
Response Times in N-user Replicated, Centralized,
and Proximity-Based Hybrid Collaboration Architectures

Sasa Junuzovic
Computer Science Department

University of North Carolina at Chapel Hill
sasa@cs.unc.edu

Prasun Dewan
Computer Science Department

University of North Carolina at Chapel Hill
dewan@cs.unc.edu

ABSTRACT
We evaluate response times, in N-user collaborations, of the
popular centralized (client-server) and replicated (peer-to-peer)
architectures, and a hybrid architecture in which each replica
serves a cluster of nearby clients. Our work consists of definitions
of aspects of these architectures that have previously been
unspecified but must be resolved for the analysis, a formal
evaluation model, and a set of experiments. The experiments are
used to define the parameters of and validate the formal analysis.
In addition, they compare the performances, under the three
architectures, of existing data-centric, logic-centric, and stateless
shared components. We show that under realistic conditions, a
small number of users, high intra-cluster network delays, and
large output processing and transmission costs favor the replicated
architecture, large input size favors the centralized architecture,
high inter-cluster network delays favor the hybrid architecture,
and high input processing and transmission costs, low think times,
asymmetric processing powers, and logic-intensive applications
favor both the centralized and hybrid architectures. We use our
validated formal model to make useful predictions about the
performance of the three kinds of architectures under realistic
scenarios we could not create in lab experiments.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications, client/server. C.4
[Performance of Systems] Performance Attributes.

General Terms
Algorithms, Performance, Measurement, Experimentation.

Keywords
Collaboration architecture, analytical model, response time.

1. INTRODUCTION
Two main architectures have been used to support the sharing of a
program among multiple users: centralized (client-server) and
replicated (peer-to-peer) [5]. In the centralized architecture, the
shared program executes on a computer belonging to one of the
collaborators, receiving input from and broadcasting output to all

users. In the replicated architecture, a separate replica of the
program executes on the computer of each user, receiving input
from all users and producing output for only the local user. We
call a computer which is (not) running the program a master
(slave) computer, and the corresponding user a master (slave)
user. Thus, in a centralized architecture, one computer is a master
while the rest are slaves, and in a replicated architecture, all
computers are masters. In this paper, we also consider a third type
of architecture, the hybrid architecture, in which more than one
computer, but not all, are masters. Such architectures are
supported by a few frameworks, such as [3][8].

Given a distribution of collaborators, multiple centralized and
hybrid architectures are possible. In the hybrid architectures we
consider, a slave computer is always served by the replica that is
nearest to it, that is, the one with the smallest network delay. We
refer to such a hybrid architecture as proximity-based and the
slaves served by a master as a cluster.

The choice of the architecture affects the semantics, correctness,
and performance of the shared program [5]. In this paper, we
focus on performance, specifically, response times, and assume
that correctness issues such as externalities [2] have been
addressed by the system implementing the architecture. Research
shows that response times should ideally be less than 50ms [10],
but in several commercial collaboration systems, this goal is not
met. For example, the response times to operations made by a
remote user of a centralized LiveMeeting/Webex shared
application is intolerable as it can sometimes take several
seconds. Replicated architectures offer the hope for better
response times, but all commercial implementations of this
architecture with which we are familiar do not offer the option of
transmitting incremental changes to a shape as it is dragged
because of performance fears. Similarly, unlike the early P2P
“talk” programs, state-of-the-art IM tools do not support the
option of incremental sharing of typed text partly because of the
fear that IM servers would be overloaded.1 However, several
usable and useful research systems support incremental sharing of
drag operations and text edits [6]. Thus, the key is to
systematically characterize these scenarios based, for example, on
the number of participating users and network delays between the
users so that an appropriate architecture can be chosen for a
particular collaboration. This goal has motivated previous work in
both empirical and formal analysis of the performance of
collaboration architectures.

1 Another reason is the assumption that this feature would not be

useful. This assumption can be verified only by providing it as
an option when it will not have an impact on the performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW'06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011...$5.00.

129

Ahuja et al. [1] performed experiments to compare the network
load imposed by the centralized and replicated implementations
of a shared drawing program. Junuzovic, Chung, and Dewan [7]
addressed response, feedthrough, and task completion times in
centralized and replicated architectures. They developed a formal
model comparing the two architectures and performed
experiments validating it using a checkers application. This work
assumed two-user collaborations, a constant cost of processing
each user operation, constant think times before each command,
zero cost of transmitting inputs and outputs, and no type-ahead.

This paper extends previous work in several ways. It considers
collaborations involving an arbitrary number of users and adds
hybrid architectures to the mixture of architectures considered,
which make sense only in collaborations involving more than two
users. Moreover, the experimental evaluation considers three
classes of shared applications: 1) Logic-centric, which process
computationally-heavy input commands; 2) Data-centric, which
distribute large amounts of data; and 3) Stateless, which do not
process computationally heavy input commands or distribute
large amounts of data. Like [7], it also develops a formal
performance model but focuses only on response times. It relaxes
all assumptions of [7] except no type-ahead. It considers several
new collaboration parameters (such as transmission and output
processing costs) that become important when the assumptions
are relaxed. Finally, because of the relaxed assumptions and
extended architecture and application set, it makes several new
predictions about the optimal architecture under realistic
collaboration conditions.

This paper makes its own set of assumptions, which we describe
in the next section. Following this, we develop the response time
equations comprising our analytical model. We then describe how
we validate our model through experiments. Finally, we end with
conclusions and directions for future work.

2. ASSUMPTIONS
Previous literature on the definitions of the centralized, replicated,
and hybrid architectures leave unaddressed several
implementation aspects that are important in this evaluation. A
thorough exploration of different design choices for these aspects
is beyond the scope of this evaluation work. Here we assume one
approach for resolving each of the issues and defend it using
primarily analysis-based arguments.

The centralized, replicated, and hybrid architectures we consider
assume that an interactive application consists of a program
component and a user-interface component. The user-interface
component is never shared and hence always replicated. The
program component is the shared component and may be
replicated on one or more master computers.

One issue left undefined is whether or not a user-interface
component of a master computer can directly interact with files
accessible to the local program component. We allow such access
because, as we show in our experiments, it can improve the
response times for commands entered by master users, and we
would like to be able to formally analyze the degree of the
improvement. The idea of different user-interface components
implementing different algorithms is not new; for instance, it has
been advocated to create different users of mobile and desktop
computers [9].

A related question is whether each replicated program component
in a replicated or hybrid architecture has access to files needed to
support the collaboration before the collaborative session begins.
We do not make this assumption in order to accommodate
realistic situations – in particular, a PowerPoint presentation that
is continuously updated until the start of the lecture. Instead, we
assume that the necessary files are sent from the computer of the
first inputter to all masters as part of the first input command.

Previous work has well established the set of operations a
program component is responsible for (which are processing input
commands and transmitting input and/or output to other
computers) but does not indicate whether the operations are
carried out by a single thread or separate threads. We assume the
former mainly because the latter makes it impossible to model the
response times without making some platform-specific
assumptions about the scheduling of the threads. This assumption
does not imply worse response times as on a single-processor
computer there is no context-switching overhead. On the other
hand, multi-threading can improve performance by allowing a
thread to be scheduled while another is blocked on a
communication operation.

When all operations are carried out by a single thread, we must
determine the order in which they are carried out. Although other
sequences also make sense, Figure 1 gives the orders we impose
in the three architectures. In this figure, by transmitting data we
mean sending it to the network and not waiting for
acknowledgement from the receiving computer(s). Thus, the
response times in all three algorithms are independent of network
delays. In all three algorithms in Figure 1, the last step is handing
output to the local user. The reason is that, in general, there will
be a network delay before another program (user-interface)
component receives an input command (output). Our scheduling
ensures that receiving program (user-interface) components can
process the received input command (output) concurrently with

Figure 1. Program-component pseudo-code for the
three architectures

Centralized Architecture
1: Wait for next input command
2: Process input command
3: if my slave user entered input command

transmit output to inputting user
4: Transmit output to my other slave users
5: Give output to my local user
6: Goto 1
Replicated Architecture
1: Wait for next input command
2: if input command from local user

transmit command to other master users
3: Process input command
4: Transmit output to local user
5: Goto 1
Hybrid Architecture:
1: Wait for next input command
2: if command from local/my slave user

transmit command to other master users
3: Process input command
4: if my slave user entered input command

transmit output to inputting user
5: Transmit output my other slave users
6: Transmit output to local user
7: Goto 1

130

the sending program component, which both increases the real
concurrency of the system and reduces the “can you see it now”
questions. If, in the centralized and hybrid architectures, after
processing an input command, the program component first
handed the output to the local user-interface, the local user-
interface would complete processing the output before any of the
program component’s slave user-interfaces even received it, thus
reducing the real concurrency of the system and increasing the
divergence in the user-interfaces of the collaborators. Similarly,
if, in replicated and hybrid architectures, a master computer first
processed an input command and then transmitted it to other
master computers, the real concurrency would be reduced and the
user-interface divergence increased.

Like all published implementations of the replicated architecture
[5], the replicated and hybrid algorithms above assume that the
program component (a) is deterministic, that is, produces the
same result given a series of input commands, and (b) does not
implement atomic broadcast to ensure good response times,
relying instead on floor control to prevent concurrent input or
some application-specific scheme such as operation
transformations [11] to do consistent real-time merging of
concurrent input. Furthermore, we assume that the
communication cost of distributed concurrency control is
negligible.

As mentioned before, we consider only the proximity-based
hybrid architecture. A further requirement, imposed on both
centralized and hybrid architectures, is that a master computer is
at least as powerful as any of its slaves. As mentioned before, we
assume no type-ahead.

In our experiments, we make several additional assumptions not
related to the architecture design and implementation issues. In
the hybrid architectures we use for our experiments, we assume
that the number of master computers, and therefore, clusters, is
small. This assumption allows us to illustrate the advantages of
each architecture in realistic scenarios without limiting our model.
Also, we experiment with only one example of each of the three
shared component categories we consider: checkers for logic-
centric, PowerPoint for data-centric, and IM for stateless.

As stated above, research shows that response times should
ideally be less than 50ms as humans can perceive values higher
than this [10]. We assume that this implies that each 50ms
increment is noticeable.

Finally, our model assumes no latecomers. In particular, it does
not consider the effect of bringing a latecomer’s state up-to-date
on the response times of other users’ commands.

3. FORMAL ANALYSIS
The centralized, replicated, and hybrid architectures can be
considered special cases of a general architecture in which there
are one or more master computers and each master computer has
zero or more slave computers. A general architecture is (a)
centralized if there is exactly one master computer, (b) replicated
if each computer in the collaboration is a master, and (c) hybrid if
it is not centralized or replicated, that is, if more than one
computer, but not all, are masters.

We first derive response-time equations for a general architecture,
which we then apply to hybrid, replicated, and centralized

architectures. In our analysis of general architectures, we first
consider the response time for the master and then the slave users.
For slave users, the response time for the first and subsequent
commands in the collaborative session must be treated differently
because in the latter case, the shared program may still be
processing a previous command when the next command arrives.

Response time of an input command is defined to be the time that
elapses from the moment a user enters the input command to the
moment that user sees the output for the input command. It
depends on several factors identified in Table 1, which we
motivate as we use them.

Table 1. Collaboration parameters that impact response time

Parameter Description

pi Processing power (MHz) of useri’s
computer.

wiin (wiout)
Work (number of CPU cycles) required to
process input (output to) command i.

xiin (xiout)
Xmission cost (number of CPU cycles)
required to send input (output to) command i
to one computer.

ti Think time before input command i.

d(i,j)cin

(d(i,j)cout

)

Network delays between useri’s and userj’s
computers at the moment input (output to)
command c is entered (xmitted). d(i,i)cin =
d(i,i)cout = 0 for all c.

k Number of master computers.

si Number of slave user-interface components
computer i has.

bout(m,i,j)
Time that elapses from the moment computer
m begins transmitting output to command i to
the moment it transmits the output to userj.

3.1 General Architecture: Master Users
Based on Figure 1, the response time to command i entered by
master userm includes the cost of transmitting the command to
other masters, processing the command, transmitting the output to
slaves, and giving the output to the local user. It is given by the
following equation:

in in out out

i m i m i m m i m i m[Eq1] Resp Mast = (k-1)x /p +w /p +s x /p +w /p

We denote the cost, measured in CPU cycles, of (a) transmitting
command i to another computer by xiin, (b) processing input
command (output) i by wiin (wiout), and (c) transmitting output to
input command i to a single computer by xiout. pm is the
processing power, measured in MHz, of userm’s computer. k is
the number of master computers. sm is the number of userm’s
slaves. The first, third, and fourth terms are needed in data-
intensive applications such as PowerPoint as the cost of
transferring data is proportional to its size. The first and third
terms are necessary in large collaborations such as a lecture as
they depend on the number of users. Finally, the second term is
necessary in logic-intensive applications, such as Checkers,
running on lower-end computers such as a cell phone. Thus,

131

depending on the nature of the collaboration, this equation can be
simplified by removing one or more terms.

We allow processing and data-transfer costs to vary from
command to command based on experience with the applications
with which we experimented. For example, in a PowerPoint
presentation, the output of a next-animation command is
significantly smaller than that of a next-slide command, and in
our Checkers program, the cost of processing a telepointer move
is significantly smaller than that of a user’s board move.

3.2 General Architecture: Slave Users
Consider the case in which the first input command in the session
is entered by slave userj whose master is userm. As userj’s
master computer m is remote, userj’s computer must transmit this
input command, x1in/pj, and the input command must traverse
the network to reach computer m, taking time d(j,m)1in. In
addition, computer m must transmit the output to the command,
x1out/pm, and the output must traverse the network to reach
computer j, taking time (d(m,j)1out). Furthermore, as a master
computer transmits the output to the inputting slave before it
delivers it to other users, the output transmission cost to other
slaves does not contribute to the response time. Thus, we add four
terms to [Eq 1] and remove one from it to derive the response
time for this command:

in in in in

i j 1 j 1 1 m 1 m
out out out

1 m 1 1 j

[Eq2] Resp Slave = x /p +d(j,m) +(k-1)x /p +w /p

+x /p +d(m,j) +w /p

The subscript 1 in the terms above denotes the fact that we are
calculating the response time for the first command of userj.
Calculating the response times for other commands is different
and more complicated. The reason is that if userj does not think
for a long time after the output of an input command, computer m
may not be finished transmitting the output to this command by
the time the userj’s next command reaches it. This happens when
the time, t1, at which command i reaches computer m is less than
the time, t2, at which computer m finishes processing the output
to command i-1. Figure 2 shows this case.

Let bout(m,i,j) denote the time that elapses from the moment
computer m begins transmitting output to command i to the
moment computer m transmits the output to userj. In the above
figure, the time the output to command i-1 takes to reach userj
(d(m,j)i-1out) plus the time userj’s computer takes to process
the output (wi-1out/pj) plus the time userj thinks for about the
output before entering command i (ti) plus the time userj’s
computer takes to send input command i (xiin/pj) plus the time
input command i takes to reach computer m (d(j,m)iin) is lower
than the time computer m takes to complete transmitting output to
command i-1 to all remaining slaves after transmitting it to
userj, smxi-1out/pm–bout(m,i-1,j), and processing the output

locally, wi-1out/pm. Hence, the response time equation for input
commands by userj can be generalized to the following,

out out out

i j m i-1 m i-1 m
out out in in

i-1 i-1 j i i j i
in in in in

i j i i m i m
out out out

i m i i j

[Eq3] Resp Slave = max{0, (s x /p -b (m,i-1,j)+w /p)

 -(d(m,j) +w /p +t +x /p +d(j,m) }

+x /p +d(j,m) +(k-1)x /p +w /p

+x /p +d(m,j) +w /p

)

As we see in the Figure 2, computer m can not accept command i
immediately if

out out out

i m i-1 m i-1 m
out out in in

i-1 i j i j i

[Cond1] t < s x /p -b (m,i-1,j)+w /p
-d(m,j) -w /p -x /p -d(j,m)

because computer m must first complete transmitting the output
for command i-1 and processing the output locally. It is
important to consider the scenario of [Cond 1] because we
discovered in our user-interaction logs, even without considering
telepointing actions, that the think times can be very small (less
than 1 second). It is also important to consider the opposite
scenario because our logs also showed that think times can be
very large (several minutes).
As stated earlier, the centralized and replicated architectures are
just special cases of the general architecture with 1 and n master
users, respectively. We next give the response times for these two
architectures by simplifying equations 1 and 3, first for replicated,
and then for centralized. For hybrid architectures, these equations
directly apply.

3.3 Replicated Architecture
In a replicated architecture, all computers are master computers,
and receive input from all users and send output only to the local
user. Thus, k = n in the equations we derived above for the
general architecture. Eq 1 simplifies to the following for the
replicated architecture response time.

in in out

i m i m i m i m[Eq4] Resp Mast = (n-1)x /p +w /p +w /p

The time required to send output to slave user-interfaces,
smxiout/pm, becomes zero because all users are masters. If we
assume that only two users exist, that the cost of sending an input
command to a remote computer, xiin, is negligible, that the
amount of work required to process command i is constant and
denote it as w, and that output processing cost, wiout, is zero,
which then matches the assumptions of the model presented in
[7], then Eq 4 simplifies to

i m m[Eq5] Resp Mast = w/p

which is the same as the replicated architecture response time
equation in [7].

3.4 Centralized Architecture
In a centralized architecture, only one user is a master user while
the rest are slave users. The general architecture master user
response time equation Eq 1 thus becomes the following

out out

i m i m i m i m[Eq6] Resp Mast = w /p +(n-1)x /p +w /p

Several simplifications can also be made to Eq 3 to calculate the
response time for slave users. The time required to transmit the
input command to other master computers, (k-1)xiin/pm,
becomes zero because the number of master computers, k, is one.
Furthermore, all but one user is a slave users, so sm = n-1. For

Figure 2. Master computer not ready to accept command.

Smxi-1
out/pm

bout(m,i-1,j)

Smxi-1
out/pm - bout(m,i-1,j)

wi-1
out/pm

wi-1
out/pj

ti

d(m,j)i-1
out

d(j.m)i
in

t1 t2

xi
in/pj

132

the slave user, userj, the general architecture slave user response
time equation thus becomes the following

out out out

i j i-1 m i-1 m
out out in in

i-1 i-1 m i i j i
in in in out out out

i j i i m i m i i j

[Eq7] Resp Slave = max{0, ((n-1)x /p -b (m,i-1,j)+w /p)

 -(d(m,j) +w /p +t +x /p +d(j,m) }

+x /p +d(j,m) +w /p +x /p +d(m,j) +w /p

If we once again match our model to the model presented in [7],
by assuming that only two users exist, the transmission costs are
negligible, the amount of work required to process a command is
constant, the output processing costs are zero, and the delays, d,
between two users are constant, then equations 6 and 7 simplify to

i m m

i j m

[Eq8] Resp Mast = w/p
[Eq9] Resp Slave = 2d+w/p

which are the same as the centralized architecture master and
slave response time equations in [7]. Below we simplify our
equations in other ways to cover a variety of realistic scenarios.

4. EXPERIMENTS AND PREDICTIONS
The response time equations are sufficient to compare how well
the different architectures perform under different conditions such
as large network delays, think times, transmission costs, and
processing-power differences. However, it is important to also
perform experiments to (a) validate the general equations and
predictions that can be made by them and (b) get an idea of the
degree by which the architecture performances would differ under
realistic conditions. This, in turn, requires us to identify suitable
values for the parameters of the equations, which ideally, should
reflect reality. These parameters can be divided into system
parameters, such as network delays and processing powers, and
task parameters, such as processing cost and number of observers.

There are a number of ways to obtain task-parameter values.
Under the live-interaction approach, users perform a collaborative
task multiple times as the architecture and system parameters are
varied between the runs. However, since the users cannot be
relied upon to perform exactly the same actions and have the
same think times across different collaborative sessions, this
approach is impractical. Another approach is to create synthetic
logs in which the task-parameter values are set using some
mathematical distribution such as Poisson’s. Unfortunately,
synthesized parameter values are not certain to reflect reality. A
third approach is to use actual collaboration logs and assume that
they are independent of system parameters such as computers
used and network delays. A problem with this approach is that
such logs are not publicly available and a large number of them
may be required to ensure that a wide range of collaboration
parameters is covered. A fourth approach, which is a combination
of the actual and synthetic log approaches, is to synthesize
collaboration parameters using data from actual collaboration
logs. Naturally, this approach is not as representative of reality as
using actual logs.

We used a combined approach in which the values of all the task-
parameters, except the number of observers, were those that
actually occurred in collaborations. By observers we mean users
who did not input any commands and thus did not influence the
logs we collected. Our experiments exactly mimic reality only if a
user’s actions are not influenced by observers. To understand the
impact of different number of observers, we varied their number
from 2 to 31 in our logs. In our experiments, the number of

observers was sometimes less and sometimes more than the actual
observers. While 31 is less than the maximum number of
observers in our recordings, it is large enough to show
architecture response time differences and project response times
for collaborations involving larger numbers of observers.

We analyzed two existing PowerPoint presentation recordings in
which there was only one presenter and about thirty to sixty
observers. In addition, we recorded two chat-room sessions and
one collaborative checkers game. These recordings contain actual
users’ actions – PowerPoint commands, chat messages, and
checkers moves – and actual think times between these actions.
IM, Checkers, and PowerPoint turned out to be a good choice of
applications for which to analyze actual logs for three reasons: 1)
the collaboration parameters we measured in these logs were
fairly wide spread, 2) they are popular and represent the kind of
tasks users do on a daily basis, and 3) their shared components are
fundamentally different: IM is stateless, Checkers is logic-centric,
and PowerPoint is data-centric. Based on the analyzed recordings,
we were able to create 36 logs for our simulations.

The checkers engine used in the actual tasks was transformed into
a collaborative program using an infrastructure that has facilities
for logging and replaying commands. Therefore, extracting the
task parameters from the generated checker logs was relatively
simple. The chat programs we logged were the ones implemented
by the chat rooms we observed. We ran them under Microsoft
Live Meeting 2005 and used its screen-recording capabilities. As
a result, we had to use a tedious manual process to extract the
think times and input command messages in the sessions –
analyzing one ten-minute recording required two hours of work!
The checker commands were replayed directly to the program
used in the actual task using the capabilities in the infrastructure
to replay stored commands. To replay the chat commands, we
used the replay-supporting infrastructure to create our own
version of the chat application. To replay the PowerPoint
commands, we had to bridge the gap between our Java-based
replay-supporting infrastructure and the PowerPoint application.
We used the J-Integra library to create this bridge and relay the
replayed commands to the PowerPoint application.

The system parameters, processing powers, and network delays,
also have to be realistic. All machines were PCs, 7 of which were
running Windows XP SP2 and 1 Windows 98. Each machine
must be dedicated to a user if the response times for the user are
being measured, though a machine could simulate multiple
observers. We simulated 2-31 observers on 1-5 computers,
maximum of 16 per computer and/or 1-7 active users on the
remaining computers. The total number of users was never more
than 32. When comparing the three architectures, we used the
same set of computers. As mentioned above, we refer to the set of
slaves served by a master as a cluster. In our experiments, we
never created more than two master computers, that is, clusters in
a hybrid architecture. Our 8 computers consisted of a P2 laptop
(366MHz), two P3 desktops (866MHz and 1GHz), and six P4
2.4GHz desktops. These are all in-use computers in our
department, though we deliberately chose ones with widely
differing processing powers to observe the effect of asymmetric
computing powers. Even if everyone uses state-of-the-art devices,
they might use different classes of devices such as cell phones,
palmtops, and different kinds of desktops. The P2 laptop was
intended to simulate next-generation mobile computers.

133

We performed each simulation five times and reported the
average performances. We show the averages using a mixture of
graph and tabular forms, as each representation has its
advantages. We do not show statistics other than averages to
avoid cluttering the representation. We removed any “outlier”
entries from the average, caused for instance, by operating system
process scheduling timing issues. To reduce these issues, we
removed as many active processes on each system as possible. In
order to control variability in network delays in our experiments,
we ran them on our local 100Mbit LAN with 7 computers and an
8th laptop with wireless communication capabilities. Based on
pings done to remote computers, we added 72ms and 162ms to
the LAN delays (0ms) to simulate half the round-trip time from a
U.S. East Coast LAN-connected computer to German LAN-
connected and modem-connected computers, respectively.

We will say that the difference between two response times is
significant if it is greater than 50ms because, based on our
assumption given earlier, this means users will be able to
recognize that one of the response times is worse than the other.
We next describe our predictions and experimental-validations. In
the equations relevant to the each result, we only include terms
that have a non-zero impact on response time.

4.1 Number of Users
Intuitively, as the number of users increases, the performance of
hybrid and centralized architectures should improve relative to the
replicated architecture because in a replicated architecture, a
program component, before delivering output to the local user,
must transmit input to all other users. Our equations predict this if
the following conditions are met: (a) the think times are large to
guarantee that a program component is always ready to accept the
next input command when it arrives, (b) the number of clusters in
the hybrid architecture is low and does not change as the number
of users increases, (c) the network latencies between all users are

low, (d) the cost of a particular output is the same for all users in
all three architectures, (e) the cost of transmitting a single input
command or a single output is negligible, and (f) the inputting
user is a slave in the centralized and hybrid architectures.
Assumption (e) does not imply that the cost of broadcasting a
single input or output or sending multiple inputs or outputs is
negligible. The relevant response time equations from our model
simplified to account for the above assumptions are:

in in

i j i j i j
in in

i j i m i m
in

i j i m

[Rep] Resp Mast = (n-1)x /p +w /p

[Hyb] Resp Slave = (k-1)x /p +w /p

[Cent] Resp Slave = w /p

The replicated response time equation contains the term (n-
1)xiin/pj, the time required to broadcast an input command to all
the other computers. Thus, the replicated architecture response
time should increase with the number of users. In the hybrid
architecture equation, if the master computers are powerful, the
input broadcasting costs, (k-1)xi-1out/pm, are close to zero
because we assumed that the number of clusters is low and
constant. Hence, increasing the number of users does not impact
the hybrid architecture response time. Thus, just like the
centralized architecture response time, the hybrid architecture
response time is independent of the number of users.

To verify this prediction and see if the response time differences
are significant, we replayed one of the PowerPoint recordings
using actual think times and the architectures shown in Figure 3.
The results of measuring the response to the “next animation”
commands are shown in Figure 4 (left) and confirm our analysis.
As the number of observers increased from 8 to 16 to 32, the
replicated architecture response time increased by 128.1-
90=38.1ms, while the centralized and hybrid response times
remained constant at 84.2(±1.7)ms.

Figure 3. Centralized (left), Replicated (center), and Hybrid (right) architectures. The “+0ms” labels denote the delays
added to the LAN delays. Solid lines depict inputs and dashed lines depict outputs. The letter inside the master

computers circles denote if PowerPoint (P), Checkers (C), IM (I), or Telepointing (T) logs were simulated.

Slave
Active User 1
P3 Desktop

P
Master

Observer 1
P4 Desktop

Slave
Observer 2
P4 Desktop

Slaves
Observers

3-6/3-14/3-30
2 P4 Desktops

Slave
Observer 31
P4 Desktop

+0ms +0ms
+0ms +0ms

Master
Observers

3-6/3-14/3-30
2 P4 Desktops

PMaster
Active User 1
P3 Desktop

P

P

Master
Observer
7/15/31

P4 Desktop

Master
Observer 2
P4 Desktop P

PMaster
Observer 1
P4 Desktop

+0ms

+0ms

+0ms

+0ms

Slaves
Observers

3-6/3-14/3-30
2 P4 Desktops

P P

Master
Observer
7/15/31

P4 Desktop Master
Observer 1
P4 Desktop

Slave
Active User 1
P3 Desktop

+0ms +0ms

+0ms

Slave
Observer 2
P4 Desktop

Figure 4. Next animation (right), start presentation (center), and show slide (right) response times

Animation Response Times

0
20
40
60
80

100
120
140

0 10 20 30 40

Users

Ti
m

e
(m

s)

Replicated
Centralized
Hybrid

Show Slide Response Times

0

500

1000

1500

2000

0 10 20 30 40

Users

Ti
m

e
(m

s)

Replicated
Centralized
Hybrid

Show Slide Response Times

0

5000

10000

15000

20000

25000

0 10 20 30 40

Users

Ti
m

e
(m

s)

Replicated
Centralized
Hybrid

134

Thus our measurements showed no significant response time
differences but confirmed the trend predicted by the equations,
thereby validating them. The validated equations, in turn, can
project, based on the measured values, when the difference would
be significant. The 8 and 32 user measurements can be substituted
into our equations as

in in

i j i j
in in

i j i j

[Rep 8] = (8-1)x /p +w /p = 90.0ms

[Rep 32] = (32-1)x /p +w /p = 128.1ms

[Hyb 8] = [Hyb 32] = [Cent 8] = [Cent 32] = 84.2ms

As mentioned before, the centralized and hybrid architecture
response times are independent of the number of users. Hence, the
values for their equations with 8 and 32 users are all equal and
constant. The replicated architecture response time equations
provide

in in in

i j i j i j[Rep32] = [Rep8] = (32-1)x /p -(8-1)x /p => x /p = 1.59ms

Thus, each additional user increases the replicated architecture
transmission time, and hence response time, by 1.59ms. A
response time that is significantly worse than the centralized and
hybrid architecture response times of 84.2ms should be at least
134.2ms. Since the replicated architecture response time with 32
users was 128.1ms, we can project how many more users, n’,
would increase the response time to 134.2ms or higher which
would make the replicated architecture response time significantly
worse than the centralized and hybrid architecture response times.
The projection calculation is

n' = (134.2-128.1)/1.59 = 3.8 => n'=4

Thus, with 36 or more users, the replicated architecture would
provide a significantly worse response time than the centralized
and hybrid architectures.

Our model also predicts that the higher the cost of broadcasting an
input command, the faster the replicated architecture response
time increases as the number of users increases. To verify this
prediction, we compare the response times to the first input
command in the session with the “next animation” command
response times. As mentioned earlier, we assume that when a
master computer receives the first input command, it must
transmit the entire presentation file to all the other master
computers. Transmitting an entire file has a much higher cost than
transmitting a command to show the next animation. Figure 4
(center), which shows the response times to the first input
command (start presentation) as the number of users increases,
confirms our analysis. The replicated architectures response time
to the first input command increases by 23044-6196=16484ms
from 8 to 32 users. This gives is an average response time
increase of 702ms per user, which is much higher than the
response time increase of 1.59ms per user for next animation
commands. On the other hand, the centralized architecture
response time is not affected by the number of users because the
output is always first transmitted to the slave user which sent the
input command and only then to the remaining slave users. For
the same reason, the hybrid architecture response time does not
increase with the number because we assume that the number of
clusters in the hybrid architecture does not increase with the
number of users. The hybrid architecture response time is not as
good as in the centralized architecture because before processing
the input command, the master computer of the inputting user

must first transmit the PowerPoint file to the other master
computer.

One of the assumptions we made to make the prediction above is
that think times are large. This prediction can also be made by
substituting this assumption with the assumption that output
processing costs are large enough to guarantee that a program
component is always ready to accept the next input command
when it arrives. The relevant equations from our model remain
unchanged.

To verify this prediction under the substituted assumption and see
if the response time differences are significant, we replayed a log
of a telepointer motion that circles one of the checkers pieces. We
use 0ms think times and the hybrid architecture shown in Figure 5
(top), a centralized architecture in which a Observer 1’s P4
desktop hosts the application, and a replicated architecture. The
response time results to telepointing commands are shown in
Figure 5 (bottom) and confirm our analysis.

Interestingly, with as many as 32 users, the centralized and hybrid
architectures response times were less than 50ms, showing that
the sharing of incremental changes can be supported by these
architectures without hurting response times. Even more
interestingly, with as many as 8 users, the replicated architecture
response times were not significantly worse than in the
centralized and hybrid cases even when the slow P2 laptop was
responsible for input transmission. Thus, supporting incremental
changes without hurting performance is possible in all three
architectures. The design choice not to offer the option of
supporting the sharing of incremental changes should be made
using some other metric.

We see above the symbiotic relationship between the formal
model and experimental analysis. The latter validates the former,
while the former, in turn, can be used to make predictions about
realistic scenarios that cannot be simulated in the laboratory. For
example, we can determine what happens to the response times if
the processing power increases tenfold and/or the number of users
increases hundredfold.

Slave
Active User 1

P2 Laptop

T T
Master

Active user 3
P4 Desktop

Master
Active User 4
P4 Desktop

Slave
Observer User 2

P3 Desktop

Slave Active Users 5-7
Slaves Observer 8

4 P4 Desktops

+0ms

+0ms +0ms

+0ms +0ms

Figure 5. Hybrid architecture (top) and telepointing P2
laptop response time results (bottom).

Response Times

0

50

100

150

Centralized Replicated Hybrid

Architecture

Ti
m

e
(m

s) 4 User Clusters
8 User Clusters
16 User Clusters

135

4.2 Output Cost Differences
As mentioned earlier, we assume that a master user-interface can
directly access files available to the local program component.
Such access can substantially reduce output processing costs in
the PowerPoint case. The sequence of steps slave and master user-
interfaces carry out when processing a PowerPoint output is given
in Figure 6.2 We found that the difference between the times
required to take the two sequences of steps can be as large as two
seconds. In this example, from the point of view of a slave user
in the centralized or hybrid architecture, it seems better to support
the replicated architecture.

We use our equations to state a general result that precisely makes
the informal argument above. Assume that (a) the think times are
large to guarantee that a program component is always ready to
accept the next input command when it arrives, (b) the number of
clusters in the hybrid architecture is low and does not change (c)
the network latencies between all users are low, (d) all inputting
users are slave in the centralized and hybrid architectures, (e) the
number of users is low, (f) the cost of transmitting a single input
command is negligible, and (g) the output transmission and
processing costs to and for slave users are higher than for the
master users. We can predict that these conditions favor the
replicated architecture. The relevant equations from our model are

in in out

i j i j i j i j
in in out out

i j i m i m i m i j
in out out

i j i m i m i j

[Rep] Resp Mast = (n-1)x /p +w /p +w /p

[Hyb] Resp Slave = (k-1)x /p +w /p +x /p +w /p

[Cent] Resp Slave = w /p +x /p +w /p

The output processing cost, wiout, affects all three equations. Also,
the hybrid and centralized equations contain an additional cost for
transmitting output, xiout. Since output processing costs are high
for slave user-interfaces and low for master user-interfaces, the
replicated architecture will be impacted less than the centralized
and hybrid slave user response times.

To verify this prediction and see if the response time differences
are significant, we replayed the same PowerPoint logs as in the
previous result, again using actual think times and the
architectures shown in Figure 3, only this time, we consider the
“show slide” input commands. The results of the experiments are
shown in Figure 4 (right) and revealed that as the number of
observers increased from 8 to 16 to 32, the replicated architecture
response time increased by a total of 197.3-163.7=33.6ms (1.4ms

2 Steps 2 and 3 (save slide to file and import saved file into

presentation) were necessary because of the API exposed by the
J-Integra tool we used to connect our Java-based framework and
COM-based PowerPoint. In particular, we were not able to
import a received slide directly into an ongoing presentation.

per user). The centralized and hybrid architecture response times
are more difficult to interpret as they varied between 1573.5ms
and 1676.9ms. We explain why they varied next.

We measured, independently of our infrastructure, the standard
deviation of the time required by a slave user to do steps 3 and 4
in Figure 6 (top) and found it to be as high as 100ms. The
difference between the response times we measured in the
centralized and hybrid architectures (1676.9ms – 1573.5ms) was
small given this large standard deviation. Thus, we consider the
centralized and hybrid architecture response times as constant and
interpret them to be the lowest reported value of 1573.5ms.

We also found the standard deviation of the time required by a
master user to take the alternative step 2 in Figure 6 (bottom) to
be at most 10.7ms. As this number is small, we can say that the
steady increase we see in the response time of the replicated
architecture is the result of increase in number of users.

Based on these arguments, we can say that our results show that
the replicated architecture gives significantly better response
times than the centralized and hybrid architectures. Using the
projection method from the previous PowerPoint result, we
predict that with as many as 979 users, the replicated architecture
gives significantly better results, while with 1051 or more users,
the centralized and hybrid architectures will give significantly
better results. Interestingly, this and the previous result combined
show that the type of PowerPoint presentation can decide which
architecture gives the best response times. For presentations
dominated by animations, the centralized architecture may be the
most appropriate, while for presentations with many slides and
few animations, the replicated architecture may be the most
appropriate even with close to a 1000 users. Even more
interestingly, our model predicts that with large presentations
involving thousands of employees, the centralized and hybrid
architectures will give significantly better response times.

4.3 Intra-Cluster Asymmetry
Consider a logic-intensive application and a hybrid architecture in
which the difference between the processing powers of the
slowest and fastest computers in some cluster is large. This may
occur in practice, for instance, in an IM session when one user in
a cluster is using a cell phone while others are using much more
powerful desktop computers. Under these conditions, our model
predicts that the hybrid architecture and some centralized
architectures give better response times than the replicated
architecture. Intuitively, the hybrid and centralized architectures
perform better in this case because a fast computer processes and
transmits inputs quicker than a slow computer so it may make
sense to make slow computers slaves of the faster ones.

To formalize this informal argument, assume (a) the think times
are large to guarantee that a program component is always ready
to accept the next input command when it arrives, (b) the number
of clusters in the hybrid architecture is low and does not change,
(c) the network latencies between all users are low, (d) the cost of
a particular output is the same for all users in all three
architectures, (e) the cost of transmitting a single input command
or a single output is negligible, and (f) all inputting users are
slaves in the centralized and hybrid architectures. The relevant
equations from our model become:

Slave user-interface steps:

1: Receive output
2: Save output (a slide) to file
3: Import saved slide
4: Show imported slide

Master user-interface steps:

1: Receive output
2: Show slide

Figure 6. PowerPoint output processing steps

136

in in in

i j i j i j i j i m
in in in

i j i j i j i j i m
in

i m

[Rep-Cent] Resp Mast -Resp Slave = (n-1)x /p +(w /p -w /p)

[Rep-Hyb] Resp Mast -Resp Slave = (n-1)x /p +(w /p -w /p)

-(k-1)x /p

We can show each user will have worse response times in the
replicated architecture. Since pm ≥ pj, in both equations, the term
(wiin/pj-wiin/pm), which represents the difference in the times
required to process the command on the master and slave
computers, is greater than or equal to 0. Moreover, the time
required to broadcast an input command on computer j, (n-
1)xiin/pj, in both equations, is always positive. Thus, the [Rep-
Cent] result is always positive, that is, a centralized architecture
gives better response time than the replicated architecture. Now

consider the additional term, (k-1)xiin/pm, in the [Rep-Hyb]
equation. We know that k-1 < n-1, that is, the number of master
computers in a hybrid architecture is less than in the replicated
architecture by definition. Thus, (n-1)xiin/pj-(k-1)xiin/pm is
always positive, which implies that a hybrid architecture gives
better response time than the replicated architecture.

The experiments we did for this result used the hybrid
architecture shown in Figure 7 (left), a centralized architecture in
which the Observer 1’s P4 desktop hosted the application, and a
replicated architecture. We used an entire checkers log which was
consistent with the assumptions above. The results are given in
Table 2. As predicted, the replicated architecture gives
significantly worse response time for both active users.

Table 2. P2 laptop and P3 desktop Checkers response times

Application Centralized Replicated Hybrid

P2 Laptop 91.1ms 249.8ms 92.1ms

P3 Desktop 62.3ms 144ms 59.6ms

Table 3. P2 laptop and P3 desktop IM response times

Application Centralized Replicated Hybrid

P2 Laptop 76.9ms 137.3ms 79.6ms

P3 Desktop 32.4ms 54.9ms 39.6ms

The experiment above used a logic-intensive application with
high input processing costs. However, our prediction does not
require this assumption. To verify this, we used the hybrid
architecture shown in Figure 7 (right), a centralized architecture
in which a P4 desktop hosted the application, and a replicated
architecture. We simulated a one of our chat logs in which seven
users were active. The results are shown in Table 3. The response

times of the P2 laptop in the centralized and hybrid cases were
significantly better than the replicated architecture response times.
On the other hand, the P3 desktop response time advantage gained
in the centralized and hybrid architectures for IM is not
significant. Table 2 and 3 show that the advantage gained in the
centralized and hybrid architectures is smaller for the chat
program than for checkers. This is because this application is not
logic-intensive.

Thus, we have generalized the result from previous work that low
network latencies, high processing power difference, and high
input processing costs together favor a centralized architecture.
We show that the high input processing costs are not necessary
for making this prediction. In addition, we show that these
conditions also favor a hybrid architecture.

4.4 Inter-Cluster Delays
We finally make a prediction that distinguishes between hybrid
and centralized architectures. A motivating scenario is groups of
users in geographically-dispersed organizations chatting with
each other. If the delays between the organizations is large and
the master is close to one of the organizations, then users in the
other organization must incur network delays they would not face
in a hybrid architecture that has a master near their organization.
More formally, assume that (a) the think times are large enough to
not satisfy Cond 1 so that the program component is always
ready to accept the next input command when it arrives, (b) the
number of clusters in the hybrid architecture is low and does not
change, (c) the cost of a particular output is the same for all users
in all three architectures, (d) there are multiple active users which
belong to different clusters, (e) low network latencies between
users in the same hybrid architecture clusters, (f) the cost of
transmitting a single input command or a single output is
negligible, and (g) high network latencies among users in
different clusters. Under these conditions, our model predicts that
the centralized architecture performance suffers for at least one
active user. Assuming that userj’s master computer in the
centralized and hybrid architectures are m and m’, respectively,
the relevant difference equations from our model are

in out

i j i j i i
in out in in in

i i i m' i m i m'
in out

i j i j i i
in

i m

[Cent-Hyb] Resp Slave -Resp Slave = (d(j,m) +d(m,j))

 -(d(j,m') +d(m',j))-(k-1)x /p +(w /p -w /p)

[Cent-Rep] Resp Slave -Resp Mast = d(j,m) +d(m,j)

-(n-1)x /p

 in in

i m i j+(w /p -w /p)

In the [Cent-Hyb] difference equation, if the master computers m
and m’ have similar processing powers and are powerful, all the
terms in the equation approach 0 except the network latency
terms. For the [Cent-Rep] difference equation, if userj’s
computer and master computer m are in different clusters, the
round-trip term dominates the equation.

Table 4. P2 laptop and P3 desktop response times

Computer Centralized Replicated Hybrid

P2 Laptop 74.4ms 137.9ms 83.8ms

P3 Desktop 151.2ms 51.5ms 40.0ms

We simulated one of our chat logs in which there were seven
active users. We used hybrid architecture shown in Figure 7
(right), a centralized architecture in which a P4 desktop hosted the

Figure 7. Checkers (left) and IM (right) hybrid
architectures architectures

Slave
Active User 1

P2 Laptop

I I
Master

Active user 3
P4 Desktop

Master
Active User 4
P4 Desktop

Slave
Active User

2
P3 Desktop

Slave Active Users
5-7

Slaves Observer 8
4 P4 Desktops

+0ms
+0ms+0m

s+0ms +0m

Master
Observer 1
P4 Desktop

Master
Observer 2
P4 Desktop

Slave
Active User

1
P2 Laptop

C C

Slave
Active User 2
P3 Desktop

+0ms
+0ms

+0ms

137

application, and a replicated architecture. In addition, we added
72ms to the LAN delays between clusters. Our experiment results
are displayed in Table 4 and confirm our analysis. In the hybrid
architecture, the P2 laptop was in one cluster while the computer
used as the master in the centralized architecture was in a
different cluster. As we can see, P3 user’s response time was
151.2ms in the centralized architecture, while it was 40.0ms in the
hybrid and 51.5ms in the replicated architecture. Meanwhile,
because the P2 laptop was in the same cluster as its master, the
round-trip times were just the LAN delays, so centralized and
hybrid architectures performed better than the replicated
architecture because the transmission costs were high.

4.5 Other Results
Our model and experiments make several additional predictions,
which we do not have space to prove here:

• Inter-cluster asymmetry: A high difference in the processing
powers of the most powerful computers in each cluster
favors a centralized architecture.

• Intra-cluster delays: High latencies among users in a cluster
favors a replicated architecture.

• High think-time impact: In all of the equations we created
for realistic scenarios shown above, think times were not a
factor. This is because our model predicts that after they
cross a certain threshold, their values do not affect the
response time. This result can be practically used in log
replays by substituting actual think times with the threshold
values, which would be necessary if we were replaying
longer logs.

• Low think-time impact: Our model and experiments also
show that there are realistic scenarios in which think times
can be low enough to significantly impact the response time.

5. CONCLUSIONS AND FUTURE WORK
This paper systematically analyzes collaboration architectures to
determine their response times. More specifically, it is the first to:

• bring out unresolved issues in the design of centralized,
replicated and hybrid architectures that must be addressed in
order to analyze their response time.

• give response-time equations for the three architectures in
terms of several system and task parameters that can
significantly impact the response times of the three
architectures in realistic collaboration scenarios. These
include processing power, network delays, processing and
transmission costs, number of total users, and think times.

• make predictions about the relative performance of the three
architectures under several realistic collaboration scenarios,
including that 1) a small number of users, high intra-cluster
network delays, and large output processing and transmission
costs favor the replicated architecture, 2) large input size
favors the centralized architecture, 3) high inter-cluster
network delays favor the hybrid architecture, and 4) high
input processing and transmission costs, low think times,
asymmetric processing powers, and logic-intensive
applications favor both the centralized and hybrid
architectures.

• address logic-centric, data-centric, and stateless shared
components in both the formal model and experiments.

• show that there are cases in which incremental graphic
operations such as telepointer movements can indeed be
supported with good response times, despite the fact that
some commercial systems do not support them because of
performance fears.

A secondary contribution is the set of logs we have gathered,
which we will make public for use in future benchmarks for
evaluating the performance of collaboration architectures.
We have identified only some of the parameters on which
response times depend. It is important to analyze other factors
such as scheduling policies and cost of displaying output. Further
work is also necessary to study performance metrics other than
response times such as feedthrough and task completion times [7],
jitter [6], and power consumption (for mobile devices). It would
also be useful to evaluate the performance of collaborations
involving collaborative applications other than chat, checkers, and
presentation tools such as whiteboards. Finally, future work is
necessary to automatically change architectures based on the
current values of collaboration parameters.

6. ACKNOWLEDGEMENTS
This research was funded in part by Microsoft and NSF grants
ANI 0229998, EIA 03-03590, and IIS 0312328.

7. REFERENCES
[1] Ahuja, S., Ensor, J.R., Lucco, S.E. A Comparison of

Application Sharing Mechanisms in Real-time Desktop
Conferencing Systems. Proc OIS 1990. 238-248.

[2] Begole, J., Smith, R.B, Struble, C.A., and Shaffer, C.A.
Resource sharing for replicated synchronous groupware.
ACM TON, 9, 6, (Dec 2001), 833-843.

[3] Chung, G., and Dewan. P. Towards Dynamic Collaboration
Architectures. Proc CSCW 2004. 1-10.

[4] Correa, C. D. and Marsic, I. Software Framework for
Managing Heterogeneity in Mobile Collaborative Systems.
CSCW, 14, 5-6 (2004), 603-638.

[5] Dewan, P. Architectures for Collaborative Applications.
Trends in Software: Computer Supported Cooperative Work.
165-194.

[6] Dyck, J., Gutwin, C. Subramanian, S., Fedak, C. High-
performance Telepointers. Proc CSCW 2004. 172-181.

[7] Junuzovic, S., Chung, G. and Dewan P. Formally Analyzing
Two-user Centralized and Replicated Architectures. ECSCW
2005. 83-102.

[8] Litiu, R. and Prakash, A. Developing Adaptive Groupware
Applications Using a Mobile Component Framework. Proc
CSCW 2000. 107-116.

[9] Marsic, I. DISCIPLE: A framework for multimodal
collaboration in heterogeneous environments. ACM
Computing Surveys. 31(2es): 4 (1999).

[10] Shneiderman, B. Response Time and Display Rate.
Designing the User Interface: Strategies for Effective
Human-Computer Interaction. 4th edition. Addison-Wesley
Longman. 352-369.

[11] Sun, C. and Ellis, C. Operational Transformation in Real-
time Group Editors: Issues, Algorithms, and Achievements.
Proc CSCW 1998. 59-68.

138

