input 4

J1,1

D1,1 K1,1

t
tE2

J1,2

input 5

input 6

input 7
t

L4 J2,1

R2

L3

R3

δ2=w/p2-w/p1-2d-t

t

C1

moment it finishes processing user1’s last input command in the subsequence.
This includes processing c1,1 input commands by user1 and a think time of t for
each of these commands except the first. Thus, we have

E1 = c1,1w/p1+(c1,1-1)t [Eq. 7]
F1: F1 is defined as the time that elapses from the moment user1’s first input

command in the subsequence leaves user1’s computer to the moment user2’s
program replica begins to process it. Therefore, F1 is the network delay between
the users’ computers, d. Thus, we have

F1 = d [Eq. 8]
G1: G1 is defined as the time that elapses from the moment user2’s program

replica begins processing user1’s first input command in the subsequence to the
moment it finishes processing user1’s last input command in the subsequence.
There are two cases to consider here based on whether the think time, t, is less
than the difference in processing times of an input, w/p2-w/p1. If t ≤ w/p2-w/p1,
then user2’s computer will never be idle waiting for a command to arrive from
user1’s computer (Figure 2), except initially. In this case, G1 = c1,1w/p2, the time
required to process user1’s input commands in the subsequence on user2’s
computer. But if t > w/p2-w/p1, δ1 = t-(w/p2-w/p1), user2’s program replica will
finish processing user1’s previous input command by the time it receives user1’s
next input command. Thus, G1 increases by δ1(c1,1-1), which is the time user2’s
computer is idle while user1’ inputs in the first subsequence (Figure 3). Hence,

G1 = c1,1w/p2 if δ1 = t-(w/p2-w/p1) ≤ 0 [Eq. 9.1]
G1 = c1,1w/p2+δ1(c1,1-1) if δ1 = t-(w/p2-w/p1) > 0 [Eq. 9.2]

Figure 3. Illustrating G1 if t > w/p2-w/p1

H1: H1 is defined as the time that elapses from the moment user2’s program
replica finishes processing user1’s input commands in the subsequence to the
moment user1’s program replica begins to process user2’s first input command in
the subsequence. Once user2’s program replica finishes processing user1’s
commands in the subsequence, user2 spends t time thinking about the output of
user1’s last input command and then enters his first input command in the
subsequence. Therefore, H1 consists of user2’s think time, t, and the network delay
between the users’ computers, d. Thus, we have

H1 = t+d [Eq. 10]
user1’s replica begins processing user2’s first input command in the

subsequence immediately. Therefore, by the definitions of C1, E1, F1, G1, and H1,

User1

t

w/p1

E1

input 1

input 2

d

w/p2G1

w/p1+t

δ1=t-(w/p2-w/p1)
w/p2

it must be the case that C1 = (F1+G1+H1)-E1. Based on equations 7, 8, 9.1, 9.2,
and 10, the wait time that elapses from the moment user1’s replica finishes
processing user1’s last input command in the subsequence to the moment it begins
processing user2’s first input command in the subsequence, is

C1 = 2d+c1,1(w/p2-w/p1)-(c1,1-2)t if t-(w/p2-w/p1) ≤ 0 [Eq. 11.1]
C1 = 2d+(w/p2-w/p1)+t if t-(w/p2-w/p1) > 0 [Eq. 11.2]
The C1 component of ∑ Ri in the first subsequence tells us how long user1’s

faster computer must wait for user2’s first input command in the subsequence
after processing all of user1’s input commands in the first subsequence. However,
∑ Ri in the first subsequence also includes the time user1’s computer must wait for
user2’s computer while processing user2’s input commands in the first
subsequence. user1’s program replica will wait from the moment it processes
user2’s jth command in the subsequence until user2’s j+1st command of the
subsequence arrives. This time is equal to D1,j and for user2’s jth input command.
Figure 2 shows D1,1.

∑ D1,j: ∑ D1,j is the summation of the wait times during the time period in
which user1’s program replica is processing user2’s input commands in the first
subsequence. We now show that ∑ D1,j equals ∑ (K1,j-J1,j).

K1,j: K1,j is defined as the time that elapses from the moment user1’s program
replica begins processing user2’s jth command in the subsequence until user1’s
program replica begins processing user2’s j+1st command in the same
subsequence. Since p1 > p2 and t ≥ 0, we have w/p1 < t+w/p2, that is, the time
user1’s program replica takes to process user2’s input command, w/p1, is less than
the time it takes user2’s program replica to process the same input command,
w/p2, and the time, t, during which user2 thinks before inputting his next
command. As a result,

K1,j = w/p2+t [Eq. 12]
J1,j: J1,j is the time that user1’s replica requires to process user2’s input

command. Hence,
J1,j = w/p1 [Eq. 13]
By the definition of D1,j, K1,j, and J1,j, D1,j = K1,j-J1,j. As a result, from equations

12 and 13, we have
∑ D1,j = ∑ (K1,j-J1,j) = (c2,1-1)(t+w/p2-w/p1) [Eq. 14]
In other words, when user2 is inputting a command, user1’s computer must

wait for the think time and extra time it takes user2’s computer to process the
command for all user2’s input commands in the subsequence except the last.

V1 = C1+∑ D1,j: C1 and ∑ D1,j account for all components of ∑ Ri in the first
subsequence. Based on equations 11.1, 11.2, and 14, we have:

V1 = 2d+(c1,1+c2,1-1)(w/p2-w/p1)+(c2,1-c1,1+1)t if t-(w/p2-w/p1) ≤ 0 [Eq. 15.1]
V1 = 2d+c2,1t+c2,1(w/p2-w/p1) if t-(w/p2-w/p1) > 0 [Eq. 15.2]

∑ Ri in Non-First Subsequences

Vi = Ci+∑ Di,j accounts for all components of ∑ Ri in subsequence i, where i > 1.
The other subsequences are different from the first subsequence for the following
reason. In the first subsequence, user2’s computer is ready to process the first
input command of user1 in the subsequence as soon as it arrives. However, in
other subsequences, user2’s program replica may still be processing the last input
command of the previous subsequence by the time the first input command of the
current subsequence reaches it. As in Figure 2, this occurs if w/p2-w/p1 > 2d+t,
that is, if the difference in command processing times is greater than the time it
takes for the last input of the previous subsequence to reach user1’s computer, for
user1’s computer to process it, the think time before user1 enters his first input
command of the current subsequence, and the time it takes for this input to reach
user2’s computer. This additional delay increases the processing time for all non-
first subsequences by δ2 = w/p2-w/p1-2d-t.

Hence, the processing time equations 15.1 and 15.2 for the first subsequence
can be generalized for non-first subsequences as follows:

Vi = 2d+(c1,i+c2,i-1)(w/p2-w/p1)+(c2,i-c1,i+1)t if t-(w/p2-w/p1) ≤ 0 [Eq. 16.1]
Vi = 2d+c2,it+c2,i(w/p2-w/p1) if t-(w/p2-w/p1) > 0 [Eq. 16.2]
Vi = (c1,i+c2,i)(w/p2-w/p1)+(c2,i-c1,i)t if t-(w/p2-w/p1)+2d ≤ 0 [Eq. 16.3]

We can now calculate ∑ Li+∑ Ri which is the same as ∑ Li+∑ Vi.
∑ Li+∑ Ri: Recall that c1 and c2 are the total number of commands by user1

and user2, respectively, s is the number of full subsequences, and a is the number
of user1’s answered commands. Then the task completion time for a replicated
architecture, based on equations 6, 16.1, 16.2, and 16.3 is

taskrep= (c1+c2)w/p1+2sd+(a+c2-s)(w/p2-w/p1)+(c1+c2-a+s-1)t
 if t-(w/p2-w/p1) ≤ 0 [Eq. 17.1]
taskrep= (c1+c2)w/p1+2sd+c2(w/p2-w/p1)+(c1+c2-1)t
 if t-(w/p2-w/p1) > 0 [Eq. 17.2]
taskrep= (c1+c2)w/p1+2d+(a+c2-1)(w/p2-w/p1)+(c1+c2-a)t
 if t-(w/p2-w/p1)+2d ≤ 0 [Eq. 17.3]

In equation 17.3, δ2 is subtracted as it does not occur in the first subsequence.

Feedthrough in Centralized Architectures

Recall that the feedthrough time for a command is defined as the time that elapses
from the moment the command is input to the moment the non-inputting user sees
its output. In centralized architectures, feedthrough depends on whether the
inputting user is local or remote to the computer hosting the centralized program.
If the local user provides the input, the remote user will see the output once the
input command is processed and the output traverses the network. If the remote

user provides the input, the local user will see the output once the input command
reaches the local computer and the local computer processes it. Thus:

FeedCentToU1 = w/p1+d if user1 hosts the program [Eq. 18.1]
FeedCentToU2 = w/p2+d if user2 hosts the program [Eq. 18.2]

Feedthrough in Replicated Architectures

Consider first feedthrough to commands input by the slower user, user2. Such a
command must traverse the network and be processed by the faster user’s
computer before the latter sees its output. Thus,

FeedRepForU2 = w/p1+d [Eq 19.1]
The feedthrough time of commands input by the faster user, user1, is more

complicated because if t < (w/p2-w/p1), the slower computer falls further behind
the faster computer with each consecutive input entered by the faster user, as
illustrated in Figure 2. In this case, consider, command, j, entered in the first
subsequence. As this is the first subsequence, user2’s computer processes the first
command as soon as it arrives. Hence:

FeedRepForU1
1,j = d+w/p2 for j = 1 [Eq 19.2]

As t < (w/p2-w/p1), the feedthrough will increase by (w/p2-w/p1-t) for each
subsequent command by user1 in the subsequence. Hence:

FeedRepForU1
1,j

 = d+w/p2+(j-1)(w/p2-w/p1-t) for j ≥ 1 [Eq 19.3]
If t ≥ (w/p2-w/p1), the slow computer is ready to process each command by

user1 as soon as it arrives. Thus:
FeedRepForU1

1,j
 = d+w/p2 j ≥ 1 [Eq 19.4]

Recall that there are two cases to consider for the non-first subsequences. If
w/p2-w/p1 ≤ 2d+t, the slow computer is ready to process the first command in the
subsequence as soon as it arrives. In this case, the feedthrough equations given
above for the first subsequence apply to all subsequences. Otherwise, the term
w/p2-w/p1-2d-t is added to the equations given above for the first subsequence.

Formal Analysis Validation
We have given above both mathematical proofs and intuition for justifying the
performance model. In addition, it is important to back these with experimental
results that validate it for a large number of values of collaboration parameters.
Ideally, these experiments should also show its practicality. Several approaches
could be used to gather the experimental data.
• Live interaction: Under this approach, pairs of users would perform a

collaborative task multiple times as the architecture and system parameters are
varied in a controlled manner each time.

• Actual logs: Another approach is to use logs of actual collaborations and
assume that these are independent of the system parameters such as
architecture, machines used, and network delays. These logs can then be
replayed under different values of system parameters.

• Synthetic logs: With this approach, the user logs can be created by varying the
user parameters using some mathematical distribution such as Poisson’s.

Since users cannot be relied upon to perform the same sequence of actions and
have the same think times in different collaborative sessions, the live interaction
approach is impractical. The other two approaches require a large number of logs
to ensure that a wide range of values for user parameters are covered. This is not a
problem for synthetic logs, but such logs do not address the practicality concern as
it is not clear parameter values based on mathematical distributions represent
reality. Logs of actual interaction are not provided in any public database and we
were unsuccessful in obtaining them from researchers who we knew had logged
their collaboration tasks. Thus to use the actual-log approach, we would have to
gather a large number of actual logs ourselves, which is beyond the scope of our
work: the analytical model is our primary contribution and the experiments are
addressed mainly to validate the model. In other fields such as real-time systems
where benchmarks are not widely available, it is customary to resort to the
synthetic-log approach to validate new theoretical results. We did a little better by
using a hybrid of the synthetic and actual log approaches. We recorded a small
number (8) of actual logs to obtain realistic values of some user parameters and
then used these values to create a large number (30) of synthetic logs that we then
replayed in the actual experiments using different architectures and system
parameters.

We used the same program for recording the actual logs and replaying the
synthetic logs. The program is the distributed checkers program used by Chung
and Dewan (2001, 2004) which allows a group of users to play against the
computer. We chose this program for two reasons. First, it is a computer-intensive
task, allowing us to validate the effect of processing time differences. Second, the
user study participants knew the game rules, so no user training was needed.

Recall that we assume that an input command takes exactly w CPU cycles to
be processed. In Checkers, a user’s move consists of two actions: picking up and
putting down a piece. To make our response and feedthrough measurements valid,
we group the multiple input commands for a single move into a single input
command. Also, the computer calculation of the next move depends on the piece
positions and is hence not constant. Thus, we report the average response and
feedthrough times over all the moves in a single game.

We focus on actor-observer interaction mode in which one user, the actor,
makes all the inputs, which are at the end acknowledged by the other user, the
observer. The acknowledgement is needed to tell the actor that the observer has
seen all the moves and they can proceed to their next task (e.g. post mortem of the

game.) Focusing on the actor-observer allows us to show practical results in the
limited space available while addressing many common collaborative tasks, such
as an expert demonstrating to others or a pupil being tested by a tutor.

To approximate the think times and logs for the actor-observer mode, we
gathered actual user logs in which a single user played against the computer.
Table I shows the values of user parameters obtained from these studies, which
were used in the synthetic logs.

Number of moves Think Time
(s)

Min Med Max Min Med Max
21 44 72 0.11 4.5 41.2

Table I. Measured User Parameter Values Used In Synthetic Logs

The system parameters, processing powers and network delays, also have to be
realistic. We used two computers, a Pentium 1.5M laptop and a P2 400Mhz
desktop, which have a processing power difference that can be expected when two
users collaborate. Both computers are connected on a local LAN. Based on
Chung’s and Dewan’s experiments, we added 72, 162 and 370 ms to the LAN
delays to estimate half the round-trip time from a U.S. East Coast LAN-connected
computer to a German LAN-connected computer, German modem-connected
computer, and Indian LAN-connected computer, respectively. As LAN delays
vary during an experiment, we performed it ten times and report the average
performances for these ten trials. Our measured numbers are consistent with our
model. We do not have space to give all of our measurements. We report a sample
of them next when we discuss and validate the new predictions made by our
model.

Applications of our model

The application of our work consists of (1) explaining previous experimental
results, and (2) making new predictions.

Explaining Architecture Performance Results

Chung and Dewan showed that (a) low network latencies favor a centralized
architecture and (b) asymmetric processing powers favor a centralized
architecture. These results were interesting because they went against the common
assumption that a replicated architecture always outperforms a centralized one. In
their experiments they used a think time of zero and a centralized case in which
the faster computer executed the program. Under these conditions, equation 5.1
applies for the centralized architecture task completion time, and equations 17.1
and 17.3 apply to the replicated architecture. For brevity, we consider only 17.3

here. To compare the task completion times of the two architectures, we can
subtract equation 17.3 from equation 5.1. A negative result means that the
centralized architecture has a better task completion time, and vice versa.

taskcentU1-taskrep = 2d(c2-1)-(a+c2-1)(w/p2-w/p1)
Assume that c2, the number of input commands entered by user2, is always

greater than 1. Also assume that the number of user1’s answered input commands,
a, is greater than or equal to 0. Thus, the term 2d(c2-1) will increase as d, the
network delay, increases, which favors the replicated architecture. On the other
hand, the term -(a+c2-1)(w/p2-w/p1) in the same equation will become more
negative as the processing power difference, w/p2-w/p1, increases, which favors
centralizing the program to user1’s machine. This is consistent with the results by
Chung and Dewan. Next we consider new predictions made by our analytical
model. In all of the cases we consider below, we assume the actor-observer mode
defined earlier.

Choosing the Placement of the Centralized Program

Sometimes replication is not an option – a user may be bound to a centralized
system or the shared program cannot be executed correctly in the replicated
architecture. Our model, somewhat counter-intuitively, predicts that centralizing
the program on the slower computer may give better task completion and response
times but worse feedthrough times than centralizing to the faster computer.

This occurs when the actor is the user on the slow computer. The relevant task
completion time equations are 5.1 and 5.2 and the relevant response time
equations are 1.3 and 1.4. Consider the task completion and response time
difference equations for the two centralized architectures:

taskcentU1-taskcentU2 RespCentU2[1.4]-RespCentU2[1.3]
= 2d(c2-c1)-(c1+c2)(w/p2-w/p1) = 2d-(w/p2-w/p1)
We can set c1 = 1 because the observer, user1 in this case, provides one input at

the end to acknowledge end of collaboration. We assume that c2, the number of
input commands entered by user2, is always greater than 1. Thus in the task
completion time difference equation, the term, 2(c2-1)d, will increase as d, the
network delay, increases, which favors centralizing the program to user2’s slower
machine. However, since c2 > 1, the (1+c2)(w/p2-w/p1) term in the equation will
increase with the processing time difference, w/p2-w/p1, which favors centralizing
the program to user1’s machine. The same conditions apply to the response time
difference. For feedthrough, however, centralizing on the fast computer gives a
lower value, as shown below. In both centralized architectures, either user1’s input
command or its output will traverse the network before user2 sees the output.
Therefore, the feedthrough will be lower when centralizing to user1’s faster
computer as it processes input commands faster than user2’s slower computer.

FeedcentU1- FeedcentU2 = w/p1+d-w/p2-d = -(w/p2-w/p1)

To experimentally validate this scenario, we used the median observed think
time of 4.5s. The results in Figure 4 confirm our analyses. As we see, centralizing
on the slow computer offers relative gains of as much as 69% for response time
and 10% for the task completion time. As expected, when think times dominate
the task completion time, the relative task completion time difference is not large.

Figure 4. Task Completion, Response, and Feedthrough Times of the Slow Actor

Centralized and Replicated Task Completion Times

Our model also predicts that in certain collaboration modes, the task
completion time advantage one architecture has over another can be significant. In
particular, a centralized architecture with the faster user’s computer hosting may
enjoy such an advantage over a replicated architecture when think times are low
and the user with the faster computer, user1, is the actor. The relevant equations
are 5.1, 17.1, 17.2, and 17.3. We consider 5.1 and 17.1 only which give the task
completion time difference as

taskcentU1-taskrep = 2d(c2-s)-(a+c2-s)(w/p2-w/p1)+(a-s)t
As before, we can set c2 = 1 because the observer, user2 in this case, provides

one input at the end of the collaboration. We assume that c1, the number of input
commands entered by the actor, user1, is always greater than 1, all of which are
answered. Hence, c1 = a > 1. Because the collaboration consists of one full
subsequence, s = 1. Thus, 2(c2-s)d = 0 and (a+c2-s) = a. We assume that t, the
think time, is less than (w/p2-w/p1), the processing time difference. Thus, the task
completion time difference, which equals -a(w/p2-w/p1)+(a-1)t, is negative. Since
the faster user inputs all the commands but one, the network delays are not a
factor. Hence, processing the input commands only on the faster computer is
better than replicating because the slower computer falls further behind the faster
one with each input command which increases the task completion time as
predicted by the model.

To experimentally validate this scenario, we used the minimum observed think
time of 110ms as it needed to be less than the time difference for processing an
input command to make the above equations hold. We show the experiment

180
190
200
210
220
230
240

0 72 162 370
Delay (ms)

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

)

0

200

400

600

800

1000

0 72 162 370
Delay (ms)

R
es

po
ns

e
Ti

m
e

(m
s)

0
100
200
300
400
500
600
700

0 72 162 370
Delay (ms)

Fe
ed

th
ro

ug
h

Ti
m

e
(m

s)

Centralized On Fast Centralized On Slow

results with LAN delays (0ms). The results for other delays are consistent but are
omitted for brevity reasons. Figure 5 confirms our analysis. It shows that the
centralized architecture can be as much as 6.3s faster or as much as 58% quicker
in completing the task than the replicated architecture.

Figure 5. Task Completion, Response, and Feedthrough Times of the Slow Actor

Collaboration Length Effect on Task Completion and Feedthrough Times

Our model also predicts that for certain collaboration conditions, the advantage in
task completion and feedthrough times one architecture has over another gets
magnified as the length of the collaboration increases.

As above, this occurs when think times are low, that is, t < w/p2-w/p1, and the
user with the faster computer, user1, is the actor. In the above analysis, we show
that in this collaboration mode, the centralized architecture with user1’s computer
hosting completes the task in a(w/p2-w/p1)-(a-1)t time faster than the replicated
architecture. Since a, the number of answered user1’s input commands, increases
with collaboration length, this difference gets magnified according to the above
task completion time difference equation. Intuitively, the time that elapses from
the moment the faster computer processes an input command and to the moment
the slower computer processes the same command increases between consecutive
inputs by the actor because the slower computer falls further behind the faster one
with each input command. Figure 5 verifies our analysis.

Consider now the feedthrough times. Since the entire collaboration consists of
consecutive actor’s input commands followed by a single input command from
the observer, there is only one subsequence in the collaboration. Thus, the
relevant feedthrough time equations are equations 18.1 and 19.3. According to
these equations, the feedthrough time difference is:

FeedCentToU1-FeedRepForU1
1,j = -(w/p2-w/p1)-(j-1)(w/p2-w/p1-t) for j ≥ 1

The maximum value of j is a, the number of user1’s answered input commands.
Consider the feedthrough of user1’s last input command. With the same reasoning
as above, we can argue that the feedthrough of user1’s last input command will, in
the replicated case, increase with collaboration length as predicted by the model.

0

2

4

6

8

11 22 44
Collaboration Length

(# moves)

A
bs

ol
ut

e
D

iff
er

en
ce

 (s
) i

n
Ta

sk
 C

om
pl

et
io

n
Ti

m
e

0

5

10

15

20

11 22 44
Collaboration Length

(# moves)

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

)

Centralized On Fast Replicated

We validate this indirectly using task completion time results in Figure 5. The
time user2 views the output to user1’s last input command is exactly the task
completion time minus the time it takes to process user2’s only input. Since the
previous result showed that the absolute task completion time difference increases
with collaboration length in favor of the centralized architecture, we can conclude
that the feedthrough time of user1’s last input message will behave the same.

Other Predictions

Our model makes the following additional predictions. In some cases, the
replicated architecture optimizes the feedback time but not the task completion
time. In other cases, centralizing to the slower computer may offer equivalent task
completion and feedback times as replicating. Moreover, as the think time
increases, the architecture choice makes no significant difference to the task
completion time (though it does influence the response and feedthrough times).
This happens for two reasons. The obvious one is that think times dominate the
task completion time. The more interesting one we found is that the users who had
high think times also had smaller number of moves. As we saw above, relative
difference in task completion times of replicated and centralized architectures
decreases as input sequence length decreases. We do not deduce or validate these
predictions through experiments because of lack of space.

Conclusions and Future Work
This paper makes several contributions.

First, the analysis offers a better understanding of the event flow in centralized
and replicated architectures and explains previous experimental results.

Second, the analysis provides several new conclusions regarding the
performances of two-user architectures such as (a) centralizing the application on
the slower machine is sometimes the optimal solution, (b) centralizing the
application on the faster machine can be better than replicating, and (c) as the
duration of the collaboration increases, the difference in performances of
centralized and replicated architectures gets magnified.

Third, the analysis provides guidance for users with varying degrees of choice
regarding the collaborative systems they use. For users who are bound to a
particular collaboration system, we offer an analysis of how changes to the
collaboration parameters can help improve performance. Given a choice of
systems that support a single collaborative architecture or that bind a session to an
architecture at session start time, we provide a way to make a better decision
about which system or architecture to select to obtain optimal performance. When
a system supports runtime architecture changes, we help decide which
architecture to use as the user and system parameters change.

Lastly, as secondary contributions we report results of our user studies. The
logs we collected from actual usage give values of user parameters such as think
times and number of user actions that are relevant to performance. The
performances we report from the replays of synthetic logs generated from the user
parameters constitute new empirical results in this area.

Further work is needed to make and verify additional predictions based on our
analyses, use actual user logs for making measurements, relax assumptions made
in our analysis, and build a system module that automatically changes the
architecture based on the analysis and current values user and system parameters.
We hope this first-cut at a formal model will be a catalyst for such work.

Acknowledgements
This research was funded in part by Microsoft and NSF grants ANI 0229998, EIA
03-03590, and IIS 0312328. We also thank Tynia Yang, Ankur Agiwal, John
Calandrino, Enes Junuzovic, Jason Sewall, Stephen Titus, and Ben Wilde, our
user study participants, who volunteered their time on a very short notice.

References
Ahuja, S., Ensor, J.R., Lucco, S.E. (1990): ‘A Comparison of Application Sharing Mechanisms in

Real-time Desktop Conferencing Systems’, Proceedings of the conference on Office
Information Systems, 1990, pp: 238-248.

Chung, G. and Dewan P. (2001): ‘Flexible Support for Application-Sharing Architecture’,
Proceedings of the European Conference on Computer Supported Cooperative Work, 2001.

Chung, G and Dewan P. (2004): ‘Towards Dynamic Collaboration Architectures’, Proceedings of
the 2004 ACM conference on Computer Supported Cooperative Work, 2004.

Danskin, J., Hanrahan, P. (1994): ‘Profiling the X Protocol’, Proceedings of the 1994 ACM
Conference on Measurement and Modeling of Computer Systems, 1994, pp: 272-273.

Droms, R., Dyksen, W. (1990): ‘Performance Measures of the X Window System Communication
Protocol’, Software – Practice and Experience (SPE), vol. 20, no. S2, 1990, pp: 119-136.

NEC 2000: ‘Windows 2000 Terminal Services Capacity and Scaling’, NEC, 2000 .
Dyck, J., Gutwin, C. Subramanian, S., Fedak, C. (2004): ‘High-performance Telepointers’,

Proceedings of the 2004 ACM conference on Computer Supported Cooperative Work, 2004.
Nieh, J., Yang, S. and Novik, N. (2000): ‘A Comparison of Thin Client Computing Architectures’,

Technical Report CUCS-022-00 Columbia University, November 2000.
Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A. (1998): ‘Virtual Network Computing’,

IEEE Internet Computing, vol. 2, no. 1, January/February 1998, pp. 33-38.
Wong, A., Seltzer, M. (2000): ‘Evaluating Windows NT Terminal Server Performance’,

Proceedings of the 3rd USENIX Windows NT Symposium, July 1999, pg: 145-154.

