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ABSTRACT 
We evaluate response times, in N-user collaborations, of the 
popular centralized (client-server) and replicated (peer-to-peer) 
architectures, and a hybrid architecture in which each replica 
serves a cluster of nearby clients. Our work consists of definitions 
of aspects of these architectures that have previously been 
unspecified but must be resolved for the analysis, a formal 
evaluation model, and a set of experiments. The experiments are 
used to define the parameters of and validate the formal analysis. 
In addition, they compare the performances, under the three 
architectures, of existing data-centric, logic-centric, and stateless 
shared components. We show that under realistic conditions, a 
small number of users, high intra-cluster network delays, and 
large output processing and transmission costs favor the replicated 
architecture, large input size favors the centralized architecture, 
high inter-cluster network delays favor the hybrid architecture, 
and high input processing and transmission costs, low think times, 
asymmetric processing powers, and logic-intensive applications 
favor both the centralized and hybrid architectures. We use our 
validated formal model to make useful predictions about the 
performance of the three kinds of architectures under realistic 
scenarios we could not create in lab experiments. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications, client/server. C.4 
[Performance of Systems] Performance Attributes. 

General Terms 
Algorithms, Performance, Measurement, Experimentation. 

Keywords 
Collaboration architecture, analytical model, response time. 

1. INTRODUCTION 
Two main architectures have been used to support the sharing of a 
program among multiple users: centralized (client-server) and 
replicated (peer-to-peer) [5]. In the centralized architecture, the 
shared program executes on a computer belonging to one of the 
collaborators, receiving input from and broadcasting output to all 

users. In the replicated architecture, a separate replica of the 
program executes on the computer of each user, receiving input 
from all users and producing output for only the local user. We 
call a computer which is (not) running the program a master 
(slave) computer, and the corresponding user a master (slave) 
user. Thus, in a centralized architecture, one computer is a master 
while the rest are slaves, and in a replicated architecture, all 
computers are masters. In this paper, we also consider a third type 
of architecture, the hybrid architecture, in which more than one 
computer, but not all, are masters. Such architectures are 
supported by a few frameworks, such as [3][8]. 

Given a distribution of collaborators, multiple centralized and 
hybrid architectures are possible. In the hybrid architectures we 
consider, a slave computer is always served by the replica that is 
nearest to it, that is, the one with the smallest network delay. We 
refer to such a hybrid architecture as proximity-based and the 
slaves served by a master as a cluster.  

The choice of the architecture affects the semantics, correctness, 
and performance of the shared program [5]. In this paper, we 
focus on performance, specifically, response times, and assume 
that correctness issues such as externalities [2] have been 
addressed by the system implementing the architecture. Research 
shows that response times should ideally be less than 50ms [10], 
but in several commercial collaboration systems, this goal is not 
met. For example, the response times to operations made by a 
remote user of a centralized LiveMeeting/Webex shared 
application is intolerable as it can sometimes take several 
seconds. Replicated architectures offer the hope for better 
response times, but all commercial implementations of this 
architecture with which we are familiar do not offer the option of 
transmitting incremental changes to a shape as it is dragged 
because of performance fears. Similarly, unlike the early P2P 
“talk” programs, state-of-the-art IM tools do not support the 
option of incremental sharing of typed text partly because of the 
fear that IM servers would be overloaded.1 However, several 
usable and useful research systems support incremental sharing of 
drag operations and text edits [6]. Thus, the key is to 
systematically characterize these scenarios based, for example, on 
the number of participating users and network delays between the 
users so that an appropriate architecture can be chosen for a 
particular collaboration. This goal has motivated previous work in 
both empirical and formal analysis of the performance of 
collaboration architectures. 

                                                                 
1 Another reason is the assumption that this feature would not be 

useful. This assumption can be verified only by providing it as 
an option when it will not have an impact on the performance. 
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Ahuja et al. [1] performed experiments to compare the network 
load imposed by the centralized and replicated implementations 
of a shared drawing program. Junuzovic, Chung, and Dewan [7] 
addressed response, feedthrough, and task completion times in 
centralized and replicated architectures. They developed a formal 
model comparing the two architectures and performed 
experiments validating it using a checkers application. This work 
assumed two-user collaborations, a constant cost of processing 
each user operation, constant think times before each command, 
zero cost of transmitting inputs and outputs, and no type-ahead. 

This paper extends previous work in several ways. It considers 
collaborations involving an arbitrary number of users and adds 
hybrid architectures to the mixture of architectures considered, 
which make sense only in collaborations involving more than two 
users. Moreover, the experimental evaluation considers three 
classes of shared applications: 1) Logic-centric, which process 
computationally-heavy input commands; 2) Data-centric, which 
distribute large amounts of data; and 3) Stateless, which do not 
process computationally heavy input commands or distribute 
large amounts of data.  Like [7], it also develops a formal 
performance model but focuses only on response times. It relaxes 
all assumptions of [7] except no type-ahead. It considers several 
new collaboration parameters (such as transmission and output 
processing costs) that become important when the assumptions 
are relaxed. Finally, because of the relaxed assumptions and 
extended architecture and application set, it makes several new 
predictions about the optimal architecture under realistic 
collaboration conditions. 

This paper makes its own set of assumptions, which we describe 
in the next section. Following this, we develop the response time 
equations comprising our analytical model. We then describe how 
we validate our model through experiments. Finally, we end with 
conclusions and directions for future work. 

2. ASSUMPTIONS 
Previous literature on the definitions of the centralized, replicated, 
and hybrid architectures leave unaddressed several 
implementation aspects that are important in this evaluation. A 
thorough exploration of different design choices for these aspects 
is beyond the scope of this evaluation work. Here we assume one 
approach for resolving each of the issues and defend it using 
primarily analysis-based arguments. 

The centralized, replicated, and hybrid architectures we consider 
assume that an interactive application consists of a program 
component and a user-interface component. The user-interface 
component is never shared and hence always replicated. The 
program component is the shared component and may be 
replicated on one or more master computers. 

One issue left undefined is whether or not a user-interface 
component of a master computer can directly interact with files 
accessible to the local program component. We allow such access 
because, as we show in our experiments, it can improve the 
response times for commands entered by master users, and we 
would like to be able to formally analyze the degree of the 
improvement. The idea of different user-interface components 
implementing different algorithms is not new; for instance, it has 
been advocated to create different users of mobile and desktop 
computers [9].  

A related question is whether each replicated program component 
in a replicated or hybrid architecture has access to files needed to 
support the collaboration before the collaborative session begins. 
We do not make this assumption in order to accommodate 
realistic situations – in particular, a PowerPoint presentation that 
is continuously updated until the start of the lecture. Instead, we 
assume that the necessary files are sent from the computer of the 
first inputter to all masters as part of the first input command. 

Previous work has well established the set of operations a 
program component is responsible for (which are processing input 
commands and transmitting input and/or output to other 
computers) but does not indicate whether the operations are 
carried out by a single thread or separate threads. We assume the 
former mainly because the latter makes it impossible to model the 
response times without making some platform-specific 
assumptions about the scheduling of the threads. This assumption 
does not imply worse response times as on a single-processor 
computer there is no context-switching overhead. On the other 
hand, multi-threading can improve performance by allowing a 
thread to be scheduled while another is blocked on a 
communication operation. 

When all operations are carried out by a single thread, we must 
determine the order in which they are carried out. Although other 
sequences also make sense, Figure 1 gives the orders we impose 
in the three architectures. In this figure, by transmitting data we 
mean sending it to the network and not waiting for 
acknowledgement from the receiving computer(s). Thus, the 
response times in all three algorithms are independent of network 
delays. In all three algorithms in Figure 1, the last step is handing 
output to the local user. The reason is that, in general, there will 
be a network delay before another program (user-interface) 
component receives an input command (output). Our scheduling 
ensures that receiving program (user-interface) components can 
process the received input command (output) concurrently with 

Figure 1. Program-component pseudo-code for the 
three architectures 

Centralized Architecture 
1: Wait for next input command 
2: Process input command 
3: if my slave user entered input command 

transmit output to inputting user 
4: Transmit output to my other slave users 
5: Give output to my local user 
6: Goto 1 
Replicated Architecture 
1: Wait for next input command 
2: if input command from local user  

transmit command to other master users 
3: Process input command 
4: Transmit output to local user 
5: Goto 1 
Hybrid Architecture: 
1: Wait for next input command 
2: if command from local/my slave user 

transmit command to other master users 
3: Process input command 
4: if my slave user entered input command 

transmit output to inputting user 
5: Transmit output my other slave users 
6: Transmit output to local user 
7: Goto 1 
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the sending program component, which both increases the real 
concurrency of the system and reduces the “can you see it now” 
questions. If, in the centralized and hybrid architectures, after 
processing an input command, the program component first 
handed the output to the local user-interface, the local user-
interface would complete processing the output before any of the 
program component’s slave user-interfaces even received it, thus 
reducing the real concurrency of the system and increasing the 
divergence in the user-interfaces of the collaborators. Similarly, 
if, in replicated and hybrid architectures, a master computer first 
processed an input command and then transmitted it to other 
master computers, the real concurrency would be reduced and the 
user-interface divergence increased.  

Like all published implementations of the replicated architecture 
[5], the replicated and hybrid algorithms above assume that the 
program component (a) is deterministic, that is, produces the 
same result given a series of input commands, and (b) does not 
implement atomic broadcast to ensure good response times, 
relying instead on floor control to prevent concurrent input or 
some application-specific scheme such as operation 
transformations [11] to do consistent real-time merging of 
concurrent input. Furthermore, we assume that the 
communication cost of distributed concurrency control is 
negligible. 

As mentioned before, we consider only the proximity-based 
hybrid architecture. A further requirement, imposed on both 
centralized and hybrid architectures, is that a master computer is 
at least as powerful as any of its slaves. As mentioned before, we 
assume no type-ahead.  

In our experiments, we make several additional assumptions not 
related to the architecture design and implementation issues. In 
the hybrid architectures we use for our experiments, we assume 
that the number of master computers, and therefore, clusters, is 
small. This assumption allows us to illustrate the advantages of 
each architecture in realistic scenarios without limiting our model. 
Also, we experiment with only one example of each of the three 
shared component categories we consider: checkers for logic-
centric, PowerPoint for data-centric, and IM for stateless.  

As stated above, research shows that response times should 
ideally be less than 50ms as humans can perceive values higher 
than this [10]. We assume that this implies that each 50ms 
increment is noticeable. 

Finally, our model assumes no latecomers. In particular, it does 
not consider the effect of bringing a latecomer’s state up-to-date 
on the response times of other users’ commands.  

3. FORMAL ANALYSIS 
The centralized, replicated, and hybrid architectures can be 
considered special cases of a general architecture in which there 
are one or more master computers and each master computer has 
zero or more slave computers. A general architecture is (a) 
centralized if there is exactly one master computer, (b) replicated 
if each computer in the collaboration is a master, and (c) hybrid if 
it is not centralized or replicated, that is, if more than one 
computer, but not all, are masters. 

We first derive response-time equations for a general architecture, 
which we then apply to hybrid, replicated, and centralized 

architectures. In our analysis of general architectures, we first 
consider the response time for the master and then the slave users. 
For slave users, the response time for the first and subsequent 
commands in the collaborative session must be treated differently 
because in the latter case, the shared program may still be 
processing a previous command when the next command arrives. 

Response time of an input command is defined to be the time that 
elapses from the moment a user enters the input command to the 
moment that user sees the output for the input command. It 
depends on several factors identified in Table 1, which we 
motivate as we use them. 

Table 1. Collaboration parameters that impact response time 

Parameter Description 

pi Processing power (MHz) of useri’s 
computer. 

wiin (wiout) 
Work (number of CPU cycles) required to 
process input (output to) command i. 

xiin (xiout) 
Xmission cost (number of CPU cycles) 
required to send input (output to) command i 
to one computer. 

ti Think time before input command i. 

d(i,j)cin 

(d(i,j)cout

) 

Network delays between useri’s and userj’s 
computers at the moment input (output to) 
command c is entered (xmitted). d(i,i)cin = 
d(i,i)cout = 0 for all c. 

k Number of master computers. 

si Number of slave user-interface components 
computer i has. 

bout(m,i,j) 
Time that elapses from the moment computer 
m begins transmitting output to command i to 
the moment it transmits the output to userj. 

3.1 General Architecture: Master Users 
Based on Figure 1, the response time to command i entered by 
master userm includes the cost of transmitting the command to 
other masters, processing the command, transmitting the output to 
slaves, and giving the output to the local user.  It is given by the 
following equation: 

in in out out

i m i m i m m i m i m[Eq1] Resp Mast = (k-1)x /p +w /p +s x /p +w /p  

We denote the cost, measured in CPU cycles, of (a) transmitting 
command i to another computer by xiin, (b) processing input 
command (output) i by wiin (wiout), and (c) transmitting output to 
input command i to a single computer by xiout. pm is the 
processing power, measured in MHz, of userm’s computer. k is 
the number of master computers. sm is the number of userm’s 
slaves. The first, third, and fourth terms are needed in data-
intensive applications such as PowerPoint as the cost of 
transferring data is proportional to its size. The first and third 
terms are necessary in large collaborations such as a lecture as 
they depend on the number of users. Finally, the second term is 
necessary in logic-intensive applications, such as Checkers, 
running on lower-end computers such as a cell phone. Thus, 

131



depending on the nature of the collaboration, this equation can be 
simplified by removing one or more terms.  

We allow processing and data-transfer costs to vary from 
command to command based on experience with the applications 
with which we experimented. For example, in a PowerPoint 
presentation, the output of a next-animation command is 
significantly smaller than that of a next-slide command, and in 
our Checkers program, the cost of processing a telepointer move 
is significantly smaller than that of a user’s board move. 

3.2 General Architecture: Slave Users  
Consider the case in which the first input command in the session 
is entered by slave userj whose master is userm. As userj’s 
master computer m is remote, userj’s computer must transmit this 
input command, x1in/pj, and the input command must traverse 
the network to reach computer m, taking time d(j,m)1in. In 
addition, computer m must transmit the output to the command, 
x1out/pm, and the output must traverse the network to reach 
computer j, taking time (d(m,j)1out). Furthermore, as a master 
computer transmits the output to the inputting slave before it 
delivers it to other users, the output transmission cost to other 
slaves does not contribute to the response time. Thus, we add four 
terms to [Eq 1] and remove one from it to derive the response 
time for this command:  

in in in in

i j 1 j 1 1 m 1 m
out out out

1 m 1 1 j

[Eq2] Resp Slave = x /p +d(j,m) +(k-1)x /p +w /p

+x /p +d(m,j) +w /p
  

The subscript 1 in the terms above denotes the fact that we are 
calculating the response time for the first command of userj.  
Calculating the response times for other commands is different 
and more complicated. The reason is that if userj does not think 
for a long time after the output of an input command, computer m 
may not be finished transmitting the output to this command by 
the time the userj’s next command reaches it. This happens when 
the time, t1, at which command i reaches computer m is less than 
the time, t2, at which computer m finishes processing the output 
to command i-1. Figure 2 shows this case.  

 
Let bout(m,i,j) denote the time that elapses from the moment 
computer m begins transmitting output to command i to the 
moment computer m transmits the output to userj. In the above 
figure, the time the output to command i-1 takes to reach userj 
(d(m,j)i-1out) plus the time userj’s computer takes to process 
the output (wi-1out/pj) plus the time userj thinks for about the 
output before entering command i (ti) plus the time userj’s 
computer takes to send input command i (xiin/pj) plus the time 
input command i takes to reach computer m (d(j,m)iin) is lower 
than the time computer m takes to complete transmitting output to 
command i-1 to all remaining slaves after transmitting it to  
userj, smxi-1out/pm–bout(m,i-1,j), and processing the output 

locally, wi-1out/pm. Hence, the response time equation for input 
commands by userj can be generalized to the following,  

out out out

i j m i-1 m i-1 m
out out in in

i-1 i-1 j i i j i
in in in in

i j i i m i m
out out out

i m i i j

[Eq3] Resp Slave = max{0, (s x /p -b (m,i-1,j)+w /p )

         -(d(m,j) +w /p +t +x /p +d(j,m) }

+x /p +d(j,m) +(k-1)x /p +w /p

+x /p +d(m,j) +w /p

)
  

As we see in the Figure 2, computer m can not accept command i 
immediately if  

out out out

i m i-1 m i-1 m
out out in in

i-1 i j i j i

[Cond1] t  < s x /p -b (m,i-1,j)+w /p
-d(m,j) -w /p -x /p -d(j,m)

 

because computer m must first complete transmitting the output 
for command i-1 and processing the output locally. It is 
important to consider the scenario of [Cond 1] because we 
discovered in our user-interaction logs, even without considering 
telepointing actions, that the think times can be very small (less 
than 1 second). It is also important to consider the opposite 
scenario because our logs also showed that think times can be 
very large (several minutes).  
As stated earlier, the centralized and replicated architectures are 
just special cases of the general architecture with 1 and n master 
users, respectively. We next give the response times for these two 
architectures by simplifying equations 1 and 3, first for replicated, 
and then for centralized. For hybrid architectures, these equations 
directly apply. 

3.3 Replicated Architecture 
In a replicated architecture, all computers are master computers, 
and receive input from all users and send output only to the local 
user. Thus, k = n in the equations we derived above for the 
general architecture. Eq 1 simplifies to the following for the 
replicated architecture response time. 

in in out

i m i m i m i m[Eq4] Resp Mast  = (n-1)x /p +w /p +w /p   

The time required to send output to slave user-interfaces, 
smxiout/pm, becomes zero because all users are masters. If we 
assume that only two users exist, that the cost of sending an input 
command to a remote computer, xiin, is negligible, that the 
amount of work required to process command i is constant and 
denote it as w, and that output processing cost, wiout, is zero, 
which then matches the assumptions of the model presented in 
[7], then Eq 4 simplifies to  

i m m[Eq5] Resp Mast  = w/p   

which is the same as the replicated architecture response time 
equation in [7]. 

3.4 Centralized Architecture  
In a centralized architecture, only one user is a master user while 
the rest are slave users. The general architecture master user 
response time equation Eq 1 thus becomes the following 

out out

i m i m i m i m[Eq6] Resp Mast  = w /p +(n-1)x /p +w /p   

Several simplifications can also be made to Eq 3 to calculate the 
response time for slave users. The time required to transmit the 
input command to other master computers, (k-1)xiin/pm, 
becomes zero because the number of master computers, k, is one. 
Furthermore, all but one user is a slave users, so sm = n-1. For 

Figure 2. Master computer not ready to accept command. 

Smxi-1
out/pm

bout(m,i-1,j)

Smxi-1
out/pm - bout(m,i-1,j)

wi-1
out/pm

wi-1
out/pj

ti

d(m,j)i-1
out

d(j.m)i
in

t1 t2

xi
in/pj
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the slave user, userj, the general architecture slave user response 
time equation thus becomes the following 

out out out

i j i-1 m i-1 m
out out in in

i-1 i-1 m i i j i
in in in out out out

i j i i m i m i i j

[Eq7] Resp Slave = max{0, ((n-1)x /p -b (m,i-1,j)+w /p )

          -(d(m,j) +w /p +t +x /p +d(j,m) }

+x /p +d(j,m) +w /p +x /p +d(m,j) +w /p

  

If we once again match our model to the model presented in [7], 
by assuming that only two users exist, the transmission costs are 
negligible, the amount of work required to process a command is 
constant, the output processing costs are zero, and the delays, d, 
between two users are constant, then equations 6 and 7 simplify to  

i m m

i j m

[Eq8] Resp Mast  = w/p
[Eq9] Resp Slave  = 2d+w/p

 

which are the same as the centralized architecture master and 
slave response time equations in [7]. Below we simplify our 
equations in other ways to cover a variety of realistic scenarios. 

4. EXPERIMENTS AND PREDICTIONS 
The response time equations are sufficient to compare how well 
the different architectures perform under different conditions such 
as large network delays, think times, transmission costs, and 
processing-power differences. However, it is important to also 
perform experiments to (a) validate the general equations and 
predictions that can be made by them and (b) get an idea of the 
degree by which the architecture performances would differ under 
realistic conditions. This, in turn, requires us to identify suitable 
values for the parameters of the equations, which ideally, should 
reflect reality. These parameters can be divided into system 
parameters, such as network delays and processing powers, and 
task parameters, such as processing cost and number of observers. 

There are a number of ways to obtain task-parameter values. 
Under the live-interaction approach, users perform a collaborative 
task multiple times as the architecture and system parameters are 
varied between the runs. However, since the users cannot be 
relied upon to perform exactly the same actions and have the 
same think times across different collaborative sessions, this 
approach is impractical. Another approach is to create synthetic 
logs in which the task-parameter values are set using some 
mathematical distribution such as Poisson’s. Unfortunately, 
synthesized parameter values are not certain to reflect reality. A 
third approach is to use actual collaboration logs and assume that 
they are independent of system parameters such as computers 
used and network delays. A problem with this approach is that 
such logs are not publicly available and a large number of them 
may be required to ensure that a wide range of collaboration 
parameters is covered. A fourth approach, which is a combination 
of the actual and synthetic log approaches, is to synthesize 
collaboration parameters using data from actual collaboration 
logs. Naturally, this approach is not as representative of reality as 
using actual logs. 

We used a combined approach in which the values of all the task-
parameters, except the number of observers, were those that 
actually occurred in collaborations. By observers we mean users 
who did not input any commands and thus did not influence the 
logs we collected. Our experiments exactly mimic reality only if a 
user’s actions are not influenced by observers. To understand the 
impact of different number of observers, we varied their number 
from 2 to 31 in our logs. In our experiments, the number of 

observers was sometimes less and sometimes more than the actual 
observers. While 31 is less than the maximum number of 
observers in our recordings, it is large enough to show 
architecture response time differences and project response times 
for collaborations involving larger numbers of observers.  

We analyzed two existing PowerPoint presentation recordings in 
which there was only one presenter and about thirty to sixty 
observers. In addition, we recorded two chat-room sessions and 
one collaborative checkers game. These recordings contain actual 
users’ actions – PowerPoint commands, chat messages, and 
checkers moves – and actual think times between these actions. 
IM, Checkers, and PowerPoint turned out to be a good choice of 
applications for which to analyze actual logs for three reasons: 1) 
the collaboration parameters we measured in these logs were 
fairly wide spread, 2) they are popular and represent the kind of 
tasks users do on a daily basis, and 3) their shared components are 
fundamentally different: IM is stateless, Checkers is logic-centric, 
and PowerPoint is data-centric. Based on the analyzed recordings, 
we were able to create 36 logs for our simulations.  

The checkers engine used in the actual tasks was transformed into 
a collaborative program using an infrastructure that has facilities 
for logging and replaying commands. Therefore, extracting the 
task parameters from the generated checker logs was relatively 
simple. The chat programs we logged were the ones implemented 
by the chat rooms we observed. We ran them under Microsoft 
Live Meeting 2005 and used its screen-recording capabilities. As 
a result, we had to use a tedious manual process to extract the 
think times and input command messages in the sessions – 
analyzing one ten-minute recording required two hours of work! 
The checker commands were replayed directly to the program 
used in the actual task using the capabilities in the infrastructure 
to replay stored commands. To replay the chat commands, we 
used the replay-supporting infrastructure to create our own 
version of the chat application. To replay the PowerPoint 
commands, we had to bridge the gap between our Java-based 
replay-supporting infrastructure and the PowerPoint application. 
We used the J-Integra library to create this bridge and relay the 
replayed commands to the PowerPoint application.  

The system parameters, processing powers, and network delays, 
also have to be realistic. All machines were PCs, 7 of which were 
running Windows XP SP2 and 1 Windows 98. Each machine 
must be dedicated to a user if the response times for the user are 
being measured, though a machine could simulate multiple 
observers. We simulated 2-31 observers on 1-5 computers, 
maximum of 16 per computer and/or 1-7 active users on the 
remaining computers. The total number of users was never more 
than 32. When comparing the three architectures, we used the 
same set of computers. As mentioned above, we refer to the set of 
slaves served by a master as a cluster. In our experiments, we 
never created more than two master computers, that is, clusters in 
a hybrid architecture. Our 8 computers consisted of a P2 laptop 
(366MHz), two P3 desktops (866MHz and 1GHz), and six P4 
2.4GHz desktops. These are all in-use computers in our 
department, though we deliberately chose ones with widely 
differing processing powers to observe the effect of asymmetric 
computing powers. Even if everyone uses state-of-the-art devices, 
they might use different classes of devices such as cell phones, 
palmtops, and different kinds of desktops. The P2 laptop was 
intended to simulate next-generation mobile computers. 
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We performed each simulation five times and reported the 
average performances. We show the averages using a mixture of 
graph and tabular forms, as each representation has its 
advantages. We do not show statistics other than averages to 
avoid cluttering the representation. We removed any “outlier” 
entries from the average, caused for instance, by operating system 
process scheduling timing issues. To reduce these issues, we 
removed as many active processes on each system as possible. In 
order to control variability in network delays in our experiments, 
we ran them on our local 100Mbit LAN with 7 computers and an 
8th laptop with wireless communication capabilities. Based on 
pings done to remote computers, we added 72ms and 162ms to 
the LAN delays (0ms) to simulate half the round-trip time from a 
U.S. East Coast LAN-connected computer to German LAN-
connected and modem-connected computers, respectively. 

We will say that the difference between two response times is 
significant if it is greater than 50ms because, based on our 
assumption given earlier, this means users will be able to 
recognize that one of the response times is worse than the other. 
We next describe our predictions and experimental-validations. In 
the equations relevant to the each result, we only include terms 
that have a non-zero impact on response time. 

4.1 Number of Users  
Intuitively, as the number of users increases, the performance of 
hybrid and centralized architectures should improve relative to the 
replicated architecture because in a replicated architecture, a 
program component, before delivering output to the local user, 
must transmit input to all other users. Our equations predict this if 
the following conditions are met: (a) the think times are large to 
guarantee that a program component is always ready to accept the 
next input command when it arrives, (b) the number of clusters in 
the hybrid architecture is low and does not change as the number 
of users increases, (c) the network latencies between all users are 

low, (d) the cost of a particular output is the same for all users in 
all three architectures, (e) the cost of transmitting a single input 
command or a single output is negligible, and (f) the inputting 
user is a slave in the centralized and hybrid architectures. 
Assumption (e) does not imply that the cost of broadcasting a 
single input or output or sending multiple inputs or outputs is 
negligible. The relevant response time equations from our model 
simplified to account for the above assumptions are: 

in in

i j i j i j
in in

i j i m i m
in

i j i m

[Rep] Resp Mast = (n-1)x /p +w /p

[Hyb] Resp Slave = (k-1)x /p +w /p

[Cent] Resp Slave = w /p

 

The replicated response time equation contains the term (n-
1)xiin/pj, the time required to broadcast an input command to all 
the other computers. Thus, the replicated architecture response 
time should increase with the number of users. In the hybrid 
architecture equation, if the master computers are powerful, the 
input broadcasting costs, (k-1)xi-1out/pm, are close to zero 
because we assumed that the number of clusters is low and 
constant. Hence, increasing the number of users does not impact 
the hybrid architecture response time. Thus, just like the 
centralized architecture response time, the hybrid architecture 
response time is independent of the number of users.  

To verify this prediction and see if the response time differences 
are significant, we replayed one of the PowerPoint recordings 
using actual think times and the architectures shown in Figure 3. 
The results of measuring the response to the “next animation” 
commands are shown in Figure 4 (left) and confirm our analysis. 
As the number of observers increased from 8 to 16 to 32, the 
replicated architecture response time increased by 128.1-
90=38.1ms, while the centralized and hybrid response times 
remained constant at 84.2(±1.7)ms.  

Figure 3. Centralized (left), Replicated (center), and Hybrid (right) architectures. The “+0ms” labels denote the delays 
added to the LAN delays. Solid lines depict inputs and dashed lines depict outputs. The letter inside the master 

computers circles denote if PowerPoint (P), Checkers (C), IM (I), or Telepointing (T) logs were simulated. 
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Thus our measurements showed no significant response time 
differences but confirmed the trend predicted by the equations, 
thereby validating them. The validated equations, in turn, can 
project, based on the measured values, when the difference would 
be significant. The 8 and 32 user measurements can be substituted 
into our equations as  

in in

i j i j
in in

i j i j

[Rep 8] = (8-1)x /p +w /p  = 90.0ms

[Rep 32] = (32-1)x /p +w /p  = 128.1ms

[Hyb 8] = [Hyb 32] = [Cent 8] = [Cent 32] = 84.2ms

 

As mentioned before, the centralized and hybrid architecture 
response times are independent of the number of users. Hence, the 
values for their equations with 8 and 32 users are all equal and 
constant. The replicated architecture response time equations 
provide 

in in in

i j i j i j[Rep32] = [Rep8] = (32-1)x /p -(8-1)x /p  => x /p  = 1.59ms  

Thus, each additional user increases the replicated architecture 
transmission time, and hence response time, by 1.59ms. A 
response time that is significantly worse than the centralized and 
hybrid architecture response times of 84.2ms should be at least 
134.2ms. Since the replicated architecture response time with 32 
users was 128.1ms, we can project how many more users, n’, 
would increase the response time to 134.2ms or higher which 
would make the replicated architecture response time significantly 
worse than the centralized and hybrid architecture response times. 
The projection calculation is 

n' = (134.2-128.1)/1.59 = 3.8 => n'=4  

Thus, with 36 or more users, the replicated architecture would 
provide a significantly worse response time than the centralized 
and hybrid architectures.   

Our model also predicts that the higher the cost of broadcasting an 
input command, the faster the replicated architecture response 
time increases as the number of users increases. To verify this 
prediction, we compare the response times to the first input 
command in the session with the “next animation” command 
response times. As mentioned earlier, we assume that when a 
master computer receives the first input command, it must 
transmit the entire presentation file to all the other master 
computers. Transmitting an entire file has a much higher cost than 
transmitting a command to show the next animation. Figure 4 
(center), which shows the response times to the first input 
command (start presentation) as the number of users increases, 
confirms our analysis. The replicated architectures response time 
to the first input command increases by 23044-6196=16484ms 
from 8 to 32 users. This gives is an average response time 
increase of 702ms per user, which is much higher than the 
response time increase of 1.59ms per user for next animation 
commands. On the other hand, the centralized architecture 
response time is not affected by the number of users because the 
output is always first transmitted to the slave user which sent the 
input command and only then to the remaining slave users. For 
the same reason, the hybrid architecture response time does not 
increase with the number because we assume that the number of 
clusters in the hybrid architecture does not increase with the 
number of users. The hybrid architecture response time is not as 
good as in the centralized architecture because before processing 
the input command, the master computer of the inputting user 

must first transmit the PowerPoint file to the other master 
computer.  

One of the assumptions we made to make the prediction above is 
that think times are large. This prediction can also be made by 
substituting this assumption with the assumption that output 
processing costs are large enough to guarantee that a program 
component is always ready to accept the next input command 
when it arrives. The relevant equations from our model remain 
unchanged.  

To verify this prediction under the substituted assumption and see 
if the response time differences are significant, we replayed a log 
of a telepointer motion that circles one of the checkers pieces. We 
use 0ms think times and the hybrid architecture shown in Figure 5 
(top), a centralized architecture in which a Observer 1’s P4 
desktop hosts the application, and a replicated architecture. The 
response time results to telepointing commands are shown in 
Figure 5 (bottom) and confirm our analysis. 

Interestingly, with as many as 32 users, the centralized and hybrid 
architectures response times were less than 50ms, showing that 
the sharing of incremental changes can be supported by these 
architectures without hurting response times. Even more 
interestingly, with as many as 8 users, the replicated architecture 
response times were not significantly worse than in the 
centralized and hybrid cases even when the slow P2 laptop was 
responsible for input transmission. Thus, supporting incremental 
changes without hurting performance is possible in all three 
architectures. The design choice not to offer the option of 
supporting the sharing of incremental changes should be made 
using some other metric.  

We see above the symbiotic relationship between the formal 
model and experimental analysis. The latter validates the former, 
while the former, in turn, can be used to make predictions about 
realistic scenarios that cannot be simulated in the laboratory. For 
example, we can determine what happens to the response times if 
the processing power increases tenfold and/or the number of users 
increases hundredfold. 
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4.2 Output Cost Differences 
As mentioned earlier, we assume that a master user-interface can 
directly access files available to the local program component. 
Such access can substantially reduce output processing costs in 
the PowerPoint case. The sequence of steps slave and master user-
interfaces carry out when processing a PowerPoint output is given 
in Figure 6.2 We found that the difference between the times 
required to take the two sequences of steps can be as large as two 
seconds.  In this example, from the point of view of a slave user 
in the centralized or hybrid architecture, it seems better to support 
the replicated architecture.  

We use our equations to state a general result that precisely makes 
the informal argument above. Assume that (a) the think times are 
large to guarantee that a program component is always ready to 
accept the next input command when it arrives, (b) the number of 
clusters in the hybrid architecture is low and does not change (c) 
the network latencies between all users are low, (d) all inputting 
users are slave in the centralized and hybrid architectures, (e) the 
number of users is low, (f) the cost of transmitting a single input 
command is negligible, and (g) the output transmission and 
processing costs to and for slave users are higher than for the 
master users. We can predict that these conditions favor the 
replicated architecture. The relevant equations from our model are  

in in out

i j i j i j i j
in in out out

i j i m i m i m i j
in out out

i j i m i m i j

[Rep] Resp Mast  = (n-1)x /p +w /p +w /p

[Hyb] Resp Slave  = (k-1)x /p +w /p +x /p +w /p

[Cent] Resp Slave  = w /p +x /p +w /p

 

The output processing cost, wiout, affects all three equations. Also, 
the hybrid and centralized equations contain an additional cost for 
transmitting output, xiout. Since output processing costs are high 
for slave user-interfaces and low for master user-interfaces, the 
replicated architecture will be impacted less than the centralized 
and hybrid slave user response times.  

To verify this prediction and see if the response time differences 
are significant, we replayed the same PowerPoint logs as in the 
previous result, again using actual think times and the 
architectures shown in Figure 3, only this time, we consider the 
“show slide” input commands. The results of the experiments are 
shown in Figure 4 (right) and revealed that as the number of 
observers increased from 8 to 16 to 32, the replicated architecture 
response time increased by a total of 197.3-163.7=33.6ms (1.4ms 
                                                                 
2 Steps 2 and 3 (save slide to file and import saved file into 

presentation) were necessary because of the API exposed by the 
J-Integra tool we used to connect our Java-based framework and 
COM-based PowerPoint. In particular, we were not able to 
import a received slide directly into an ongoing presentation. 

per user). The centralized and hybrid architecture response times 
are more difficult to interpret as they varied between 1573.5ms 
and 1676.9ms. We explain why they varied next.  

We measured, independently of our infrastructure, the standard 
deviation of the time required by a slave user to do steps 3 and 4 
in Figure 6 (top) and found it to be as high as 100ms. The 
difference between the response times we measured in the 
centralized and hybrid architectures (1676.9ms – 1573.5ms) was 
small given this large standard deviation. Thus, we consider the 
centralized and hybrid architecture response times as constant and 
interpret them to be the lowest reported value of 1573.5ms. 

We also found the standard deviation of the time required by a 
master user to take the alternative step 2 in Figure 6 (bottom) to 
be at most 10.7ms. As this number is small, we can say that the 
steady increase we see in the response time of the replicated 
architecture is the result of increase in number of users. 

Based on these arguments, we can say that our results show that 
the replicated architecture gives significantly better response 
times than the centralized and hybrid architectures. Using the 
projection method from the previous PowerPoint result, we 
predict that with as many as 979 users, the replicated architecture 
gives significantly better results, while with 1051 or more users, 
the centralized and hybrid architectures will give significantly 
better results. Interestingly, this and the previous result combined 
show that the type of PowerPoint presentation can decide which 
architecture gives the best response times. For presentations 
dominated by animations, the centralized architecture may be the 
most appropriate, while for presentations with many slides and 
few animations, the replicated architecture may be the most 
appropriate even with close to a 1000 users. Even more 
interestingly, our model predicts that with large presentations 
involving thousands of employees, the centralized and hybrid 
architectures will give significantly better response times.  

4.3 Intra-Cluster Asymmetry 
Consider a logic-intensive application and a hybrid architecture in 
which the difference between the processing powers of the 
slowest and fastest computers in some cluster is large. This may 
occur in practice, for instance, in an IM session when one user in 
a cluster is using a cell phone while others are using much more 
powerful desktop computers. Under these conditions, our model 
predicts that the hybrid architecture and some centralized 
architectures give better response times than the replicated 
architecture. Intuitively, the hybrid and centralized architectures 
perform better in this case because a fast computer processes and 
transmits inputs quicker than a slow computer so it may make 
sense to make slow computers slaves of the faster ones. 

To formalize this informal argument, assume (a) the think times 
are large to guarantee that a program component is always ready 
to accept the next input command when it arrives, (b) the number 
of clusters in the hybrid architecture is low and does not change, 
(c) the network latencies between all users are low, (d) the cost of 
a particular output is the same for all users in all three 
architectures, (e) the cost of transmitting a single input command 
or a single output is negligible, and (f) all inputting users are 
slaves in the centralized and hybrid architectures. The relevant 
equations from our model become: 

Slave user-interface steps: 

1: Receive output 
2: Save output (a slide) to file 
3: Import saved slide 
4: Show imported slide 

Master user-interface steps: 

1: Receive output 
2: Show slide 

Figure 6. PowerPoint output processing steps 
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in in in

i j i j i j i j i m
in in in

i j i j i j i j i m
in

i m

[Rep-Cent] Resp Mast -Resp Slave  = (n-1)x /p +(w /p -w /p )

[Rep-Hyb] Resp Mast -Resp Slave  = (n-1)x /p +(w /p -w /p )

-(k-1)x /p

 

We can show each user will have worse response times in the 
replicated architecture. Since pm ≥ pj, in both equations, the term 
(wiin/pj-wiin/pm), which represents the difference in the times 
required to process the command on the master and slave 
computers, is greater than or equal to 0. Moreover, the time 
required to broadcast an input command on computer j, (n-
1)xiin/pj, in both equations, is always positive. Thus, the [Rep-
Cent] result is always positive, that is, a centralized architecture 
gives better response time than the replicated architecture. Now 

consider the additional term, (k-1)xiin/pm, in the [Rep-Hyb] 
equation. We know that k-1 < n-1, that is, the number of master 
computers in a hybrid architecture is less than in the replicated 
architecture by definition. Thus, (n-1)xiin/pj-(k-1)xiin/pm is 
always positive, which implies that a hybrid architecture gives 
better response time than the replicated architecture. 

The experiments we did for this result used the hybrid 
architecture shown in Figure 7 (left), a centralized architecture in 
which the Observer 1’s P4 desktop hosted the application, and a 
replicated architecture. We used an entire checkers log which was 
consistent with the assumptions above. The results are given in 
Table 2. As predicted, the replicated architecture gives 
significantly worse response time for both active users. 

Table 2. P2 laptop and P3 desktop Checkers response times 

Application Centralized Replicated Hybrid 

P2 Laptop 91.1ms 249.8ms 92.1ms 

P3 Desktop 62.3ms 144ms 59.6ms 

Table 3. P2 laptop and P3 desktop IM response times 

Application Centralized Replicated Hybrid 

P2 Laptop 76.9ms 137.3ms 79.6ms 

P3 Desktop 32.4ms 54.9ms 39.6ms 

The experiment above used a logic-intensive application with 
high input processing costs. However, our prediction does not 
require this assumption. To verify this, we used the hybrid 
architecture shown in Figure 7 (right), a centralized architecture 
in which a P4 desktop hosted the application, and a replicated 
architecture. We simulated a one of our chat logs in which seven 
users were active. The results are shown in Table 3. The response 

times of the P2 laptop in the centralized and hybrid cases were 
significantly better than the replicated architecture response times. 
On the other hand, the P3 desktop response time advantage gained 
in the centralized and hybrid architectures for IM is not 
significant. Table 2 and 3 show that the advantage gained in the 
centralized and hybrid architectures is smaller for the chat 
program than for checkers. This is because this application is not 
logic-intensive.  

Thus, we have generalized the result from previous work that low 
network latencies, high processing power difference, and high 
input processing costs together favor a centralized architecture. 
We show that the high input processing costs are not necessary 
for making this prediction. In addition, we show that these 
conditions also favor a hybrid architecture.  

4.4 Inter-Cluster Delays 
We finally make a prediction that distinguishes between hybrid 
and centralized architectures. A motivating scenario is groups of 
users in geographically-dispersed organizations chatting with 
each other. If the delays between the organizations is large and 
the master is close to one of the organizations, then users in the 
other organization must incur network delays they would not face 
in a hybrid architecture that has a master near their organization.  
More formally, assume that (a) the think times are large enough to 
not satisfy Cond 1 so that the program component is always 
ready to accept the next input command when it arrives, (b) the 
number of clusters in the hybrid architecture is low and does not 
change, (c) the cost of a particular output is the same for all users 
in all three architectures, (d) there are multiple active users which 
belong to different clusters, (e)  low network latencies between 
users in the same hybrid architecture clusters, (f) the cost of 
transmitting a single input command or a single output is 
negligible, and (g) high network latencies among users in 
different clusters. Under these conditions, our model predicts that 
the centralized architecture performance suffers for at least one 
active user. Assuming that userj’s master computer in the 
centralized and hybrid architectures are m and m’, respectively, 
the relevant difference equations from our model are  

in out

i j i j i i
in out in in in

i i i m' i m i m'
in out

i j i j i i
in

i m

[Cent-Hyb] Resp Slave -Resp Slave = (d(j,m) +d(m,j) )

        -(d(j,m') +d(m',j) )-(k-1)x /p +(w /p -w /p )

[Cent-Rep] Resp Slave -Resp Mast = d(j,m) +d(m,j)

-(n-1)x /p

 

 
      in in

i m i j+(w /p -w /p )

 

In the [Cent-Hyb] difference equation, if the master computers m 
and m’ have similar processing powers and are powerful, all the 
terms in the equation approach 0 except the network latency 
terms. For the [Cent-Rep] difference equation, if userj’s 
computer and master computer m are in different clusters, the 
round-trip term dominates the equation. 

Table 4. P2 laptop and P3 desktop response times 

Computer Centralized Replicated Hybrid 

P2 Laptop 74.4ms 137.9ms 83.8ms 

P3 Desktop 151.2ms 51.5ms 40.0ms 

We simulated one of our chat logs in which there were seven 
active users. We used hybrid architecture shown in Figure 7 
(right), a centralized architecture in which a P4 desktop hosted the 

Figure 7. Checkers (left) and IM (right) hybrid 
architectures architectures 
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application, and a replicated architecture. In addition, we added 
72ms to the LAN delays between clusters. Our experiment results 
are displayed in Table 4 and confirm our analysis.  In the hybrid 
architecture, the P2 laptop was in one cluster while the computer 
used as the master in the centralized architecture was in a 
different cluster. As we can see, P3 user’s response time was 
151.2ms in the centralized architecture, while it was 40.0ms in the 
hybrid and 51.5ms in the replicated architecture. Meanwhile, 
because the P2 laptop was in the same cluster as its master, the 
round-trip times were just the LAN delays, so centralized and 
hybrid architectures performed better than the replicated 
architecture because the transmission costs were high.  

4.5 Other Results 
Our model and experiments make several additional predictions, 
which we do not have space to prove here: 

• Inter-cluster asymmetry: A high difference in the processing 
powers of the most powerful computers in each cluster 
favors a centralized architecture. 

• Intra-cluster delays: High latencies among users in a cluster 
favors a replicated architecture. 

• High think-time impact: In all of the equations we created 
for realistic scenarios shown above, think times were not a 
factor. This is because our model predicts that after they 
cross a certain threshold, their values do not affect the 
response time. This result can be practically used in log 
replays by substituting actual think times with the threshold 
values, which would be necessary if we were replaying 
longer logs. 

• Low think-time impact: Our model and experiments also 
show that there are realistic scenarios in which think times 
can be low enough to significantly impact the response time. 

5. CONCLUSIONS AND FUTURE WORK 
This paper systematically analyzes collaboration architectures to 
determine their response times. More specifically, it is the first to: 

• bring out unresolved issues in the design of centralized, 
replicated and hybrid architectures that must be addressed in 
order to analyze their response time. 

• give response-time equations for the three architectures in 
terms of several system and task parameters that can 
significantly impact the response times of the three 
architectures in realistic collaboration scenarios. These 
include processing power, network delays, processing and 
transmission costs, number of total users, and think times. 

• make predictions about the relative performance of the three 
architectures under several realistic collaboration scenarios, 
including that 1) a small number of users, high intra-cluster 
network delays, and large output processing and transmission 
costs favor the replicated architecture, 2) large input size 
favors the centralized architecture, 3) high inter-cluster 
network delays favor the hybrid architecture, and 4) high 
input processing and transmission costs, low think times, 
asymmetric processing powers, and logic-intensive 
applications favor both the centralized and hybrid 
architectures. 

• address logic-centric, data-centric, and stateless shared 
components in both the formal model and experiments. 

• show that there are cases in which incremental graphic 
operations such as telepointer movements can indeed be 
supported with good response times, despite the fact that 
some commercial systems do not support them because of 
performance fears. 

A secondary contribution is the set of logs we have gathered, 
which we will make public for use in future benchmarks for 
evaluating the performance of collaboration architectures. 
We have identified only some of the parameters on which 
response times depend. It is important to analyze other factors 
such as scheduling policies and cost of displaying output. Further 
work is also necessary to study performance metrics other than 
response times such as feedthrough and task completion times [7], 
jitter [6], and power consumption (for mobile devices). It would 
also be useful to evaluate the performance of collaborations 
involving collaborative applications other than chat, checkers, and 
presentation tools such as whiteboards. Finally, future work is 
necessary to automatically change architectures based on the 
current values of collaboration parameters. 
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