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Road mapMulticore

Parallel 

programming 

essential

Task parallelism
• Explicit threads

• Synchronise via locks, 

messages, or STM

Data parallelism
Operate simultaneously 

on bulk data

Modest parallelism
Hard to program

Massive parallelism
Easy to program
• Single flow of control
• Implicit synchronisation



Haskell has three forms of 
concurrency

 Explicit threads
 Non-deterministic by design

 Monadic: forkIO and STM

 Semi-implicit
 Deterministic

 Pure: par and seq

 Data parallel
 Deterministic

 Pure: parallel arrays

 Shared memory initially; distributed memory eventually; 
possibly even GPUs

main :: IO () 

= do { ch <- newChan

; forkIO (ioManager ch)

; forkIO (worker 1 ch)

... etc ... }

f :: Int -> Int

f x = a `par` b `seq` a + b

where

a = f (x-1)

b = f (x-2)



Data parallelism

The key to using multicores

Flat data parallel
Apply sequential

operation to bulk data

Nested data parallel
Apply parallel

operation to bulk data

• The brand leader

• Limited applicability 

(dense matrix, 

map/reduce)

• Well developed

• Limited new opportunities

• Developed in 90’s

• Much wider applicability 

(sparse matrix, graph 

algorithms, games etc)

• Practically un-developed

•Huge opportunity



Flat data parallel

 The brand leader: widely used, well 
understood, well supported

 BUT: “something” is sequential
 Single point of concurrency
 Easy to implement: 

use “chunking”
 Good cost model

e.g. Fortran(s), *C
MPI, map/reduce

foreach i in 1..N {

...do something to A[i]...

}

1,000,000’s of (small) work items

P1 P2 P3



Nested data parallel

 Main idea: allow “something” to be 
parallel

 Now the parallelism 
structure is recursive, 
and un-balanced

 Still good cost model
 Hard to implement!

foreach i in 1..N {

...do something to A[i]...

}

Still 1,000,000’s of (small) work items



Nested DP is great for 
programmers

 Fundamentally more modular
 Opens up a much wider range of applications:

– Sparse arrays, variable grid adaptive methods 
(e.g. Barnes-Hut)

– Divide and conquer algorithms (e.g. sort)
– Graph algorithms (e.g. shortest path, spanning 

trees)
– Physics engines for games, computational 

graphics (e.g. Delauny triangulation)
– Machine learning, optimisation, constraint 

solving



Nested DP is tough for compilers

 ...because the concurrency tree is both 
irregular and fine-grained

 But it can be done!  NESL (Blelloch
1995) is an existence proof

 Key idea: “flattening” transformation: 

Compiler

Nested data 
parallel
program

(the one we want 
to write)

Flat data 
parallel
program

(the one we want 
to run)



Array comprehensions

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

[:Float:] is the type of 
parallel arrays of Float

An array comprehension: 
“the array of all f1*f2 where 

f1 is drawn from v1 and f2 
from v2”

sumP :: [:Float:] -> Float

Operations over parallel array 

are computed in parallel; that is 

the only way the programmer 

says “do parallel stuff”

NB: no locks!



Sparse vector multiplication

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP [: f*(v!i) | (i,f) <- sv :]

A sparse vector is represented as a 
vector of (index,value) pairs

v!i gets the i’th element of v
Parallelism is 

proportional to 

length of sparse 

vector



Sparse matrix multiplication

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float

smMul sm v = sumP [: svMul sv v | sv <- sm :]

A sparse matrix is a vector of sparse 
vectors

Nested data parallelism here!
We are calling a parallel operation, svMul, on 

every element of a parallel array, sm



Hard to implement well
• Evenly chunking at top level might be ill-balanced
• Top level along might not be very parallel



The flattening transformation

...etc

• Concatenate sub-arrays into one big, flat array
• Operate in parallel on the big array
• Segment vector keeps track of where the sub-arrays 

are

• Lots of tricksy book-keeping!
• Possible to do by hand (and done in 

practice), but very hard to get right
• Blelloch showed it could be done 

systematically



type Doc = [: String :] -- Sequence of words

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

Find all Docs that 
mention the string, along 
with the places where it 

is mentioned 
(e.g. word 45 and 99) 

Parallel search



Parallel search

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

wordOccs :: Doc -> String -> [: Int :]

Find all the places where 
a string is mentioned in a 

document
(e.g. word 45 and 99) 

Parallel search



Parallel search

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

search ds s = [: (d,is) | d <- ds

, let is = wordOccs d s

, not (nullP is) :]

wordOccs :: Doc -> String -> [: Int :]

nullP :: [:a:] -> Bool

Parallel search



Parallel search

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

wordOccs :: Doc -> String -> [: Int :]

wordOccs d s = [: i | (i,s2) <- zipP positions d

, s == s2 :]

where

positions :: [: Int :]

positions = [: 1..lengthP d :]

zipP :: [:a:] -> [:b:] -> [:(a,b):]

lengthP :: [:a:] -> Int

Parallel search



Data-parallel quicksort
sort :: [:Float:] -> [:Float:]

sort a = if (length a <= 1) then a

else sa!0 +++ eq +++ sa!1

where 

m = a!0

lt = [: f | f<-a, f<m :]

eq = [: f | f<-a, f==m :]

gr = [: f | f<-a, f>m :]

sa = [: sort a | a <- [:lt,gr:] :]

2-way nested data 
parallelism here!

Parallel
filters



How it works
sort

sort sort

sort sort sort

Step 1

Step 2

Step 3

...etc...

• All sub-sorts at the same level are done in parallel
• Segment vectors track which chunk belongs to which 

sub problem
• Instant insanity when done by hand



Fusion
 Flattening is not enough

 Do not
1. Generate [: f1*f2 | f1 <- v1 | f2 <- v2 :]

(big intermediate vector)
2. Add up the elements of this vector

 Instead: multiply and add in the same loop

 That is, fuse the multiply loop with the add 
loop

 Very general, aggressive fusion is required

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]



Purity pays off

 Two key transformations:
– Flattening

– Fusion

 Both depend utterly on purely-
functional semantics:
– no assignments

– every operation is a pure function

The data-parallel languages of the 

future will be functional languages



What we are doing about it

NESL
a mega-breakthrough but:
– specialised, prototype
– first order
– few data types
– no fusion
– interpreted

Haskell
– broad-spectrum, widely used
– higher order
– very rich data types
– aggressive fusion
– compiled

Substantial improvement in

• Expressiveness

• Performance

•Shared memory initially

•Distributed memory 

eventually

•GPUs anyone?

Not a special purpose data-

parallel compiler!  Most support 

is either useful for other things, 

or is in the form of library code.



Four key pieces of technology
1. Flattening

– specific to parallel arrays

2. Non-parametric data representations
– A generically useful new feature in GHC

3. Chunking
– Divide up the work evenly between processors

4. Aggressive fusion
– Uses “rewrite rules”, an old feature of GHC

Not a special purpose data-parallel compiler!  
Most support is either useful for other things, 
or is in the form of library code.

Main contribution: an optimising data-parallel 

compiler implemented by modest enhancements 

to a full-scale functional language implementation



Step 0: desugaring
svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP [: f*(v!i) | (i,f) <- sv :]

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)

sumP :: Num a => [:a:] -> a

mapP :: (a -> b) -> [:a:] -> [:b:]



svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP (snd^ sv  *^  bpermuteP v (fst^ sv))

Step 1: Vectorisation
svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)

sumP :: Num a => [:a:] -> a

*^ :: Num a => [:a:] -> [:a:] -> [:a:]

fst^ :: [:(a,b):] -> [:a:]

bpermuteP :: [:a:] -> [:Int:] -> [:a:]

Scalar operation * replaced by 
vector operation *^



Vectorisation: the basic idea

mapP f v

 For every function f, generate its 
lifted version, namely f^

 Result: a functional program, operating over 
flat arrays, with a fixed set of primitive 
operations *^, sumP, fst^, etc.

 Lots of intermediate arrays!

f^ v

f  :: T1 -> T2

f^ :: [:T1:] -> [:T2:]  -- f^ = mapP f



Vectorisation: the basic idea
f  :: Int -> Int

f x = x+1

f^ :: [:Int:] -> [:Int:]

f^ x = x +^ (replicateP (lengthP x) 1)

replicateP :: Int -> a -> [:a:]

lengthP :: [:a:] -> Int

This Transforms to this

Locals, x x

Globals, g g^

Constants, k replicateP (lengthP x) k



Vectorisation: the key insight
f  :: [:Int:] -> [:Int:]

f a = mapP g a = g^ a

f^ :: [:[:Int:]:] -> [:[:Int:]:]

f^ a = g^^ a --???

Yet another version of g???



Vectorisation: the key insight

f  :: [:Int:] -> [:Int:]

f a = mapP g a = g^ a

f^ :: [:[:Int:]:] -> [:[:Int:]:]

f^ a = segmentP a (g^ (concatP a))

concatP  :: [:[:a:]:] -> [:a:]

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]

First concatenate, 
then map, 

then re-split

Shape Flat data Nested 
data

Payoff: f and f^ are enough.  No f^^



Step 2: Representing arrays
[:Double:] Arrays of pointers to boxed 

numbers are Much Too Slow

[:(a,b):] Arrays of pointers to pairs are 
Much Too Slow

Idea!

Representation of 

an array depends 

on the element 

type

...



Step 2: Representing arrays 
[POPL05], [ICFP05], [TLDI07]

data family [:a:]

data instance [:Double:] = AD ByteArray

data instance [:(a,b):]  = AP [:a:] [:b:]

AP

fst^ :: [:(a,b):] -> [:a:]

fst^ (AP as bs) = as

 Now *^ is a fast loop

 And fst^ is constant time!



Step 2: Nested arrays
Shape

Surprise: concatP, segmentP are constant time!

data instance [:[:a:]:] = AN [:Int:] [:a:]

concatP  :: [:[:a:]:] -> [:a:]

concatP (AN shape data) = data

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]

segmentP (AN shape _) data = AN shape data

Flat data



Higher order complications

 f1^ is good for [: f a b | a <- as | b <- bs :]

 But the type transformation is not uniform

 And sooner or later we want higher-order 
functions anyway

 f2^ forces us to find a representation for 
[:(T2->T3):].  Closure conversion [PAPP06]

f  :: T1 -> T2 -> T3

f1^ :: [:T1:] -> [:T2:] -> [:T3:] -– f1^ = zipWithP f

f2^ :: [:T1:] -> [:(T2 -> T3):]   -- f2^ = mapP f



Step 3: chunking

 Program consists of
– Flat arrays
– Primitive operations over them 

(*^, sumP etc)
 Can directly execute this (NESL).

– Hand-code assembler for primitive ops
– All the time is spent here anyway

 But: 
– intermediate arrays, and hence memory traffic
– each intermediate array is a synchronisation point

 Idea: chunking and fusion

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs  *^  bpermuteP v is)



Step 3: Chunking

1. Chunking: Divide is,fs into chunks, one 
chunk per processor

2. Fusion: Execute sumP (fs *^ bpermute 
v is) in a tight, sequential loop on each 
processor

3. Combining: Add up the results of each 
chunk

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs  *^  bpermuteP v is)

Step 2 alone is not good for a parallel machine!



Expressing chunking

 sumS is a tight sequential loop
 mapD is the true source of parallelism: 

– it starts a “gang”, 
– runs it, 
– waits for all gang members to finish

sumP :: [:Float:] -> Float

sumP xs = sumD (mapD sumS (splitD xs)

splitD  :: [:a:] -> Dist [:a:]

mapD :: (a->b) -> Dist a -> Dist b

sumD :: Dist Float -> Float

sumS :: [:Float:] -> Float -- Sequential!



Expressing chunking

 Again, mulS is a tight, sequential loop

*^ :: [:Float:] -> [:Float:] -> [:Float:]

*^ xs ys = joinD (mapD mulS

(zipD (splitD xs) (splitD ys))

splitD  :: [:a:] -> Dist [:a:]

joinD :: Dist [:a:] -> [:a:]

mapD :: (a->b) -> Dist a -> Dist b

zipD :: Dist a -> Dist b -> Dist (a,b)

mulS :: ([:Float:],[: Float :]) -> [:Float:]



Step 4: Fusion

 Aha!  Now use rewrite rules:

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs  *^  bpermuteP v is)

= sumD . mapD sumS . splitD . joinD . mapD mulS $

zipD (splitD fs) (splitD (bpermuteP v is))

{-# RULE

splitD (joinD x) = x

mapD f (mapD g x) = mapD (f.g) x #-}

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs  *^  bpermuteP v is)

= sumD . mapD (sumS . mulS) $

zipD (splitD fs) (splitD (bpermuteP v is))



Step 4: Sequential fusion

 Now we have a sequential fusion 
problem.

 Problem: 
– lots and lots of functions over arrays

– we can’t have fusion rules for every pair

 New idea: stream fusion

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs  *^  bpermuteP v is)

= sumD . mapD (sumS . mulS) $

zipD (splitD fs) (splitD (bpermuteP v is))



Four key pieces of technology
1. Flattening

– specific to parallel arrays

2. Non-parametric data representations
– A generically useful new feature in GHC

3. Chunking
– Divide up the work evenly between processors

4. Aggressive fusion
– Uses “rewrite rules”, an old feature of GHC

Not a special purpose data-parallel compiler!  
Most support is either useful for other things, 
or is in the form of library code.

Main contribution: an optimising data-parallel 

compiler implemented by modest enhancements 

to a full-scale functional language implementation



And it goes fast too...
1-processor 

version goes 

only 30% 

slower than C

Perf win with 2 

processors

Pinch 

of 

salt



Summary
 Data parallelism is the only way to harness 

100’s of cores
 Nested DP is great for programmers: far, far 

more flexible than flat DP
 Nested DP is tough to implement, but we 

(think we) know how to do it
 Huge opportunity: almost no one else is dong 

this stuff!  
 Functional programming is a massive win in 

this space: Haskell prototype in 2008
 WANTED: friendly guinea pigs

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell


Extra slides



Stream fusion for lists

 Problem: 
– lots and lots of functions over lists

– and they are recursive functions

 New idea: make map, filter etc non-
recursive, by defining them to work 
over streams

map f (filter p (map g xs))



Stream fusion for lists
data Stream a where

S :: (s -> Step s a) -> s -> Stream a

data Step s a = Done | Yield a (Stream s a)

toStream :: [a] -> Stream a

toStream as = S step as

where

step [] = Done

step (a:as) = Yield a as

fromStream :: Stream a -> [a]

fromStream (S step s) = loop s

where

loop s = case step s of

Yield a s’ -> a : loop s’

Done -> []

Non-
recursive!

Recursive



Stream fusion for lists
mapStream :: (a->b) -> Stream a -> Stream b

mapStream f (S step s) = S step’ s

where

step’ s = case step s of

Done -> Done

Yield a s’ -> Yield (f a) s’

map :: (a->b) -> [a] -> [b]

map f xs = fromStream (mapStream f (toStream xs))

Non-
recursive!



Stream fusion for lists
map f (map g xs)

= fromStream (mapStream f (toStream 

(fromStream (mapStream g (toStream xs))))

= -- Apply (toStream (fromStream xs) = xs)

fromStream (mapStream f (mapStream g (toStream xs)))

= -- Inline mapStream, toStream

fromStream (Stream step xs) 

where

step [] = Done

step (x:xs) = Yield (f (g x)) xs



Stream fusion for lists
fromStream (Stream step xs) 

where

step [] = Done

step (x:xs) = Yield (f (g x)) xs

= -- Inline fromStream

loop xs 

where

loop [] = []

loop (x:xs) = f (g x) : loop xs

 Key idea: mapStream, filterStream etc are all 
non-recursive, and can be inlined

 Works for arrays; change only fromStream, 
toStream


