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Abstract. DKAL is an expressive declarative authorization language based on existential
fixed-point logic. It is considerably more expressive than existing languages in the litera-
ture, and yet feasible. Our query algorithm is within the same bounds of computational
complexity as e.g. that of SecPAL. DKAL’s distinguishing features include
• explicit handling of knowledge and information,
• targeted communication that is beneficial with respect to confidentiality, security, and

liability protection,
• the flexible use and nesting of functions, which in particular allows principals to quote

(to other principals) whatever has been said to them,
• flexible built-in rules for expressing and delegating trust,
• information order that contributes to succinctness.
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1. Introduction

As computing systems and networks become larger and more distributed, the problem
of authorization turns more and more involved. Rights are not necessarily assigned and
maintained by central authorities, but may instead result from credentials issued by many
different entities. Authorization policies must handle not only permissions for the end user,
but also permissions for entities to issue credentials. These permissions themselves may
depend on other credentials. Policies must handle all this in a manner which is clearly
understood, amenable to analysis, modular so as to afford the greatest stability in a changing
environment, and secure.

Logic based declarative trust management languages have been advanced as a solution to
this problem. Policies written in these languages can serve as a base, a “legal manifesto”
of sorts, from which specific permissions are derived using imperative applications. The
languages allow writing high-level policy rules in human readable form. They generally have
built-in vocabulary for expressing trust and delegation, so that a policy can be modular
and distributed over many different entities. Their declarative form and firm semantics for
deriving permissions from the policy rules allow for analyses of policies, see for example [19].

Several languages have been developed in recent years, and those related to this paper are
surveyed in Section 8. Our late genealogy consists primarily of Delegation Logic, Binder,
and SecPAL. The language Binder [11] builds very directly on Datalog, extending it with an
import/export construct says that connects Datalog programs maintained by different prin-
cipals, and makes the issuer of an imported assertion explicit. A principal A may for example
condition a Datalog rule on B says employee(C,Employer). The rule will fire when princi-
pal B exports employee(C,Employer). A may express trust in B on employee(x, y) using
a Datalog rule employee(x, y) :- B says employee(x, y). Delegation Logic [15, 16] does
not have explicit issuers for all assertions, but on the other hand it has additional constructs,
specific to the demands of authorization languages, including ones for delegations, representa-
tions, and thresholds. Delegation Logic assertions are reduced to Datalog rules, for example
rules similar to the one expressing trust above, for the purpose of execution. SecPAL [4, 12]
has both explicit issuers and specific constructs designed with distributed systems authoriza-
tion policy in mind. The number of constructs is deliberately kept low, but the language is
expressive and captures many standard authorization scenarios, including discretionary and
mandatory access control, role hierarchies, separation of duties, threshold-constrained trust,
attribute-based delegation, and delegation controlled by constraints, depth, and width, see
[4, Section 5]. The semantics of the language is defined directly, using a few very condensed
deduction rules. SecPAL policies go beyond Datalog in two ways. They allow constraints,
and they allow facts obtained by nesting can say (a.k.a. can say∞) and can say0. Sec-
PAL policies are reduced to safe Constraint Datalog programs by converting nested can

sayd facts to relations of arity dependent on the nesting depth, which is finite in any given
policy and can only decrease in deductions. Nested can say0 facts are used for bounded
depth delegation, and the SecPAL deduction laws give rise to semantics that prevents any
circumventing of the delegation bound.

If an authorization policy is to be amenable to analysis, then certainly the question of
which permissions it leads to should be decidable, preferably in polynomial time. Binder,
Delegation Logic, and SecPAL all have polynomial time decision algorithms, reached through
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the reductions to Datalog and Constraint Datalog, and relaying on syntactic safety conditions
that are similar to those typically imposed in Datalog programs to ensure termination.

This paper takes its departure in SecPAL. We present a language that addresses a problem
of information leakage in Binder, Delegation Logic, and SecPAL, strengthens the delegation
rule, introduces an information order that contributes to strong succinct semantics, and
enriches the structure of authorization facts allowing the nesting of arbitrary constructor
functions, and in particular the nesting of quotations. All this is done while maintaining two
important properties of previous logic based trust management languages: human readability
and polynomial time decidability. The new and expressive language is called Distributed-
Knowledge Authorization Language, in short DKAL. An overview of the language is given
in the next section, with specific subsections dedicated specifically to each of the matters
mentioned above: preventing information leakage, delegation, quotations, the information
order, and termination and indeed polynomial decidability in the presence of constructor
functions. Here let us only comment that prevention of information leakage is achieved
using targeting of communication. Similar targeting was recently added to Binder in [2].
Section 2 is written at the level of an introduction to the language and to the problems it
addresses.

Later sections present the language in more detail (Sections 3 and 4), give examples, partly
to illustrate usage and partly to justify certain choices we made in designing the information
order rules (Section 5), present the proof of polynomial time decidability (Section 6), present
a translation of SecPAL into DKAL (Section 7), and conclude with a discussion including
related work (Section 8). DKAL rests on the firm foundation of Existential Fixed Point Logic,
which we recall in Appendix A. We tried to make this paper self-contained. In particular,
we do not presume that the reader is familiar with SecPAL, but familiarity with SecPAL is
beneficial in a few places where we discuss SecPAL.

Acknowledgements. We gratefully acknowledge collaboration with M. Paramasivam on ear-
lier stages of the project, conversations with Slava Kavsan, and comments of Moritz Becker,
Nikolaj Bjorner and Andreas Blass.

2. DKAL, a bird’s eye view

We begin with a bird’s eye view of DKAL using simple scenarios to illustrate its features.
Precise definitions will be given in later sections. The aspects we discuss are: existential
fixed point logic; distributed knowledge and targeted communication; delegation and trust;
protection against information leakage; bounded depth delegation and connection with Sec-
PAL; quotations and their use in allowing greater policy modularity; the information order;
termination; and computational complexity.

2.1. Existential fixed-point logic (EFPL). EFPL was introduced in [7] and has attrac-
tive model theory. It is obtained from first-order logic as follows: first restrict first-order
logic to its existential fragment and then extend the existential fragment by means of the
least fixed-point operator.
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The least fixed-point operator enables induction. For example, given the infinite binary
tree where unary functions left and right are free constructors, a logic program

T (left(x), right(x))

T (right(x), left(y))← T (x, y)

T (x, z)← (T (x, y) ∧ T (y, z))

computes a partial order T that is the lexicographical order at every level of the tree. The
structure at which a given program operates is the substrate structure or just a substrate,
and the relations computed by the program are superstrate relations. In the example, the
binary tree is the substrate, and T is a superstrate relation.

EFPL reduces to its Prolog-like fragment where the least-fixed operator is not iterated and
every new relation that is defined as a superstrate relation is given by a logic program over
the substrate structure. EFPL may be also reduced to a form of Datalog with constraints.
For example the program above can be written in Datalog with constraints as follows:

T (u,w)← u = left(x) ∧ w = right(x)

T (u,w)← u = right(x) ∧ w = left(y) ∧ T (x, y)

T (x, z)← T (x, y) ∧ T (y, z)

There are many different forms of Datalog with constraints, distinguished by the safety re-
strictions they place on programs to ensure termination. The form obtained from EFPL with
the safety conditions imposed by DKAL is new. We’ll say more on how DKAL guarantees
termination in Subsection 2.8 below.

2.2. A user centric example. Since SecPAL is naturally translated into DKAL, all the
varied scenarios of [3, Section 5] are expressible in DKAL. So we start here with an example
of a different kind, a user centric example. The example demonstrates the basics of DKAL,
in particular how trust and delegation are expressed.

Alice would like to download Article from Repository in course of her work for Fabricam.
Repository lets Fabricam employees download content with no constraints. Fabricam in turn
requires that its employees respect intellectual property. Figure 1 shows how Alice verified
her right to download Article.

Alice bought the right at an online store Chux (an allusion to Chuck’s). Chux told her
that she can download Article; this is represented by assertion A1 in Figure 1. In the formal
model we compute a superstrate relation knows, and the assertion A1 leads to the instance
K1 of that relation. The expression Alice canDownload Article denotes an infon, a piece
of information, and so does Chux said Alice canDownload Article. The relation knows

is of type Principal × Info. Note that from assertion A1 Alice learns only that Chux said

Alice canDownload Article, not that Alice canDownload Article.
Alice noticed that the copyright for Article belongs to Best Publishing House; hence

the assertion A2 where tdOn stands for is trusted on. The expression Best tdOn Alice

canDownload Article denotes yet another infon, and assertion A2 leads to instance K2 of
knows in the formal model.

The intended meaning of p tdOn x is given by two rules. One is C1 which states that a
principal a knows x if she knows that some principal p said x and that p is trusted on x. We
get to the other rule shortly.
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Chux: (Alice canDownload Article) to Alice(A1)

Alice: Best tdOn Alice canDownload Article(A2)

Best: (Chux tdOn p canDownload Article) to p(A3)

a knows x ← a knows p said x, a knows p tdOn x(C1)

a knows p tdOn (q tdOn x) ← a knows p tdOn x, a knows q exists
a knows p tdOn (q tdOn0 x) ← a knows p tdOn x, a knows q exists

(C2)

Alice knows Chux said Alice canDownload Article(K1)

Alice knows Best tdOn Alice canDownload Article(K2)

Alice knows Best said (Chux tdOn Alice canDownload Article)(K3)

Alice knows Chux exists(K4)

Alice knows Best tdOn (Chux tdOn Alice canDownload Article)(K5)

Alice knows Chux tdOn Alice canDownload Article(K6)

Alice knows Alice canDownload Article(K7)

Figure 1. User centric delegation example

Unfortunately Alice does not know whether Chux can be trusted on Alice canDownload

Article, and Best, who is trusted, did not say that Alice canDownload Article. So
Alice cannot yet conclude that she is allowed to download Article. Alice contacts Best who
authorized Chux to sell download rights to Article and who has in its policy the assertion
A3 (with a free, unconstrained variable p). As a result Alice learns K3.

The infon p tdOn x expresses not only trust in p on x, but also a permission for p to
delegate the trust. (There is a way to express non-delegatable trust, using tdOn0 instead
of tdOn. The distinction between tdOn and tdOn0 is inherited from SecPAL and will be
addressed later.) The right to delegate is captured by the double rule C2; only the first
line is relevant to the current example. If a knows that p tdOn x and that q exists then a
knows that p is also trusted on q tdOn x, and this allows p to delegate the trust to q. The
restriction that a knows (the existence) of q is a safety condition that prevents the knowledge
of a from exploding with irrelevant details. We’ll say a little more about the rule that leads
to knowledge of infons of the form q exists in Subsection 2.8; here it suffices to say that
the rule applies to K1 and results in K4.

Applying rules C1 and C2 to K1–K4, Alice obtains K5–K7. Having deduced K7, Alice
approaches Repository, and downloads Article.

2.3. Examples related to info leakage. A naive dramatization in Figure 2 illustrates a
potential information leakage (unless plugged by the implementation) in SecPAL. (A simi-
lar risk exists in other languages, including Binder [11], Delegation Logic [16], and the RT
framework [18].) The department of Special Operations of some intelligence agency desig-
nates John Doe to be a secret Agent; hence assertion S1. Bob, who is just a receptionist,
wants to find out who secret agents are. He does not dare to pose that query (and suspects
that the system would not allow him to); instead he asserts S2 and S3 where spot 97 is one
of the parking spots over which he has the authority, e.g. a visitor spot. It follows from S1
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SpecialOperations says John Doe isSecrAgent(S1)

Bob says SpecialOperations can say p isSecrAgent(S2)

Bob says p canParkInSpot 97 if p isSecrAgent(S3)

Figure 2. Secret agent information leakage

and S2 that Bob says John Doe isSecrAgent. By posing an “innocent” query about who
can park in spot 97 Bob discovers in particular that John Doe is a secret agent.

The problem can be addressed on the level of implementation, for example by attempting
to separate confidential and non-confidential information (which is easier said than done;
both may be necessary to derive certain permissions), but the right way to address the
problem is at the authorization-language level. DKAL solves the problem by means of
targeted communication and the distinction between knowing and saying. The analog of
the naive dramatization would not work in DKAL as assertion S1 would be targeted to an
audience that excludes Bob.

Let’s consider a slightly less naive example. Modify the scenario of §2.2 by replacing as-
sertion A1 with the assertions in Figure 3. Chux compiles payment statistics of customers
and rates them. Customers rated “perfect” get the download authorization immediately
upon authorizing a proper payment to Chux, even before the funds are received. The rat-
ing is managed by accounts.Chux. It is intended that customers know nothing about the
rating system or their ratings or other customers’ ratings. Chux makes assertion A4 with
three conditions. A conditions is an expression of type Info or a substrate constraint. In
this case the first two conditions are infon expressions, and the third is a constraint using
a substrate function price. Implicitly the assertion has also safety conditions, described
in Subsection 2.8 and defined precisely in Subsection 4.1, that restrict the ranges of vari-
ables; the safety constraints apply also to assertions A6 and A7. According to assertion A5,
accounts.Chux rated Alice “perfect”; note that the assertion is targeted only to Chux. Ac-
cording to assertions A6 and A7, Chux trusts accounts.Chux on payment ratings and trusts
the customers on payment authorization. The price of Article is $40. When Alice decides to
purchase Article, she makes the assertion A8. Assertions A4–A8 lead Chux to communicate
the infon Alice canDownload Article to Alice; as above Alice can proceed to verify her
right to download Article.

No infon of the form p hasPayRate R is communicated to Alice, and a probing attack such
as the one in Figure 2 does not work. The DKAL parallel of S2 here is assertion Alice:

accounts.Chux tdOn p hasPayRate Perfect. The assertion is harmless, since A5 makes
the infon accounts.Chux said Alice hasPayRate Perfect known only to Chux, not to
Alice. The confidentiality of pay ratings of other principals is similarly protected.

The targeting of communication is beneficial also with respect to liability. Suppose that
an agency A of state S1 issues David a document, addressed to S1 wine shops, that allows
them to sell wine to David. If David buys alcohol from a wine shop in state S2 and if this
violates the law of S2, agency A is not liable because it addressed the documents to wine
shops in S1, not in S2.

Audience restrictions can be communicated by means of SAML [23], see specifically [10,
§2.5.1.4]. (The issue is addressed in the SecPAL implementation as well.) While the audience
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Chux: (a canDownload s) to a ←(A4)

a authorized $k to Chux for s,

a hasPayRate Perfect, price(s)=k.

accounts.Chux: (Alice hasPayRate Perfect) to Chux(A5)

Chux: accounts.Chux tdOn a hasPayRate e(A6)

Chux: a tdOn0 a authorized $k to Chux for s(A7)

Alice: (Alice authorized $40 to Chux for Article) to Chux(A8)

Figure 3. Confidentiality example

restriction may be helpful with respect to liability, the SAML audience field does not solve
the problem on Figure 2. Indeed, if the fact John Doe isSecrAgent is modified with an
audience restriction then all that Bob has to do is to use the modified fact in S2.

In probing attacks of the kind illustrated in Figure 2, principals that are allowed to au-
thorize some permissions leverage the authority to learn information they are not meant to
know. One way to thwart such probing attacks is to disallow conditional assertions by “out-
siders” (like Bob), as in Cassandra [5, 6], but this is too restrictive. One may filter out some
conditional assertions on a case by case basis at the implementation level, but this ad-hoc
approach makes it hard to reason about security. Yet another way is to compartmentalize
facts to the extent possible and handle requests using primarily the relevant compartment
policy. But there are limits to compartmentalization (unless you really have a union of es-
sentially disjoint policies), principals still can probe facts in their compartments, and the
approach does not make reasoning about security easy.

By targeting communication and separating knowing from saying, DKAL solves the prob-
lem at the level of the authorization language, so that information does not have to be
compartmentalized a priori, and conditional assertions do not have to be filtered out. Of
course DKAL does not prevent information from leaking as a result of negligence. For ex-
ample, in the pay rate scenario, Chux may accidentally target Bertha’s pay rating to Alice.
But that is a very different story.

2.4. Use of functions. In Datalog, with or without constraints, the symbols of recursively
defined relations are applied only to (tuples of) variables and individual constants, and
the (Constraint) Datalog based authorization languages inherit the restriction on the use
of functions. In contrast, existential fixed-point logic allows free use of function symbols,
and EFPL based DKAL makes intensive use of functions, both user-specific and built-in.
Function symbols routinely appear in the heads of rules, and typically our functions are
free constructors. The flexible use of function comes for a price. The proof of program
termination, let alone complexity proofs, become much harder.

The built-in free-constructor functions include said and tdOn. Function said enables
(possibly nested) quotations in authorization policies, which leads to greater flexibility in
designing more modular policies. Suppose for example that Chux (that appeared in Figures 1
and 2) has several discount plans, and that employees of Fabricam participate in discount
plan 5X4302. To obtain the discount, they must present a signed certificate from Fabricam
stating that they are employees. Chux relies on a cryptographic server Crypto to verify that
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Chux: Crypto tdOn r said q is an employee of r(A9)

Chux: Fabricam tdOn q is an employee of Fabricam(A10)

Chux: q can take discount 5X4302 ← q is an employee of Fabricam(A11)

Chux: a tdOn augm(a authorized $k to Chux for s, c)(A12)

Chux: a authorized $k to Chux for s ←(A13)

augm(a authorized $k to Chux for s, c),

authentic(a, a authorized $k to Chux for s, c)

Alice: augm(Alice authorized $40 to Chux for Article, C) to Chux(A14)

Chux: Crypto tdOn0 r said q is an employee of r(A15)

Crypto:0 (Fabricam said Chris is an employee of Fabricam) to Chux(A16)

Crypto:0 (r said q is an employee of r) to Chux ←(A17)

Crypto2 said r said q is an employee of r

a knows x ← a knows p said0 x, a knows p tdOn0 x(C3)

Chux knows Crypto said0 Fabricam said Chris is an employee of Fabricam(K8)

Chux knows Fabricam said Chris is an employee of Fabricam(K9)

Figure 4. Use of functions, and restricted delegation

the signed statements are authentic. The system should be designed so that Crypto just
verifies authenticity. Crypto’s actions should not depend on Chux’s policy on discounts, so
that Chux’s policy could be changed without requiring a change in Crypto’s behavior.

Using quotations, Chux can make assertion A9 in Figure 4. Crypto acts as a “dumb”
server, merely decrypting the statements it receives, and passing them on to Chux. Policy,
for example assertions A10 and A11, is the prerogative of Chux. In this case, the end effect
(of authorizing discount to Fabricam employees) could be achieved without quotations. Chux
could trust Crypto on q is an employee of Fabricam, and Crypto in its own policy could
trust Fabricam on this. The issue here is not just achieving the end effect, but the flexibility
to concentrate the policy at one place.

DKAL’s vocabulary may be extended by user-introduced functions and relations. We
already saw function price in §2.3. Other typical user-introduced functions and relations
relate to time, various directory structures, basic arithmetical operations, etc. DKAL also
permits user-introduced functions that take attribute or infon values. To demonstrate this,
modify the confidentiality example above by replacing assertions A7 and A8 with asser-
tions A12–A14 in Figure 4. Chux does not simply accept infon a authorized $k to Chux

for s from customer a, but requires that the infon comes with a certificate, signed using a’s
private key. (Chux will need the certificate to obtain the funds from a bank.)

We assume here a given (that is substrate) relation authentic(a, x, c) meaning that c is
a certificate of infon x signed with the private key of a. Given an infon x and string c,
function augm(x, c) (an allusion to ”augment”) produces a new infon. When Alice wishes
to purchase Article, she makes assertion A14, where C is a certificate of the infon Alice

authorized $40 to Chux for Article, which Alice produced and signed using her private
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key. Then, due to assertions A12 and A13, Chux knows Alice authorized $40 to Chux

for Article, and then, as in §2.3, Alice receives an authorization to download Article.

2.5. Restricted delegation. One of the major advances of SecPAL [3] is the mechanism of
restricted delegation. We adapted that mechanism to DKAL. DKAL has two kinds of infons
expressing trust, p tdOn x, and p tdOn0 x. The trust given by the former is delegatable;
the trust given by the latter is not. To illustrate the use of non-delegatable trust, replace
assertion A9 in Figure 4 with assertion A15 in Figure 4. The new assertion expresses non-
delegatable trust in Crypto on r said q is an employee of r. Suppose that Crypto
is given a signed certificate from Fabricam attesting that Chris is a Fabricam employee.
After authenticating the certificate, Crypto produces assertion A16. The subscript 0 in A16
signifies restricted communication; more on this in the next paragraph. Assertion A16 leads
to knowledge K8, with the subscript 0 on the first said. K8 and assertion A15 give K9 by
means of rule C3.

The delegation rule C2 has delegatable trust assumed in its body and cannot be applied to
A16, so Crypto cannot directly delegate the trust to others. He may attempt to circumvent
the prohibition, for example by placing assertion A17. It seems that by saying the appropriate
thing, Crypto2 enables A16. But the attempt fails because assertion A17 is restricted. The
precise meaning of restricted assertion involves relation knows0, read knows internally. p
knows x internally if this follows from assertions placed by p himself, with no dependence
on assertions placed by other principals. Restricted assertions can be conditioned only upon
internal knowledge (see Subsection 4.1) while A17 is based on communication from Crypto2
to Crypto.

We sometimes write knows∞, said∞, and tdOn∞ for knows, said, and tdOn. The dis-
tinction between knows∞ and said∞ on one side and knows0 and said0 on the other side is
similar to SecPAL distinction between AC,∞ |= A says x and AC, 0 |= A says x, and is used
here to the same effect, namely preventing principals from circumventing non-delegatability.
Delegations of arbitrary bounded depth can be obtained by nesting tdOn0 in the head of the
assertion delegating the right. SecPAL examples on bounded depth delegation, see e.g. [4,
§5] become DKAL examples via the embedding of SecPAL into DKAL.

2.6. SecPAL-to-DKAL translation. In Section 7 we give a natural translation of SecPAL
into a “crippled” version of DKAL, called Open DKAL, where in particular the targeting
of communication is removed. Under this translation, every query with a positive answer
in SecPAL gets a positive answer in Open DKAL. In addition, due to DKAL’s powerful
delegation rules, some additional SecPAL queries get positive answers in Open DKAL. Thus
more justifiable requests expressible in SecPAL get positive answers in DKAL. If one were
to remove DKAL’s delegation rules, the translation from SecPAL to Open DKAL would
become exact.

2.7. Information order. Rules C1–C3 have a common aspect: a principal a knows some
infon x because a knows some other infons y1, . . . , yk. The information order x ensues

y (symbolically x ≤ y) on infons extracts the common aspect. (We resurrect the obsolete
transitive meaning of ensue [24].) Ideally, the meaning of x ≤ y would be that all information
of x is present in y but this leads to undecidability. The actual order is a constructive
approximation of the ideal one. The mediating rules KMon and KSum on Figure 5 express
the common aspect of C1–C3 and their counterparts for knows0. Rule KMon states that
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a knowsd x ← a knowsd y, x ≤ y(KMon)

a knowsd x1 + x2 ← a knowsd x1, a knowsd x2(KSum)

x ≤ p saidd x + p tdOnd x(TrustApp)

p tdOn (q tdOnd x) ≤ p tdOn x + q exists(Del)

p tdOn0 x ≤ p tdOn x(Trust0∞)

p saidd x ≤ p saidd y ← x ≤ y(SaidMon)

r exists ≤ x ← r regcomp x(Exists)

Figure 5. Select House Rules

knowledge of x is a consequence of knowledge of y if x ensues y. Rule KSum introduces infon
addition operation of type Info×Info → Info, and the rule states that knowledge of x1 + x2

is a consequence of knowledge of both x1 and x2. Each of KMon and KSum is a double rule,
with d ∈ {0,∞}. We often use this double rule notation.

The content of rules C1 and C3 is now expressed succinctly by ensue double rule TrustApp.
Similarly the content of rule C2 is expressed by ensue double rule Del. Rules KMon–Del
are house rules of DKAL. Rules C1–C3 are not house rules; they are consequences of house
rules.

The inclusion of the information order allows creating a rich structure of information with
easily understood rules. For example rule Trust0∞ expresses the fact that non-delegatable
trust is a consequence of delegatable trust. The inclusion of the information order also
allows for easily expressing strong quotation semantics. The deceptively simple rule SaidMon
incorporates consequences of speeches into the calculation of knowledge, so that, for example
p said q tdOn0 x ensues p said q tdOn x. DKAL thus has very strong semantics for
quotations, computing not only principals’ speeches, but also their implied consequences.
The rule could not be expressed as a single rule without the information order .

2.8. Termination. The flexible use of functions makes DKAL closer to Prolog than to Dat-
alog. It is of course only too easy to write a non-terminating program in Prolog. But DKAL
is carefully calibrated to ensure the termination of an algorithm that computes answers to
queries.

We split the universe of the state into regular and synthetic elements. Regular ele-
ments may be principals, time moments, time intervals, files, directories, domain names, etc.
Synthetic elements are generated from regular ones by means of free-constructor functions
whether built in, such as saidd and tdOnd, or user-defined. In policy assertions, variables
range over regular elements only.

The space over which variables of any particular assertion range is limited further using
infons of the form p exists. An infon p exists gives only the information that there is a
regular element p; it does not give any information about p other than this. This intuition
is expressed precisely by house rule Exists in Figure 5. The intended meaning of r regcomp
x is that r appears in x in an essential way; the precise definition is given in 3.1.2.

A DKAL assertion

A:d x ← x1, . . . , xn, con,



12 YURI GUREVICH AND ITAY NEEMAN

where x, x1, . . . , xn are infon expressions and con is a substrate constraint, leads to the EFPL
rule

A knowsd x ← A knowsd x1, · · · , A knowsd xn,

A knowsd t1 exists, · · · , A knowsd tk exists,

con

where the list t1, . . . , tk consists of all the variable of the assertion and all the non-ground
regular components of the head x. We say that t1, . . . , tk are A-bounded, that is bounded to
vary only over objects whose existence is known to A. The inclusion of the infons ti exists
in the body of the rule is a semantic safety condition that prevents the knowledge of A from
exploding. It is similar to the syntactic safety condition in SecPAL, in that it ensures that
all variables in con are instantiated at the time of evaluation and that regular elements of
the head occur in the body. DKAL assertions of the form

A:d x to p ← x1, . . . , xn, con

are subject to a similar safety condition, but the variable p is not required to be A-bounded.
The semantic safety condition allows us to show that only the regular elements that are

explicitly mentioned in the policy are relevant and need to be considered as possible values
for variables when evaluating the policy. Since the policy is finite, the number of relevant
regular elements is finite.

Things are much more involved with synthetic elements. While assertions have only regular
variables, many house rules of DKAL have variables ranging over synthetic elements, in
particular over infons. We prove that the number of synthetic elements needed to evaluate
a given query under a given policy is finite. The proof is elaborate and uses the nature of
the DKAL house rules.

The proofs of finiteness mentioned to above are presented in Section 6, and are used there
to show that every DKAL query can be answered by an algorithm in finite time.

2.9. Worst-case complexity. A basic query has the form p knows t(v1, . . . , vk) or p
knows0 t(v1, . . . , vk) where p is a ground (that is with no variables) expression of type Prin-
cipal, t is an expression of type Info, and the variables vi range over regular elements. In
Section 6, we construct an algorithm that works as follows over any fixed substrate: given
an authorization policy A and a basic query Q, the algorithm computes the complete answer
to Q under A. Here the complete answer is the set of tuples (b1, . . . , bk) of regular elements
known to p and of appropriate types such that the principal p knows the infon t(b1, . . . , bk)
under the authorization policy A. The finiteness results mentioned in the previous subsec-
tion are crucial for the termination of the algorithm. They are not by themselves sufficient
for proving the time complexity bounds mentioned below; for this it is important also to
have a polynomial bound on the number of synthetic elements relevant to the computation.

The runtime of our algorithm is bounded by a polynomial in ` δ+1+w where

• ` is the length of the input, that is the length of A plus the length of Q,
• δ is the maximal depth to which said and said0 (possibly mixed) are nested in the

policy and query expression, and
• w is the maximal number of variables (the “width”) in any assertion or in the query.
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In the all-important case when δ and w are bounded, the runtime is polynomial in `. The
complexity proof is rather involved but one does not have to master the proof in order to
use the algorithm.

In §4.4, we introduce more general queries: first-order queries, in particular allowing
negations, about the knowledge of a single principal. We call them single-principal-centric
queries. The basic-query algorithm is generalized to work with arbitrary single-principal-
centric queries. The time complexity results remains valid.

The availability of negations in queries can be used for conflict resolution at the decision
point. For example, in a deny-override system, with read guard RG, read access to File 13
would be given to the users in the answer to the query: RG knows p hasReadAccessTo File

13 ∧ ¬
(
RG knows p deniedAccessTo File 13

)
.

3. State of Knowledge

We use a little bit of mathematical logic. All logic that we need in this paper is summarized
in the appendix.

A state of knowledge is a multi-sort first-order structure. It includes five relations

knows, knows0, saysto, saysto0, ensues

that are given to us implicitly, by means of a logic program composed of house rules and
assertions. The assertions form an authorization policy. The logic program operates on the
rest of the state of knowledge that we call the substrate. Formally, the substrate is the reduct
of the state of knowledge obtained by forgetting the five relations. The five relations are
superstrate relations.

We presume that the substrate is given to us in the sense that there is a feasible (and
certainly polynomial time) algorithm Eval for evaluating basic functions and relations of the
substrate. (We presume furthermore that substrate elements are given as strings. Eval takes
inputs of the form (F, b1, . . . , bj) where F is the name of a basic function or relation of the
substrate of arity j and where each ai is a substrate element. The arity j can be zero.)
In the rest of this section, we describe the substrate and then comment on the superstrate
relations.

3.1. Substrate. The vocabulary of the substrate contains only a finite number of sort sym-
bols, relation symbols, and function symbols of positive arity. However, it includes the
vocabulary of any authorization policy over the substrate and thus contains an infinite num-
ber of constants. For future reference, we define substrate constraints. A substrate constraint
is a quantifier-free formula in the substrate vocabulary.

The substrate may depend on application. Different applications may differ in what basic
functions and relations they need. For example, some applications may require a Time sort.
But there is an obligatory part of substrate, and we describe it here.

3.1.1. Regular and synthetic layers of the substrate. The substrate elements split
into two layers: regular and synthetic. Every substrate sort is a part of one of the layers;
accordingly we have regular sorts and synthetic sorts. There are exactly three synthetic sorts:
Attribute, Info, and Speech. The regular sorts include at least the sort Principal.

Element of regular sorts regular elements, or elements of Regular type, and elements of
synthetic sorts are synthetic elements. Every substrate function is either a synthetic function,
meaning that it takes synthetic values, or a regular function, meaning that it takes regular
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values. All basic substrate relations are regular relations. Variables of regular sorts are regular
variables, and variables of synthetic sorts are synthetic variables. Compound expressions
f(t1, . . . , tj), where j may be zero, are regular expressions if f is regular, and are synthetic
expressions if f is synthetic.

Proviso 1. Every synthetic function is a free constructor and every synthetic element is
constructed, in a unique way, from regular elements by means of synthetic functions. �

The proviso allows us to assign to each substrate element b a unique ordered finite tree,
the semantic tree of b, satisfying the following conditions:

• If b is regular than semtree(b) consists of a single node that is b itself.
• Suppose that b is synthetic. Then b = F (b1, . . . , bn) for a some synthetic function
F and some elements b1, . . . , bn where F and the tuple (b1, . . . , bn) are unique. The
element b is the root of semtree(b). Under the root there are n subtrees in this order:
semtree(b1), . . . , semtree(bn).

3.1.2. Regular components. The substrate contains a binary relation a regcomp b that
holds if and only if element a is regular, element b is synthetic, and a is a leaf of semtree(b).
For example, consider an infon f = (manager(Bob) can sing). The manager of Bob is a
regular component of f (but Bob is not). The relationship a regcomp b is semantic and
holds or fails independently of the syntactic presentation of a and b. If the manager of Bob
happens to be the husband of Alice then the husband of Alice is a regular component of f .

We will need a syntactic counterpart of the regular component relation. For each expres-
sion t define a syntactic tree of t as follows:

• If expression t is regular, then syntree(t) consists of a single node that is t itself.
• For a synthetic expression t = F (t1, . . . , tn), the expression t is the root of syntree(t).

Under the root there are n subtrees in this order: syntree(t1), . . . , syntree(tn).

A regular subexpression s of t is a regular component of t if s is a leaf of syntree(t). For
example, consider an infon expression t = (manager(v) can sing). Then the subexpression
manager(v) is a regular component of t (but v is not).

3.1.3. House constructors. Our framework requires the presence of the following synthetic
functions.

• Functions said and said0 of type Info → Speech.
• Functions tdOn and tdOn0 of type Info→ Attribute.
• A function I of type (Principal× Speech) ∪ (Regular× Attribute)→ Info.
• A function + of type Info× Info→ Info.
• Functions canActAs and canSpeakAs of type Principal → Attribute.
• A constant exists of type Attribute.

Convention 3.1. Function symbols said and tdOn can be written as said∞ and tdOn∞
respectively. Thus saidd denotes said when d = ∞ and denotes said0 when d = 0, and
similarly for tdOnd. In the case of functions saidd, tdOnd, canActAs and canSpeakAs,
we write the function name of the house constructor followed by the argument, with no
parentheses. For example, canActAs Bob is the attribute obtained by applying the function
canActAs to the constant Bob. In the case of the function I we generally omit the function
name altogether writing just Bob is a user rather than I(Bob, is a user).
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Proviso 2. Every additional (to the house constructors) synthetic function or synthetic
constant takes Attribute or Info values. In other words, the only synthetic functions which
produce speeches are said and said0.

3.1.4. Discussion on house constructors. We give a few remarks on the intended mean-
ing of the house constructors. Formally, the meaning will be given by house rules below.

Spoken and attribute infons. Function infon has two subfunctions, one of the type
Principal × Speech → Info, and the other of the type Regular × Attribute → Info. The
first generates spoken infons, and the second attribute infons.

Internal knowledge and undelegatable authorization. The difference between p said foo

and p said0 foo is that the latter reflects the internal (initial, prior) knowledge of the
principal p. The difference between p tdOn foo and p tdOn0 foo is that the first allows p
to delegate the trust and the second does not.

Can internal knowledge be acquired? One may argue that an infon of the form
p said0 q said foo makes no sense as it reflects learned rather than internal knowledge
of the principal p. But we do not exclude such infons. The q-to-p communication might
have happened outside the official authorization policy so that the resulting knowledge of p
is internal as far as the system is concerned. See Example 5.5 in this connection.

Sum of infons. It may seem odd that + is a free constructor. Why distinguish between
f + g and g+ f for example? The reason is to simplify the exposition. The operation + will
be commutative, associative and idempotent but only modulo an appropriate equivalence
relation. Formally infons f + g and g + f are different.

Example 3.1. Here are examples of attributes, speeches and infons.

• canActAs Director is an attribute where Director is a principal. Syntactically it
is an attribute expression where Director is a principal constant.
• Alice canActAs Director is an infon obtained by applying the function I to the

principal Alice and the attribute canActAs Director. Syntactically it is an at-
tribute infon expression with principal constants Alice and Director.
• canRead file is an attribute expression where canRead is a function (more pedantically

a function name) of type File → Attribute and file is a variable of sort File. Here
File is a regular sort.
• is a trusted merchant is an attribute. Syntactically it is an attribute constant.
• p is a trusted merchant is an infon expression obtained by applying the function
I to a principal variable p and the attribute constant is a trusted merchant.
• said0 p is a trusted merchant is a speech expression obtained by applying the

function said0 to the infon expression p is a trusted merchant.
• Alice said0 Bob is a trusted merchant is a spoken infon obtained by apply-

ing the function I to the principal Alice and the speech said0 Bob is a trusted

merchant. Syntactically it is a spoken-infon expression.
• STS said Alice said0 Bob is a trusted merchant is a spoken infon obtained by

applying the function I to the principal STS and the speech said Alice said0 Bob

is a trusted merchant. Syntactically it is a spoken-infon expression.
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3.2. Superstrate relations. In our approach, infons are state elements rather than propo-
sitions that can be true or false. One of the superstrate relations is knows of type
Principal × Info. Intuitively it consists of pairs (p, x) so that infon x is known to princi-
pal p. We write p knows x rather than knows(p, x).

Principals may communicate parts of their knowledge to other principals. (We will
shortly introduce format for rules which the principals may write to manage their knowledge
and their communications.) For this we have another superstrate relation saysto of type
Principal× Info×Principal. Formally saysto consists of triples (p, x, q) such that principal
p says infon x to principal q. We write p says x to q rather than saysto(p, x, q).

We wish to keep track of whether a principal’s knowledge of an infon does or does
not rely on communications from other principals. For this we have a third superstrate
relation knows0 of type Principal× Info. Formally it consists of pairs (p, x) such that infon
x is known to principal p internally, independently of assertions made by other principals.
We write p knows0 x rather than knows0(p, x).

A principal may inform other principals not only that he knows an infon, but that he
knows it on the basis of his internal knowledge. For this purpose we have a fourth super-
strate relation saysto0 of type Principal × Info × Principal. Formally it consists of triples
(p, x, q) such that principal p says to principal q that he knows infon x internally. We will
put restrictions below that prevent p from basing such assertions on anything other than
(the given substrate and) his internal knowledge. We write p says0 x to q rather than
saysto0(p, x, q).

Formulas

p knows x, p says x to q

can be written in the form

p knows∞ x, p says∞ x to q,

respectively. Thus p knowsd x denotes p knows x when d = ∞ and denotes p knows0 x
when d = 0, and similarly for p saysd x to q.

Our final superstrate relation ensues is of type Info× Info. Intuitively it consists of pairs
(f, g) such that f is less informative than g or precisely as informative as g, and we will say
what this means later on. We write x ≤ y instead of ensues(x, y).

The superstrate relations satisfy various policy rules of the form:

P (t1, . . . , tr)← ϕ

where P is one of the superstrate relations and ϕ is an existential first-order formula in the
expanded vocabulary where negations are applied only to atomic formulas involving relations
of the substrate. Think of such a rule as a constraint on the superstrate relations over the
substrate. For any legitimate values of the free variables of the rule, if the body ϕ of the rule
is true then the head P (t1, . . . , tr) should be true as well.

For example, according to rule

q knows p said infon ← p says infon to q

the following holds for any p, q and any infon: if the triple (p, infon, q) satisfies relation
saysto then the pair (p, q said infon) satisfies knows.

The rules for our superstrate relations are taken up in the next section. It turns out that,
for every superstrate relation P , there is a unique set of tuples of elements of the substrate
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such that the constraints imposed by the rules force these tuples to belong to P . That set
is the intended value of P . The intended values can be computed. We explain the details in
the appendix.

Remark 3.2. The restriction that the body is a formula of the existential first-order logic can
be relaxed but this issue will be taken up elsewhere.

Remark 3.3. One can develop DKAL without the relations knows and knows0, adopting
the convention that knowing an infon is represented by saying it to oneself. In practice this
means replacing p knowsd x by p saysd x to p throughout. We choose to present DKAL with
the relations knowsd so as to keep the exposition closest to the conceptual understanding of
the language.

4. House Rules and Authorization Policy

Recall logic programs of the logic appendix A. A logic program is a collection of logic
rules. Here we are interested in logic programs of a very particular kind. The rules split into
two categories: assertions and house rules. Assertions are placed by individual principals,
and the set of assertions is the current authorization policy.

4.1. Assertions. An assertion placed by a principal A has one of two forms. The first form
is

A knowsd x ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd t1 exists ∧ · · · ∧ A knowsd tk exists

(As1)

in short

A :d x ← x1, . . . , xn, con.

The second form is

A saysd x to p ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd t1 exists ∧ · · · ∧ A knowsd tk exists

(As2)

in short

A :d x to p ← x1, . . . , xn, con.

Here

• A, the owner of the assertion, is a ground principal expression, d is zero or infinity
(and the infinity subscript is usually skipped);
• x, x1, . . . , xn are infon expressions, and con is a substrate constraint, that is a

quantifier-free substrate formula;
• all variables are regular, and p, the target variable, is a variable of sort Principal;
• in (As1), the list t1, . . . , tk consists of (i) the variables in the assertion and (ii) the

non-ground regular components of x. (The sets (i) and (ii) may intersect but the list
has no repetitions.)
• in (As2), the list t1, . . . , tk is as above except that the target variable p may not be on

the list (even though it occurs in the assertion and even if it is a regular component
of x).
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The part of an assertion to the left of ← is the head of an assertion, and the part to the
right of ← is the body (or the premise). The first form (As1) is a knowledge assertion, and
the second form (As2) is a speech assertion.

Caution. It is convenient to write assertion in the short form. We do that even if n = 0
and there is no substrate constraint (and so we omit ← as well). In such a case the short
form shows no body but the full form body may have some conjuncts A knowsd ti exists.

This completes the description of the two assertion forms. We end the subsection with
several comments on these forms. Let R (an allusion to “rule”) be an assertion of the form
(As1) or (As2).

4.1.1. Assertion placement. R does not have to be literally placed by principal A. For
example, if A is an employee of a large organization, the assertion may be placed by his
manager or by the HR department. When we say that R is placed by A, or that R is owned
by A, we mean only that R starts with A. For the purpose of exposition, it is convenient to
pretend that the assertions that start with a principal A are placed by A.

4.1.2. A-bound variables and regular components. For any variable v of R different
from p, the body of R contains the conjunct A knowsd v exists. In that sense, the variables
of R are A-bound.

Similarly, if t is a non-ground regular component of x, and t differs from p, then the body
of R contains the conjunct A knows t exists. In that sense t is A-bound.

In the (As2) case, the body of R is not required to have a conjunct A knows p exists.
A may issue a proclamation to principals whose existence is not known to A. For example,
an assertion

A :d x to all ← x1, . . . , xn, con

where all is a “fresh” principal variable that does not appear in x, x1, . . . , xk, con addresses
all principals. But the set of addressees may be bound in one way or another. For example,
the substrate constraint may have a conjunct p = s where s is a expression.

4.1.3. Regular elements that A knows of. We keep the number of regular elements
that a principal knows of (that is he knows that they exist) finite. That goal is behind
our requirements that the variables of R and the non-ground regular components of x be
A-bound. The requirements is then used to restrict the search space for true instances of the
body of R: only regular elements that A knows of need to be tried as values for the variables
of R.

Both requirements are necessary for decidability. Indeed, consider a substrate where the
regular layer includes arithmetic: natural numbers, constant zero, addition, multiplication
and the successor function S. By [21], there is no algorithm that, given an integer polynomial
G(u1, u2, u3, u4), determines whether G takes value 0. Let foo be a ground infon.

If we omit the requirement that the variables be A-bound in assertions, then any polyno-
mial G(u1, u2, u3, u4) gives rise to a legal assertion

A knows foo ← G(u1, . . . , u4) = zero.

Let AG be the authorization policy that consists of this one assertion. The decision problem
whether A knows foo under AG is undecidable.
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If we require that the variables be A-bound but omit the requirement that the non-ground
regular components of x be A-bound then assertions

A knows zero exists

A knows S(u) exists ← A knowsd u exists,

A knows foo ← G(u1, . . . , u4) = zero ∧
A knows u1 exists ∧ · · · ∧ A knows u4 exists

are legal. Let AG be the authorization policy composed of these three assertions. Under
AG, A knows of all natural numbers, and the decision problem whether A knows foo is
undecidable. The trouble arises because of the second assertion where the role of x is played
by the infon expression (S(u) exists); the non-ground regular component S(u) of the infon
expression is not A-bound. In both counter-examples knows could be replaced with knows0.

4.1.4. Impossible liberalizations. One may be tempted to liberalize (As2) by replacing
A saysd x to p with A saysd x to t(p) where t(p) is a expression whose only variable is
p (without requiring p to be A-bound). However it may be hard to decide which principles
have the form t(p), and the liberalization leads to undecidability.

Indeed, consider again a substrate where the regular layer includes arithmetic, and let
foo be a ground infon. Order quadruples of natural numbers first by the maximum and
then lexicographically. To simplify the exposition, we require this time that arithmetic
contain unary functions F1(n), F2(n), F3(n), F4(n) such that 〈F1(n), F2(n), F3(n), F4(n)〉 is
the nth quadruple. Suppose that every natural number represents a principal. Under the
liberalization in question, the assertion

A : foo to G((F1(p), F2(p), F3(p), F4(p))

is legal. Let AG be the authorization policy that consists of this one assertion. By the
first Say2know house rule (see the next subsection), principal zero knows that A said foo

if and only if G((F1(p), F2(p), F3(p), F4(p)) = 0 for some p which happens if and only if
G(u1, u2, u3, u4) takes value 0. Thus the decision problem whether zero knows (A said foo)
under AG is undecidable.

4.2. House rules. House rules reflect the inherent meaning of the house constructors. We
list our house rules together with short comments.

4.2.1. K0∞ house rule:

p knows x← p knows0 x.

Internal knowledge is knowledge.

4.2.2. Say2know house double rule:

p knows q saidd x← q saysd x to p.

Principal p knows whatever is said to him; he also knows whether the speech was based on
the internal knowledge of the speaker. The two Say2know rules, corresponding to the two
values of d, form a double rule. Note that p learns only the spoken infon q saidd x, not the
infon x itself. Learning x itself depends on whether p has placed trust in q on x, see rule
TrustApplication below.
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4.2.3. KSum house double rule:

p knowsd x+ y ← (p knowsd x) ∧ (p knowsd y).

The converse will follow form the KMon and ESum policy rules.

4.2.4. KMon house double rule:

p knowsd x← x ≤ y ∧ (p knowsd y).

Knowledge is monotone with respect to the ensue relation.

The remaining house rules govern the ensue relation for which we use symbol ≤. The
intuition behind x ≤ y is that x is less informative than y or precisely as informative as y.

4.2.5. EOrder house rules:

x ≤ x,

x ≤ z ← (x ≤ y) ∧ (y ≤ z).

Thus the ensue relation is a preorder relation on infons. These rules will be used so often
that, in many cases, they will be used implicitly.

Let x ∼ y abbreviate (x ≤ y) ∧ (y ≤ x). If x ∼ y, we say that infons x, y are equivalent.

4.2.6. ESum house rules:

x ≤ x+ y,

y ≤ x+ y,

x+ y ≤ z ← (x ≤ z) ∧ ( y ≤ z).

Thus x+ y is the least upper bound for x and y in the preorder ≤. It follows that the sum is
commutative, associative and idempotent with respect to the equivalence relation on infons.

Corollary 4.1. For any infons x, y, z in the state of knowledge, we have

x+ y ∼ y + x

(x+ y) + z ∼ x+ (y + z)

x+ x ∼ x.

4.2.7. Exists house rule:

q exists ≤ x ← q regcomp x.

Here (q regcomp x) is a substrate constraint. To understand the rule, consider it from the
point of view of a principal p, combining it with the house rule KMon. If p knows some infon
x with regular component q, then p knows that q exists.

4.2.8. Said0∞ house rule:
p said x ≤ p said0 x.

Saying based on internal knowledge is saying. (See also Lemma 4.5.1 in this connection.)

4.2.9. SaidMon house double rule:

p saidd x ≤ p saidd y ← x ≤ y.

The function said is monotone with respect to the ensue relation.
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4.2.10. SaidSum house double rule:

p saidd x+ y ≤ (p saidd x) + (p saidd y).

The converse follows from rules SaidMon and ESum. Thus said and said0 distribute over
sums.

Corollary 4.2. p saidd x+ y ∼ (p saidd x) + (p saidd y).

4.2.11. SelfQuote house double rule:

p saidd x ≤ p saidd p saidd x.

4.2.12. Trusted0∞ house rule:

p tdOn0 x ≤ p tdOn x.

Trust without authority to delegate follows from trust with authority to delegate.

4.2.13. TrustApplication house double rule:

x ≤ (p tdOnd x) + (p saidd x).

A principal p trusted on x exercises this trust by saying x. Note that the subscript of said
should match that of tdOn. For, consider the stronger rule x ≤ (B tdOn0 x) + (p said x)
and suppose A knows B tdOn0 x so that B can cause A to know x by saying x. But
B can bypass the delegation restriction and delegate to C the ability to cause A to know
x by placing an assertion B : x to A ← B knows C said x. If C places an assertion
C : x to B, we have B says x to A by B’s assertion, hence we have A knows B said x
by Say2know, and therefore we have A knows x by TrustApplication. A similar issue arises
in SecPAL, and our subscript matching requirement is derived from the solution there.

4.2.14. Del house double rule:

p tdOn (q tdOnd x) ≤ (p tdOn x) + (q exists).

This is the delegation double rule. Trust with no subscript (or subscript∞) can be delegated
to others. The rule is used in conjunction with KMon: if A knows p tdOn x, and p says (q
tdOnd x) to A, then it follows that A knows q tdOnd x; the trust that A placed in p has been
delegated to q.

4.2.15. Del− house double rule:

p tdOnd x ≤ p tdOnd p tdOnd x.

4.2.16. Role house rules:

p attribute ≤ (q attribute) + (p canActAs q),

q speech ≤ (p speech) + (p canSpeakAs q).

Here attribute and speech are variables of types Attribute and Speech respectively. The
functions canActAs and canSpeakAs allow assigning roles. Notice that these house rules
transfer attributes and speeches in opposite directions. For example, if Bob can act as
director and if directors can hire then Bob can hire. If Bob can speak as director and Bob
says “Cathy is hired” then the director says “Cathy is hired.”
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4.3. Some consequences and discussion. Let X be a substrate and A an authorization
policy. Further, let Π be the program that consists of the house rules and the assertions in
A. The state Π(X) is our state of knowledge.

4.3.1. Subrecursions.

Proposition 4.3. • The interpretation of ensues in the state of knowledge depends
only on the substrate and does not depend on the authorization policy.
• For any principal p, the set of infons f such that

p knows0 f holds in the state of knowledge

and the set of elements b such that

p knows0 b exists holds in the state of knowledge

depend only on the substrate and the assertions of the form (As1) placed by p himself.
• For any principal p, the set of pairs (q, f) such that p says0 f to q holds in the

state of knowledge depends only on the substrate and the assertions placed by p.

Proof. Just examine the rules and assertions that are used to compute ensues, knows0 and
saysto0. �

4.3.2. Some simple consequences of house rules.

Lemma 4.4. The following formulas are universally true in the state of knowledge. The
subscript d could be 0 or ∞.

(1) (p knows x) ∧ (q regcomp x)→ p knows q exists.
(2) (p knows q tdOnd x) ∧ (p knows q saidd x)→ p knows x.
(3) q2 tdOnd x ≤ (q1 tdOn x) + (q1 said q2 tdOnd x),

(p knows q1 tdOn x) ∧ (p knows q1 said q2 tdOnd x)→ p knows q2 tdOnd x.
(4) p canActAs r ≤ (p canActAs q) + (q canActAs r).

Proof. 1. By the Exists house rule, we have q exists ≤ x. Now apply the appropriate
KMon house rule.

2. Suppose that p knows infons q tdOnd x and q saidd x. By the appropriate KSum house
rule, p knows the infon f = (q tdOnd x) + (q saidd x). By the TrustApplication house
rule, x ≤ f . By the KMon house rule, p knows x.

3. It suffices to prove only the first formula because the second formula follows from the first
by the appropriate KMon house rule. Let f = (q1 tdOn x) + (q1 said q2 tdOnd x). By
1 and the appropriate Del house rule, we have q1 tdOn q2 tdOnd x ≤ f . Now apply the
appropriate TrustApplication house rule.

4. Apply the first Role house rule with attribute = canActAs r. �

4.3.3. Redundant rules. Consider extending the set of house rules with an additional rule
R. The rule R is redundant if the addition of R does not change the interpretation of knows
in any state. The reason for that definition is that our queries are all about knowledge.

Proposition 4.5. The following rules, where d ∈ {0,∞}, are redundant.

(1) p says x to q ← p says0 x to q.
(2) p saysd x+ y to q ← (p saysd x to q) ∧ (p saysd y to q).
(3) p saysd x to q ← x ≤ y ∧ (p saysd y to q).
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Proof. We start with an obvious claim: For each d, there are no assertions with saystod in
the premise, and there is only one house rule where relation saystod occurs on the right,
namely the appropriate instance of the Say2know double rule.

1. By the claim above, with d =∞, there is only one way that p says z to q can be used:
to derive an infon q knows p said z. So it suffices to prove an implication

p says0 z to q → q knows p said z.

Suppose p says0 x to q. By Say2know, q knows p said0 x. By KMon and Said0∞,
q knows p said x.

2. By the claim above, it suffices to prove an implication

(p saysd x to q) ∧ (p saysd y to q)→ q knows p saidd x+ y.

Suppose (p saysd x to q) and (p saysd y to q). By Say2know, q knows p saidd x and
q knows p saidd y. By KSum, q knows

(
(p saidd x) + (p saidd y)

)
. By KMon and

SaidSum, q knows p saidd x+ y.

3. By the claim above, it suffices to prove an implication

x ≤ y ∧ (p saysd y to q)→ q knows p saidd x.

Suppose x ≤ y ∧ (p saysd y to q). By Says2know, q knows p saidd y. By KMon and
SaidMon, q knows p saidd x. �

4.3.4. Discussion about extending the set of house rules. One may want to require
that there is a least informative infon:

Vacuous ≤ x.

Any principal that knows anything would know the Vacuous infon.
By Lemma 4.4.4, the canActAs relation happens to be transitive. We also have

r says foo ≤ (p says foo) + (p canSpeakAs q) + (q canSpeakAs r)

but the transitivity of canSpeakAs itself is not derivable from our house rules; also the
reflexivity of either relation (canActAs or canSpeakAs) is not derivable. One may want to
impose the transitivity of canSpeakAs and the reflexivity of canActAs and canSpeakAs. The
utility of that is debatable.

One may reasonably argue in favor of adding a Cartesian rule p knows p exists. But
the effect of the Cartesian rule is achieved by a single assertion

A: (p exists) to p

where A could be e.g. the system itself. By Say2know, it follows that p knows p exists

for every principal p.
We considered rules

(1) p tdOnd x ≤ p tdOnd x+ y,
(2) p tdOnd x+ y ≤ (p tdOnd x) + (p tdOnd y)

as candidates for house rules but did not endorse them. Rule 1 asserts that tdOnd is mono-
tone. But this is not necessarily so. For example a low-level administrator may be trusted
on a package of rights to new hires but may not be allowed to pick and choose which rights
to give. Rule 2 looks more plausible but we have a counterexample for it as well; see Exam-
ple 5.6.
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4.4. Queries and computability. Fix a substrate X, and let Υ be the vocabulary of X
extended with the superstrate relation names. A will denote an authorization policy over
X. For each A, let ΠA be the program that consists of the house rules and the assertions in
A.

First we define basic queries in the vocabulary Υ. Then we formulate two theorems; one
asserts the existence of an algorithm answering basic queries, and the other bounds the time
complexity of the answering algorithm; the answering algorithm itself will be presented in
Section 6 where the two theorems are also proved. Then we generalize the notion of basic
queries and prove that the two theorems remain valid.

4.4.1. Basic queries. A basic query is a formula p knowsd t(v1, . . . , vk) where:

• p is a ground principal expression in the substrate vocabulary,
• v1, . . . , vk are regular variables,
• t is an infon expression in the vocabulary Υ, with all its variables among v1, . . . , vk,

and
• d is 0 or ∞.

Basic queries are evaluated over the state of knowledge ΠA(X) given by the fixed
substrate X with respect to an authorization policy A. The answer to a basic query
Q = (p knowsd t(v1, . . . , vk)) under authorization policy A is denoted ansA(Q). It is the set
of tuples 〈b1, . . . , bk〉 of substrate elements such that the type of bi is that of vi and

ΠA(X) |=
(
p knowsd t(b1, . . . , bk) ∧ p knowsd b1exists ∧ · · · ∧ p knowsd bk exists

)
.

The precise meaning of the displayed statement is this: the conjunction of the k + 1 atomic
formulas holds in the state of knowledge ΠA(X) under the assignment of elements b1, . . . , bk
to the variables v1, . . . , vk respectively.

If vi is a regular component of t(v1, . . . , vk) then the requirement p knowsd bi exists is
superfluous as it follows from p knowsd t(b1, . . . , bk) by the Exist house rule. But in general
the requirement is necessary. For example suppose that the substrate has a regular function
master that one way or another assigns principals to files and consider a expression t(file) =
(master(file) tdOn foo) where file is a regular variable and foo is a ground infon expression.
expression master(file) is a regular component of t(file) but the variable file is not. And the
answer to a query p knows t(file) may be infeasibly large, even infinite, if we require that it
contains all files whose master is trusted on foo, including those files whose existence is not
known to p.

If k = 0, so that Q is ground, the answer set is either empty or contains one element,
namely the empty tuple. This is unnatural. The intended meaning of the answer is false in
the first case and true in the second. It would be reasonable but tedious to consider ground
queries separately. Instead we stipulate that, in the answers to ground queries, the empty
set represents false and the set that consists of the empty tuple represents true.

4.4.2. Computing basic queries. In Section 6, we present an algorithm for answering
basic queries. For the purpose of measuring time complexity we assume that there is an
algorithm Eval that evaluates the basic substrate functions and relations of X in constant
time; the assumption is discussed in §A.2. We also assume that our constants and variables
are strings in a fixed finite alphabet, so that all expressions and formulas in the language of
our model are strings in the fixed finite alphabet. This allows us to speak about the length
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of a expression or formula. The length of an authorization policy is the sum of the lengths
of its assertions.

Theorem 4.6. The answer to any basic query is finite, and there is an algorithm that, given
a basic query Q and an authorization policy A, computes ansA(Q).

A particular algorithm for answering basic queries is constructed in Section 6.

Theorem 4.7. The time that our algorithm needs to answer a basic query Q under an

authorization policy A is bounded by a polynomial in
(
length(A) + length(Q)

)δ+1+w
, where

δ bounds the depth to which said and saidd (possibly mixed) are nested in the policy and
query expression, and w bounds the number of free variables allowed in assertions and in
the query expression. In particular, assuming a fixed bound on the nesting depth of saidd
and on the assertion and query width, the computation time of the answering algorithm is
polynomial in length(A) + length(Q).

The theorems are proved in Section 6.

4.4.3. Toward more general queries. There is an easy way to generalize basic queries in
a semantically sound way: view any first-order formula ϕ(v1, . . . , vk) of vocabulary Υ with
free variables v1, . . . , vk of regular types as a potential query with the answer

{〈b1, . . . , bk〉 : type(bi) = type(vi) for all i, and Π(X) |= ϕ(b1, . . . , bk)}.
But this approach is flawed as it leads to infeasible queries.

Consider for example a query v knows t where v is a variable and t has no variables and
thus evaluates to an infon in X. The answer to the query would be the list of all principals
that know the infon. This set is unfeasibly large and possibly infinite. This explains why p
is forbidden to have variables in the definition of basic queries.

For another example, consider the negation ¬Q of a basic query Q = (p knows t(v)).
The answer to ¬Q would contain all elements of X of the type of v except for the finite
set ans(Q). Again the answer may be infinite. Notice that both Q and its negation are
about the knowledge (or the lack thereof) of p. In that sense they are p-centered. As far as
p-centered queries are concerned, it is natural to restrict attention to elements known to p.

4.4.4. Single-principal-centric queries. Let’s fix an arbitrary principal expression p with-
out variables and restrict attention to p-centered queries, that is queries about the knowledge
— or the lack thereof — of p. A basic query q knowsd t(v1, . . . , vk) is p-centric if the ex-
pression q is literally the expression p. A more general definition of p-centric queries is
needed.

Remark 4.8. The requirement that expression q is literally expression p can be weakened to
require only that q evaluates to the same value as p in X. The current definition has the
advantage of being independent of the choice of substrate. �

For every regular type T , let

TA(p) = ansA
(
p knows (v exists)

)
where v is a variable of type T .

Any first-order formula ϕ(v1, . . . , vk) of vocabulary Υ with free variables v1, . . . , vk of regular
types can be treated as a p-centric query, with the p-bounded answer

{〈b1, . . . , bk〉 : every bi ∈ T iA(p), and Π(X) |= ϕ(b1, . . . , bk)}.
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But this more refined approach is still flawed. There are two problems with it. One is that
the formula ϕ may have superstrate atomic subformulas, like q knows t where q is different
from p in the substrate X; in such cases ϕ is only artificially p-centric. The other problem is
that the quantified variables of the formula ϕ may range over their whole sorts; as a result
it may be infeasible to evaluate statements ϕ(b1, . . . , bk) even though every bi ∈ T iA(p). This
little analysis brings us to a definition of p-centric queries.

A p-centric query is a first-order formula ϕ in the vocabulary Υ such that every atomic
superstrate subformula of ϕ is of the form p knowsd t, every variable is of regular type,
and every quantification is of the form ∃v ∈ TA(p) or ∀v ∈ TA(p) where T is the type of v.
Alternatively, p-centric queries can be defined inductively.

• every substrate constraint is a p-centric query, and every p-centric basic query is a
p-centric query,
• if Q1, Q2 are p-centric queries then ¬Q1, Q1 ∧Q2 and Q1 ∨Q2 are p-centric queries,
• if Q(v) is a p-centric query with a free variable v of type T (and possibly other free

variables) then
(
∃v ∈ TA(p)

)
Q(v) and

(
∀v ∈ TA(p)

)
Q(v) are p-centric queries.

The answer to a p-centric query ϕ(v1, . . . , vk) under an authorization policy A is the p-
bounded answer mentioned above:

ansA(ϕ(v1, . . . , vk)) = {〈b1, . . . , bk〉 : every bi ∈ T iA(p), and Π(X) |= ϕ(b1, . . . , bk)}.
In particular, a Boolean combination of substrate constraints and p-centric basic queries

is a p-centric query.

Lemma 4.9. For any p-centric queries Q and R, we have

ans(Q ∨R) = ans
(
¬
(
(¬Q) ∧ (¬R)

))
ans
(
∀v ∈ TA(p)

)
Q(v)) = ans

(
¬(
(
∃v ∈ TA(p)

)
¬Q(v)).

The proof is obvious.

4.4.5. Answering single-principal-centered queries. We start by defining an (answer)
envelope of a p-centric query under an authorization policy A. If Q(v1, . . . , vk) is a p-centric
query where vi is a variable of regular type T i then

env(Q(v1, . . . , vk)) = T 1
A(p)× · · · × T kA(p).

We have

ansA(Q(v1, . . . , vk)) ⊆ env(Q(v1, . . . , vk)),

ansA(¬Q(v1, . . . , vk)) = env(Q(v1, . . . , vk))− ansA(Q(v1, . . . , vk)).

Lemma 4.10. There is a polynomial time algorithm that,

• given a p-centric query Q and
• given the sets ansA(ϕ) and envA(ϕ) for every atomic subformula of Q,

computes ansA(Q) and envA(Q).

Proof. We explain how to compute ansA(Q) by induction on Q. It will be obvious that the
algorithm is polynomial time. Note that, every subquery R of Q is p-centric, and we are
given the sets ansA(ϕ) and envA(ϕ) for every atomic subformula of R. Due to the previous
lemma, we may assume for brevity that Q does not use disjunction and does not use the
universal quantifier. And, also for brevity, we omit the subscript A in the rest of the proof.
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The case when Q is atomic is trivial. The case when Q = ¬R is obvious: ans(Q) =
env(R)− ans(R), and env(Q) = env(R).

Suppose that Q is a conjunction

R1(u1, . . . , uj, v1, . . . , vk) ∧R2(v1, . . . , vk, w1, . . . , w`)

where all j + k + ` variables are distinct. From the relational-database point
of view, ansA(Q1(u1, . . . , uj, v1, . . . , vk)) is a table with j + k columns. Similarly,
ansA(Q2(v1, . . . , vk, w1, . . . , w`)) is a table with k+` columns. The join of the two tables over
the k columns corresponding to the common variables v1, . . . , vk gives ansA(Q). Similarly
env(Q) is the join of env(R1) and env(R2).

Finally suppose that Q(v1, . . . , vk) =
(
∃v0 ∈ T (p)

)
R(v0, . . . , vk) where T is the type of v0.

In this case, ans(Q) is the projection

{(b1, . . . , bk) : (b0, b1, . . . , bk) ∈ ans(R) for some b0.}
Similarly env(Q) is a projection of env(R). �

Theorem 4.11. The answer to any single-principal-centric query is finite, and there is
an algorithm that, given a single-principal-centric query Q and an authorization policy Q,
computes ans(Q).

Proof. The desired algorithm is the algorithm of Lemma 4.10 that uses the substrate evalua-
tion algorithm Eval and the basic query evaluation algorithm of Theorem 4.6 to compute the
givens of Lemma 4.10. Let Q be a p-centric query, and ϕ(v1, . . . , vk) be an atomic subformula
of Q. Since

envA(ϕ(v1, . . . , vk)) = ansA(p knows (v1exists + · · · vk exists)),

a single call to the basic query evaluation algorithm results in env(ϕ(v1, . . . , vk)). If
ϕ(v1, . . . , vk) is a basic query then another call to the basic query evaluation algorithm
results in ans(ϕ(v1, . . . , vk)). If ϕ(v1, . . . , vk) is a substrate constraint, we need a number of
calls to Eval. Since

ans(ϕ(v1, . . . , vk)) = {(b1, . . . , bk) ∈ env(ϕ(v1, . . . , vk)) : X |= ϕ(b1, . . . , bk)},
the number of calls is the cardinality of env(ϕ(v1, . . . , vk)). �

Theorem 4.12. The time bound of Theorem 4.7 remains valid for our algorithm for an-
swering single-principal-centric queries. In other words, Theorem 4.7 remains valid if “basic
query” is replaced with “single-principal-centric query.”

Proof. Let Q be a single-principal-centric query. The number of atomic subformulas of Q is
bounded by length(Q). According to the previous proof, the number of calls to the basic
query evaluation algorithm is O(length(Q)), and the number of calls to Eval is bounded by
the cardinality of the cumulative output of the calls to the basic query evaluation algorithm.
It remains to recall that every call to Eval costs us only 1 time unit. �

5. Examples

We give a few examples, which serve to illustrate DKAL and to explain some choices we
made in designing DKAL. We begin with examples which illustrate delegation and trust in
scenarios which are not user centric. We say that a principal p knows of q if p knows the
infon q exists.
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Example 5.1 (Delegation). We make some assumptions about the substrate. There is a
sort File and a function owner: File → Principal that assigns to each file the owner
of the file. There is an attribute function canRead with one argument of type File, and the
rights to read files are controlled by a read-rights manager RR: a principal p is allowed to
read file f just in case that RR knows the infon p canRead f .

The policy is that each principal is allowed to read his files (that is the files that he owns),
is allowed to let others read his files, and is allowed to let them delegate the right:

1. RR: p canRead file ← owner(file) = p,
2. RR: p tdOn r canRead file ← owner(file) = p.

A policy of this kind can apply in a community web service consisting of a great many
users, who post files and share them with other users in the system. We assume here that
the system has a central read-rights manager. Alternatively one could use a user centric
approach, and localize the computations so that each user computes his own rights.

Recall that we write assertions in an abbreviated form §4.1. Since this is our first
example, let us rewrite the two assertions in full.

1*. RR knows p canRead file ← owner(file) = p ∧
RR knows p exists ∧ RR knows file exists.

2*. RR knows p tdOn r canRead file ← owner(file) = p ∧
RR knows p exists ∧ RR knows r exists ∧ RR knows file exists.

The ability of p to allow q to pass the reading right is implicit in 2 due to the Del house
rule in §4.2. Let us illustrate that on the following scenario. Alice lets Bob read her file
Alice/Poem but not to pass the right to others:

3. Alice: (Bob canRead Alice/Poem) to RR.

She lets him pass along the right to read Alice/Recipe:

4. Alice: (Bob tdOn r canRead Alice/Recipe) to RR.

Bob allows Cathy to read Alice/Recipe and notifies Alice about that:

5.1. Bob: (Cathy canRead Alice/Recipe) to RR,

5.2. Bob: (Cathy canRead Alice/Recipe) to Alice.

As a result, Cathy can read Alice/Recipe. The proof that Cathy can read Alice/Recipe is
routine and obvious but it may be instructive and so we provide it.

By 5.1 (and the appropriate Say2know house rule), we have

5.1′. RR knows Bob said Cathy canRead Alice/Recipe.

Similarly Alice knows Bob said Cathy canRead Alice/Recipe, which, by the Exist and
KMon house rules, gives us

5.2′. Alice knows Cathy exists.

By Lemma 4.4.1, RR knows of Bob, Cathy and the file Alice/Recipe. By 4 and 5.2′, with r
= Cathy, we have

4′. RR knows Alice said Bob tdOn Cathy canRead Alice/Recipe,

which allows to conclude that RR knows of Alice. By 2, with p = Alice, r = Cathy and file
= Alice/Recipe (and taking into account that Alice is the owner of Alice/Recipe), we have
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2′. RR knows Alice tdOn Cathy canRead Alice/Recipe.

Apply the Del house rule (with p = Alice and q = Bob) to 2′ to infer

6. RR knows Alice tdOn Bob tdOn Cathy canRead Alice/Recipe.

From 6 and 4′, by Lemma 4.4.2, we have

7. RR knows Bob tdOn Cathy canRead Alice/Recipe.

Similarly, from 7 and 5′, we have

8. RR knows Cathy canRead Alice/Recipe,

which means that Cathy indeed can read the file Alice/Recipe.

Example 5.2 (Post-authentication). The policy of the previous example is employed for
access control in a particular company. When user p connects from a remote system, he
shows up as a remote user q, for example “User number 24 on remote machine Zelda.”
There is an authentication server A1S, whose job it is to authenticate q as being, in fact,
user p. The read-rights manager RR trusts A1S on authentication but does not allow A1S
to delegate authentication. If q is authenticated as p, then the read-rights manager RR gives
q all the rights of p. All this is expressed by assertions

RR: A1S tdOn0 q authenticatedAs p,
RR: q canActAs p ← q authenticatedAs p,
RR: q canSpeakAs p ← q authenticatedAs p.

Example 5.3 (Targeted communication). There is a write-rights manager WR, with policy
similar to that of RR. WR too trusts A1S to do the authentications. But the system
requires only the password authentication for reading, while it requires the password and
the smartcard authentication for writing. Accordingly, A1S places an assertion

A1S (q authenticatedAs p) to RR

when q authenticates as p using just a password, and A1S places assertion

A1S (q authenticatedAs p) to RR

A1S (q authenticatedAs p) to WR,

when q is authenticated as p using both a password and a smartcard.
One could model this without targeted communication, instead using two different in-

fons authenticatedByPasswordAs and authenticatedBySmartCardAs, or using an infon
authenticatedAs p by z with an extra variable z which may take value password or
smartCard. But a system with targeted communication is more easily upgraded. Suppose
the time comes to increase security requirements, and demand biometric authentication for
writing. With targeted communication the system upgrade requires only a change in the
authentication server A1S; the other components of the system may be left as they are.

Example 5.4 (Targeted communication). A company has regular review of employees. The
employee records are maintained by HR. A special Auditor sets up a review committee for
every employee p; the members of the committee can read the record of p. The employee p
should not know who is on his review committee. Accordingly HR places the assertion

HR: (q canRead record(p)) to RR ←
Auditor said q is-on-review-committee-of p.

We presume that HR owns the records of the employees, and so, in accordance with the
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assertion 2 in the Delegation Example above,

RR knows HR tdOn q canRead record(p).

It is important that Auditor’s assertions about the composition of the review committees
are targeted to HR and not broadcast to all. Otherwise the employee p would know who is
on his review committee.

Example 5.5 (Internal knowledge acquired a priori). We return briefly to one of the exam-
ples in Section 2, to justify the fact that DKAL allows nesting of saidd with said0 preceding
said. Recall that Chux is an online store. Chux has agreements on discounts with several
companies. In particular employees of Fabricam participate in discount plan 5X4302. Chux
trusts Fabricam on identifying its employees, and trusts Crypto to quote Fabricam on this
matter. This is expressed precisely in assertions A10, A11, and A15 in Figure 4. The trust
in Crypto in non-delegatable. In the example, Crypto exercises the trust, and this leads to
knowledge K8 in Firgure 4 which we repeat below:

Chux knows Crypto said0 Fabricam said Chris is an employee of Fabricam

Note that the first saidd has subscript zero. The validation procedure performed by Crypto
is not visible to DKAL. As far as the system is concerned, the server’s speech is based on
its internal knowledge. (In fact in this case it is based on no knowledge at all; the assertion
leading to it, A15 in Figure 4, has an empty body.)

Example 5.6 (p tdOn x + y 6≤ (p tdOn x) + (p tdOn y)). This example illustrates the
difference between p tdOn (x + y) and (p tdOn x) + (p tdOn y). The latter expresses trust
in p on each of x and y, while the former expresses trust on x and y bundled together. In
DKAL neither one follows from the other.

Parcom is a national provider of both internet and cable service. It does not sign customers
up directly, but has affiliated stores who do this. Parcom will provide internet service to
customer q if an affiliated store says q signed up for the service, and similarly with cable.
ITNat is a national chain of stores with which Parcom has an affiliation agreement:

1. Parcom: ITNat tdOn q signedFor cable.

2. Parcom: ITNat tdOn q signedFor internet.

Note that Parcom lets the national chain ITNat delegate the trust, for example to its own
local affiliates.

Parcom is not allowed to bundle the internet and cable services into a single package. But
ITNat is not aware of this, and makes the assertion:

3. ITNat: Store1 tdOn (q signedFor cable + q signedFor internet).

If one takes the rule p tdOn x+ y ≤ (p tdOn x) + (p tdOn y), it follows from 1, 2, and 3 that:

Parcom knows Store1 tdOn (q signedFor cable + q signedFor internet).

Store1 can then sign a customer q for cable and internet together, but cannot sign q for just
cable or just internet, so that the two services are bundled together.

DKAL therefore does not have the rule p tdOn x+ y ≤ (p tdOn x) + (p tdOn y). Nor does
DKAL have the converse rule, (p tdOn x) + (p tdOn y) ≤ p tdOn x+ y; there are scenarios in
which a principal is trusted on a package of infons, for example using a service and paying
for it, but is not trusted on the infons separately.
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6. Answering basic queries

This section is dedicated to the proof of Theorems 4.6 and 4.7, on the time complexity of
answering basic queries.

Recall that the width of an assertion (respectively query) is the number of variables in the
assertion (query). The quotation depth of an infon is defined by the conditions:

• If x is not a spoken infon or a sum, then quoteDepth(x) = 0.
• quoteDepth(p saidd x) =quoteDepth(x) + 1.
• quoteDepth(x+ y) = max{quoteDepth(x), quoteDepth(y)}.

The quotation depth of an assertion A :d x ← x1, . . . , xn, con is the quotation depth of the
infon x. The quotation depth of A :d x to p ← x1, . . . , xn, con is one plus the quotation
depth of x.

Let X be a substrate structure, let A be an authorization policy, and let Q =
(a knowsd t(v1, . . . , vk)) be a basic query. We intend to show that the answer to Q under
A can be computed, and the computation time complexity is polynomial in (length(A) +
length(Q))δ+1+w, where δ is the maximal quotation depth of assertions in A, and w is the
maximal width of assertions in A and of the query Q.

Let Π be the logic program consisting of the assertions in A and of the house rules. We
cannot directly compute Π(X), since X is infinite, and the superstrate relations may be
infinite. But there are a couple of initial reductions we can in general perform to concentrate
on a part of X which is closer to being finite.

Let V consist of all the principals who own assertions in A and the principal a whose
knowledge is to be queried about. We compute the knowledge of each of the principals in
V , as they may direct speeches at one another, and so each may affect the knowledge of the
others. But there is no need to compute the knowledge of principals outside V , as they have
no assertions and cannot affect the knowledge of principals in V . Thus

Reduction 1: It is enough to compute the knowledge of w for principals w ∈ V .

Let B consist of the principals in V plus (the values of) all ground regular components
of heads of assertions in A. If b ∈ B, then it is possible that the existence of b will become
known to some principal in V . For example suppose b is a ground regular component in the
head of an assertion A: x← x1, . . . , xn, con of form (As1). If at any stage in the computation
of the fixed point, the body of the assertion evaluates to true, then A knows x enters the
fixed point, and since b is a ground regular component of x it follows that A knows b exists.
The same is true in the case of an assertion A: x to p← x1, . . . , xn, con of form (As2), except
that here both the ground regular components of x and A itslef may become known to p.

In computing the fixed point, we must consider all regular elements that may become
known to principals who own assertions in A, as the variables in the assertions may range
over these elements. The last paragraph shows that at the very least we better include all
elements of B. We will prove that no other regular elements need be considered:

Reduction 2: We may without loss of generality restrict attention to the substructure of
the substrate generated using synthetic functions and non-ground expressions in A and Q
from the regular elements in B.

The proof of Reduction 2 will use the following safety conditions, which were imposed on
assertions in Subsection 4.1:

• Variables range only over regular elements.
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• Variables must be “knowledge bound” in the sense that if a variable v, other than
the target of the assertion, occurs in the assertion, then the premise of the assertion
must include knowledge of the infon v exists.
• Non-ground regular expressions in the assertion head must also be knowledge bound.

Reduction 2 is an important step, but it still leaves us with an infinite structure. The
regular layer in the structure is the set B, and this set is finite since the authorization policy
A is finite. But the synthetic layer is infinite. We now attempt to restrict further, by limiting
depth in the synthetic layer.

Definition 6.1. The depth of x is defined by induction as follows:

• If x is regular then its depth is 0.
• If x is synthetic of the form x1 + x2 then its depth is the maximum of the depths of
x1 and x2.
• If x is synthetic of the form F (x1, . . . , xk) with F a function other than +, then the

depth of x is the maximum of the depths of x1, . . . , xk, plus 1.

Thus the depth of an infon is the nesting depth of synthetic functions in the infon, except
that uses of the function + are not counted.

Let D be the maximal depth of an infon in A. Let T be the set of all infons of depth ≤ D,
with regular components in B. The number of infons in T is infinite, but by eliminating
repetitions in sums we may find a finite set of canonical representatives for all infons in T .
Let S be this set. If we could restrict attention to only the synthetic elements in S, we would
have reduced ans(Q) to a fixed point of a logic program over a finite structure, and such a
fixed point can be computed, see Theorem A.3.

Ultimately we shall prove that this approach works. But there are difficulties which must
be tackled. First, we need a way to compute the restriction of the ensue relation to infons
of depth ≤ D. Second, we have to reduce the set of infon we work with further; S, though
finite, has size far greater than polynomial in (length(A) + length(Q))δ+1+w.

We deal with both these difficulties in Subsection 6.1. Then in Subsection 6.2 we perform
the reductions described above, and show how to compute the answer to a basic query.

6.1. Downward closure under ensue. We develop in this section an algorithm for pro-
ducing, given a set of infons Z and another set I of infons of interest, the set Y of all infons
in I which ensue sums of infons in Z. We shall use this algorithm later when computing
answers to queries, to ensure that knowledge is closed under the rule KMon. In that context
I will include all infons occurring in bodies of assertions placed by a principal A. Z will
include all infons known to A in a given stage of the computation. We shall need to compute
which infons in I ensue Z (those infons are then also known to A, and may cause some of
A’s assertions to fire). But we shall not need to compute the full ensue relation beyond these
fragments.

Let D bound the depth of infons in Z and in I. It is tempting to simply follow the
ensue house rules, restricted to infons of depth ≤ D, and hope that this would compute the
restriction of ensue to infons of this depth. The following example shows that this approach
fails.

Consider the infons

(a) p tdOn r tdOnd foo,
(b) p said q tdOn foo,
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(c) p said r exists,
(d) q tdOn r tdOnd foo,

and the infons of greater depth

(e) p tdOn q tdOn r tdOnd foo, and
(f) p said q tdOn r tdOnd foo

Note that (e) ensues (a)+(b) by Del and Exists (Exists and infon (b) are only needed to
show that q exists), (f) ensues (b)+(c) by Del and SaidMon, and (d) ensues (e)+(f) by
TrustApplication. Hence (d) ensues (a)+(b)+(c). But to derive this relationship from the
house rules, we had to go through infons (e) and (f), which have greater depth than infons
(a), (b), (c), and (d). In fact the relationship cannot be derived following the house rules
without going through infons of greater depth.

Luckily we shall see that this example is in some sense the only reason to ever need infons
of depths greater than D in computing ensue on infons of depths ≤ D. We shall prove that
the need for infons of greater depth can be eliminated with the addition of one rule handling
this particular example:

wDel.1.

q tdOn r tdOnd x ≤ p tdOn r tdOnd x + p said q tdOn x + p said r exists.

The rule does not affect the semantics of the ensue relation, since it can be derived using
Del, Exists, SaidMon, and TrustApplication, following the example above but with x instead
of foo. On the other hand the rule allows reaching (d) in the example above from (a)+(b)+(c)
directly, without going through infons of greater depths.

Once we prove that any ensue relationship on infons of depth ≤ D can be derived using the
house rules plus wDel.1 without going through infons of depths > D, we will have shown that
the question of which infons in I ensue Z is decidable. But we wish to do more. We will show
that it is decidable with time complexity polynomial in |length(Z∪I)| ·(2 · |regcomp(Z)|)δ+1,
where δ bounds the quotation depth (which may well be smaller than full depth) of infons
in Z. (Here length(Z ∪ I) and regcomp(Z) are the sum of lengths of infons in Z ∪ I, written
as strings, and in the set of regular components of infons in Z, respectively.) For this it is
not enough that the question of which infons in I ensue Z can be answered by following the
ensue rules plus wDel.1 on infons of depth ≤ D; there are too many infons of such depth.
We will have to limit the rules so that the number of consequences of Z that they produce
is bounded by a polynomial in |length(Z ∪ I)| · (2 · |regcomp(Z)|)δ+1, but still the limited
rules should allow deriving all consequences in I.

The rules most in need of limiting are Del and Sum. The number of consequences of Z
that they produce, even when restricted to infons of depths ≤ D, is exponential in D in the
case of Del, and even greater in the case of Sum. It will be a while before we get to the stage
of introducing the limited versions of these rules. But it is useful already here to introduce
another consequence of Del:

wDel.2. q tdOnd x ≤ p tdOn x + p said q tdOnd x.

This rule too does not result in any new ensue relationships. Indeed the rule is simply
Lemma 4.4.3. But it allows a direct “Del free” deduction of an infon whose deduction would
otherwise require Del, and will later make it easier to keep tab on uses of Del.
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Recall that we have sets Z and I of infons, and wish to compute which infons in I ensue Z.
We do not wish to compute any more of the ensue relation than is required for this purpose.

An ensue rule is proper if the body of the rule is empty, or else it is a substrate constraint.
Proper ensue rules can be turned into deduction rules on infons. The following list includes
the deduction rules resulting from the proper house ensue rules. In each rule, the infon to
the left of a ensues the sum of the infons to the right. The list omits the rule resulting
from SaidSum, as we shall obtain it indirectly later. The deduction rule Sum.3 in the list
paraphrases the third part of ESum to the context of a deduction.

q exists a x, for q and x so that q regcomp x.(Exists)

p said x a p said0 x.(Said0∞)

p saidd x a p saidd p saidd x.(SelfQuote)

p tdOn0 x a p tdOn x.(Trusted0∞)

x a p tdOnd x, p saidd x.(TrustApplication)

p tdOn (q tdOnd x) a p tdOn x, q exists.(Del)

p tdOnd x a p tdOnd p tdOnd x.(Del−)

p attribute a q attribute, p canActAs q.(Role.1)

q speech a p speech, p canActAs q.(Role.2)

x a x+ y.(Sum.1)

y a x+ y.(Sum.2)

x+ y a x, y.(Sum.3)

Non-proper house rules pose a problem for us: their bodies refer to the ensue relation, and
we do not wish to have to compute whether they evaluate to true. The only non-proper ensue
house rules are EOrder, ESum, and SaidMon. We already rephrased ESum in a way that
removes its hypothesis, and in particular makes it proper. EOrder will hold automatically
in our context. But we must find a way to get around uses of SaidMon.

Let x a y1, . . . , yk be a deduction rule. A SaidMon extension of the deduction rule is any
deduction rule of the form pref x a pref y1, . . . , pref yk, where pref is a prefix, by which we
mean an expression of the form p1 saidd1 . . . pi saiddi

.
To give an example, a said b tdOn0 foo a a said b tdOn foo is a SaidMon extension of b

tdOn0 foo a b tdOn foo.

Definition 6.2. A basic ensue-deduction from a set X of infons is a sequence of infons
x1, . . . , xr so that for each i ≤ r, either xi ∈ X, or there are j1, . . . , jk < i so that xi a
xj1 , . . . , xjk is a SaidMon extension of one of the deduction rules Exists, Said0∞, SelfQuote,
Trusted0∞, TrustApplication, Del, Del−, Role.1–2, and Sum.1–3. A basic ensue-deduction
of y is a basic ensue-deduction x1, . . . , xr so that xr = y.

In this subsection we only deal with ensue-deductions, and so we will refer to them simply
as deductions. The deductions in the definition above are called basic because they use
deduction rules resulting very directly from the ensue house rules. (Later we shall have
deductions that use slightly different rules.) The inclusion of Sum.1–3 allows us to deduce
x + y once we have deduced each of x and y, and conversely deduce each of x and y once
we have deduced x + y. The inclusion of SaidMon extensions of Sum.3 allows us to deduce



DKAL 35

pref (x+ y) once we have deduced each of pref x and pref y. In other words it subsumes the
house rule SaidSum.

We write y ab Z to mean that there is a basic ensue deduction of y from the set Z. We
write Y ab Z for a set Y of infons to mean that each of the infons in Y can be deduced from
Z. We write y ab z for an infon z to mean that y ab Z where Z is the singleton set {z}, and
similarly with Y ab z.

Lemma 6.3. y ≤ z iff y ab z.

Proof. The right-to-left direction is straightforward by induction on the length of the given
deduction. We prove the left-to-right direction. It suffices to show that ab is a fixed point
for the ensue house rules of Section 4. Indeed suppose that ab is a fixed point. Since ≤ is
the least fixed point, it is a subset of ab, and the left-to-right direction of the lemma follows.
ab is a fixed point for EOrder since deductions can be composed. Because of the inclusion

of Sum.1–3, and the fact that SaidMon extensions of Sum.3 subsume SaidSum, ab is a fixed
point for both ESum and SaidSum. Each of the remaining ensue house rules except SaidMon
has a corresponding deduction rule, and from this it follows that ab is a fixed point for these
rules. Thus it remains to show that ab is a fixed point for SaidMon. To this end, we assume
that y ab z and we show that p saidd y ab p saidd z. Let x1, . . . , xr be a deduction of y
from {z}. Then the sequence p saidd x1, . . . , p saidd xr is still a deduction, just with longer
prefixes for the SaidMon extensions of the deduction rules used, and it is a deduction of p
saidd y from {p saidd z}. �

We now have an order, ab, defined by means of deduction rules which avoid the non-proper
SaidMon, and still precisely captures the order ≤.

Recall that the depth of an infon is the nesting level of synthetic functions other than +
in the infon. (The precise definition appears in the preamble to this section.) A deduction is
depth-bounded by D if all the infons in the deduction have depth D or less. We write y abD Z
to mean that there is a basic deduction of y from Z, which is depth-bounded by D. We use
abD on sets Y and infons z as we do with ab.

Earlier in the subsection we saw that in general there may be infons y and z so that both
y and z have depth ≤ D, y ab z, and yet y 6abD z. This poses a problem in attempting to
compute whether y ab z. To overcome this problem, we generalize the notion of deduction,
adding the following deduction rules that correspond to the ensue rules wDel.1 and wDel.2
mentioned above.

q tdOn r tdOnd x a p tdOn r tdOnd x,
p said q tdOn x, p said r exists.

(wDel.1)

q tdOnd x a p tdOn x, p said q tdOnd x.(wDel.2)

Definition 6.4. An enhanced ensue-deduction from a set X of canonical infons is a sequence
x1, . . . , xr satisfying the conditions in Definition 6.2 with wDel.1 and wDel.2 added to the
list of deduction rules whose SaidMon extensions may be used in the deduction.

We use the notation y ae Z to mean that there is an enhanced deduction of y from Z. We
use y aeD Z if the deduction is depth-bounded by D. We use aeD and abD on sets as we do
with ab and abD.

Claim 6.5. y ≤ z iff y ab z iff y ae z.
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Proof. We already know y ≤ z ⇔ y ab z, and y ab z ⇒ y ae z is clear. The implication y ae z
⇒ y ≤ z holds because all the rules allowed in enhanced deductions, including wDel.1 and
wDel.2, are true of the ensue relation. �

We aim to prove that if y and z have depths ≤ D, then y ≤ z iff y aeD z. Thus the depth
bound that does not hold for ensue deductions without wDel.1–2, does hold when these rules
are added. This will later help us to compute whether y ≤ z.

Remark 6.6. In the proofs below we keep track of any uses of the deduction rules Del and
Sum.3. The reason for this care will become clear later.

Definition 6.7. A germ for an infon y is a set X of infons so that y can be deduced from
X using only the SaidMon extensions of deduction rules Del, Trust0∞, and Sum.3.

We say that X has depth ≤ D if all infons in X have depth ≤ D. We sometimes abuse
notation, and write X + z for a set X of infons and an infon z. We mean the set of infons
X ∪ {z}. We also write pref X for the set {pref x | x ∈ X}. We use H exist to abbreviate
the set of infons {r exists | r ∈ H}. The typical example of a germ is the following: X =
pref p tdOn x + pref H exist is a germ for every infon y = pref p tdOnd0 q1 tdOnd1 . . . qn
tdOndn x, where q1, . . . , qn ∈ H. More generally unions of sets such as X are germs for sums
of infons such as y.

Remark 6.8. If X is a germ for infon y = pref v, then X contains a set of the form pref U ,
with U a germ for v. The reason is that infons which do not begin with pref can safely be
erased from the deduction of y from X. The deduction only uses SaidMon instances of Del,
Trust0∞, and Sum.3, and none of these can produce an infon which starts with pref from
infons which do not.

Claim 6.9. If X is a germ for y, then y aeDX for any D greater than or equal to the depth
of y.

Proof. Since X is a germ for y, there is a deduction of y from X using SaidMon extensions of
Del, Trust0∞, and Sum.3. These rules do not decrease depth. So any infons of depth > D
are of no consequence in deducing y, and can be removed from the deduction. The resulting
deduction witnesses that y aeDX. �

Definition 6.10. A deduction rule R is depth-conservative on germs if for every instance
ua u1, . . . , uk of the rule, the following holds: Suppose U1, . . . , Uk are germs for u1, . . . , uk.
Suppose that U1, . . . , Uk all have depths ≤ D. Then there is U so that:

(1) U is a germ for u.
(2) U aeD U1 ∪ · · · ∪ Uk. (In particular U has depth ≤ D.)

We are being very general in condition 2. But typically deduction witnessing it is very
simple, using mainly the rule R referenced in the definition. The only exception is in the
case of the rule TrustApplication, where the enhanced deduction witnessing condition 2 will
use wDel.1–2.

Claim 6.11. If a rule R is depth-conservative on germs, then so are all its SaidMon exten-
sions.

Proof. Let y a y1, . . . , yk be a SaidMon extension of R. Say y = pref u and yi = pref ui.
Suppose Yi are germs for yi. Using Remark 6.8 we may, by reducing germs Yi if needed,
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assume that each Yi has the form pref Ui, with Ui a germ for ui. Apply Definition 6.10 to
the instance ua u1, . . . , uk of R, to obtain U so that

(1) U is a germ for u, and
(2) U aeD U1 ∪ · · · ∪ Uk.

Set Y = pref U . Prepending pref to the deductions witnessing 1 and 2, it follows that Y is
a germ for y, and Y aeD Y1 ∪ · · · ∪ Yk. �

Claim 6.12. The rules Sum.1–3, Exists, Said0∞, SelfQuote, Trusted0∞, Del, Del−, and
Role.1–2 are all depth-conservative on germs.

Proof. The case of Sum.3 is obvious. If U1 is a germ for u1, and U2 is a germ for u2, then
U = U1 ∪ U2 is a germ for u = u1 + u2.

The rules Sum.1 and Sum.2 are slightly more involved. We handle Sum.1. Let U1 be a
germ for x + y. If the infon x + y itself is an element of U1 then xaeD U1 by an application
of a SaidMon extension of an instance of Sum.1, and we can take U = {x}. If the infon
x+ y is not an element of U1, then it must be that both x and y are deducible from U1 using
SaidMon extensions of Del, Trust0∞, and Sum.3 (for otherwise it would be impossible to
deduce x+ y using these rules). Thus U1 is a germ for x, and we may take U = U1.

The case of Exists is obvious, noting that if q regcomp x and U1 is a germ for x, then q
is a regular component of one of the infons in U1, and therefore q exists aeD U1, so we can
take U = {q exists}.

Consider the case of Said0∞. Let u = (p said0 x) a (p said x) = u1 be an instance of
this rule. Suppose U1 is a germ for u1. By remark 6.8 we may assume that U1 has the form
p said X. Then U = p said0 X is a germ for u, and U aeD U1 by an application of Said0∞.

A similar argument works for the rule SelfQuote.
Let us now handle Trust0∞. Let u = (p tdOn0 x) a (p tdOn x) = u1 be an instance of the

rule. Let U1 be a germ for u1. Then U1 itself is also a germ for u, so one can take U = U1.
An argument similar to that of the previous paragraph works for Del.
Let u = (p tdOnd x) a (p tdOnd p tdOnd x) = u1 be an instance of Del−. Let U1 be a

germ for u1. If p tdOnd p tdOnd x belongs to U1, then uaeD U1 by an application of Del−,
and we may take U = {u}. If d = 0 and p tdOn p tdOnd x belongs to U1 then uaeD U1 by
an application of Trust0∞, and again we can take U = {u}. If neither of these two cases
holds, then it must be that p tdOn x is deducible from U1 using SaidMon extensions of Del,
Trust0∞, and Sum.3 (for otherwise it would be impossible to deduce p tdOnd p tdOnd x from
U1 using these rules, and U1 would not be a germ for the infon). So U1 is a germ for (p tdOn
x) = u, and we may take U = U1.

Consider finally the Role rules. Let us start with Role.2. Let u = (q speech) a p speech, p
canSpeakAs q. Let u1 = (p speech) and let u2 = (p canSpeakAs q). Let U1 and U2 be germs
for u1 and u2. u2 cannot be deduced non-trivially using just Del, Trust0∞, and Sum.3, so
it must be that u2 belongs to U2. Using Remark 6.8 we may assume that U1 has the form p
saidd X. Set U = (q saidd X). Then U is a germ for u, and U aeD U1∪U2 by an application
Role.2.

Passing now to Role.1, suppose u = (p attribute) a q attribute, p canActAs q. Let u1 = (q
attribute) and let u2 = (p canActAs q). Let U1 and U2 be germs for u1 and u2. Again it must
be that u2 belongs to U2. If u1 belongs to U1, then uaeD U1 + U2 using Role.1, and we may
take U = {u}. So suppose u1 does not belong to U1. Since u1 is deducible from U1 using
SaidMon extensions of Del, Trust0∞, and Sum.3, and has the form q attribute, it must be
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that attribute has the form tdOnd y, and U1 has some infons q tdOn x and H exist from
which one can deduce u1 = q tdOnd y with applications of Del and Trust0∞. Set U = p
tdOn x, H exist. Then U is a germ for u = p tdOnd y, and U aeD U1 ∪ U2 by an application
of the Role.1. �

Remark 6.13. In each of the cases in the proof of Claim 6.12 we were given an instance
ua u1, . . . , uk of one of the rules listed in the claim, and germs Ui of depth ≤ D for ui, and
we produced a germ U for u so that U aeD U1 ∪ · · · ∪ Uk. Note that, in each of the cases in
the proof, the deduction witnessing U aeD U1 ∪ · · · ∪ Uk made no use of either Del or Sum.3.

Claim 6.14. The rule TrustApplication too is depth-conservative on germs.

Proof. Let u a p tdOnd u, p saidd u be an instance of TrustApplication. Let U1 and U2 be
germs for p tdOnd u and p saidd u respectively, of depths ≤ D. We shall find a germ U for
u so that U aeD U1 ∪ U2. The deduction witnessing this last fact will have to use Del and (in
some cases) Sum.3, and for future reference we shall mark each use of these rules, and list
the uses after the proof, in Remark 6.15.

First Case. We start with the case that, for some e ≥ d, the infon p tdOne u belongs to U1

(so that U1 is a germ for p tdOnd u in a very trivial sense; the infon either belongs to the set,
or can be deduced from the set using just Trust0∞). In this case D is at least the depth of
p tdOn u, which is equal to the depth of p saidd u. We have:

u aeD {p tdOnd u , p saidd u}
aeD {p tdOnd u} ∪ U2(a)

aeD {p tdOne u} ∪ U2

⊆ U1 ∪ U2.

The first aeD holds by a use of TrustApplication, noting that all infons involved have depths
≤ D. The second aeD holds by Claim 6.9, as U2 is a germ for p saidd u, and the infon has
depth ≤ D. (This second deduction may use Del and Sum.3, and for this reason we tagged
it. We will return to the use of Del and Sum.3 later, in Remark 6.15.) The third and final
aeD holds either trivially (if e = d) or by a use of Trust0∞. Let U = {u}. Then U is certainly
a germ for u, and by the deduction above, U aeD U1 ∪ U2. This competes the proof of Claim
6.14 in the first case. �(First Case)

Suppose from now on that the condition of the first case fails, i.e., neither p tdOn0 u nor p
tdOn u belongs to U1. Since U1 is a germ for p tdOnd u, it follows that there must be l ≥ 1,
infon f , and a set H = {q1, . . . , ql}, so that:

(i) p tdOnd u has the form p tdOnd q1 tdOnd1 . . . ql tdOndl
f .

(ii) p tdOn f +H exist ⊆ U1.

Let x be q2 tdOnd2 . . . ql tdOndl
f . Then u has the form q1 tdOnd1 x, and U2 is a germ for

p saidd q1 tdOnd1 x. By (i) and (ii), U1 is a germ for p tdOn x.

Second Case. Suppose that p saidd q1 tdOne x belongs to U2 for some e ≥ d1 (so that U2 is
a germ for p saidd q1 tdOnd1 x in a trivial sense; the infon either belongs to the set or can
be deduced from the set using just Trust0∞). Then again D is at least the depth of p saidd
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u, and:

u = q1 tdOnd1 x

aeD {p tdOn x , p said q1 tdOnd1 x}
aeD U1 ∪ {p said q1 tdOnd1 x}(b)

aeD U1 ∪ {p saidd q1 tdOne x}
⊆ U1 ∪ U2.

The first aeD uses wDel.2. The second uses Claim 6.9, noting that U1 is a germ for p tdOn

x and the infon has depth < D. The third uses (one of, both, or neither, depending on the
values of d and e) Said0∞ and Trust0∞. (Only the second, tagged deduction uses Del and
Sum.3.) We can now let U = {u} completing the proof of Claim 6.14 in the second case.

�(Second Case)

Suppose from now on that neither p saidd q1 tdOn0 x nor p saidd q1 tdOn x belong to U2.
Since U2 is a germ for p saidd q1 tdOnd1 x, it follows that there must be k ≥ 1 and infon g
so that:

(iii) u = q1 tdOnd1 x has the form q1 tdOnd1 q2 tdOnd2 . . . qk tdOndk
g.

(iv) p saidd q1 tdOn g + p saidd I exist ⊆ U2, where I = {q2, . . . , qk}.
Note that the principals qi for i ≤ min(l, k) in conditions (i) and (iii) must match. We have
the following picture:

p tdOnd u = p tdOnd q1 tdOnd1 . . . . . . ql tdOndl
f , and

u = q1 tdOnd1 . . . . . . qk tdOndk
g.

Third Case. Suppose that l ≥ k. In this case U1 is a germ for p tdOn g. D is greater than
the depth of p tdOn g, since the infon of greater depth p saidd q1 tdOn g belongs to U2.
Thus:

q1 tdOn g aeD {p tdOn g , p said q1 tdOn g}
aeD U1 ∪ {p said q1 tdOn g}(c)

aeD U1 ∪ {p saidd q1 tdOn g}
⊆ U1 ∪ U2.

The first aeD uses wDel.2, the second uses Claim 6.9, and the third uses Said0∞ (or nothing,
if d = ∞). (Only the second, tagged deduction may use Del and Sum.3.) We can now let
U = {q1 tdOn g} ∪ {q2, . . . , qk} exist. Then U aeD U1 ∪ U2 by the above, and U is a germ
for u = q1 tdOnd1 . . . qk tdOndk

g. So the proof of Claim 6.14 is complete in this case.
�(Third Case)

Fourth Case. Suppose that l ≤ k − 1. This is the final case in the proof of Claim 6.14. Let
k∗ = l + 1 and let g∗ = ql+2 tdOndl+2

. . . qk tdOndk
g. The connection between g∗ and f is

presented in the following picture. f is equal to ql+1 tdOndl+1
g∗.

p tdOnd u = p tdOnd q1 tdOnd1 . . . . . . ql tdOndl
f ,

u = q1 tdOnd1 . . . . . . ql tdOndl
ql+1 tdOndl+1

g∗.

Note that U2 is a germ for p saidd q1 tdOn g∗, as k∗ ≤ k. D is at least the depth of p tdOn

f and p saidd q1 tdOn g∗ (both infons have the same depth), since p tdOn f belongs to U1.
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We have:

q1 tdOn ql+1 tdOndl+1
g∗ aeD {p tdOn ql+1 tdOndl+1

g∗, p said ql+1 exists,

p said q1 tdOn g∗}
aeD {p tdOn ql+1 tdOndl+1

g∗, p saidd ql+1 exists,

p saidd q1 tdOn g∗}
aeD {p tdOn ql+1 tdOndl+1

g∗, p saidd ql+1 exists} ∪ U2(d)

= {p tdOn f} ∪ U2

⊆ U1 ∪ U2.

The first aeD uses wDel.1, with x = g∗, q = q1, r = ql+1, and d = dl+1. The second aeD uses
Said0∞ if d = 0, and nothing if d = ∞. The third aeD uses Claim 6.9, to deduce p saidd
q1 tdOn g∗ from its germ U2. (Only the third, tagged deduction may use Del and Sum.3.)
Let U = {q1 tdOn ql+1 tdOndl+1

g∗} ∪ {q2, . . . , ql} exist. Then U aeD U1 ∪ U2 by condition
(ii) and the deduction above, and U is a germ for u. This completes the final, fourth case.

�(Fourth Case)

�(Proof of Claim 6.14)

Remark 6.15. In each of the cases in the proof of Claim 6.14 we produced a germ U for u,
so that U aeD U1 ∪U2. The deduction witnessing that U aeD U1 ∪U2 may use Del and Sum.3,
but these rules were needed only in the following places (marked here by the letters used to
tag them during the proof):

(a) Deducing infon p saidd u from {p tdOnd u} ∪ U2, where U2 is a germ for the infon,
and the infon has depth ≤ D.

(b) Deducing infon p tdOn x from U1 ∪ {p said q1 tdOne x}, where U1 is a germ for the
infon, and the infon has depth < D.

(c) Deducing infon p tdOn g from U1 ∪ {p said q1 tdOn g}, where U1 is a germ for the
infon, and the infon has depth < D.

(d) Deducing infon p saidd q1 tdOn g∗ from {p tdOn ql+1 tdOndl+1
g∗} ∪ U2, where U2 is

a germ for the infon, and the infon has depth ≤ D.

We are now ready to prove that, if y and z have depths ≤ D, and y ab z, then y aeD z. We
prove the following, stronger result:

Lemma 6.16. Let Z be a set of infons of depths ≤ D. Let y be an infon. Suppose that
y ab Z. Then there is a germ Y for y so that Y aeD Z.

Proof. Fix y and Z. The lemma is proved by induction on the length of the basic deduction
of y from Z, using Claims 6.12 and 6.14 to replace the rules applied in the basic deduction
by depth-conservative deductions given by the claims.

To be precise, let x1, . . . , xr = y be the shortest basic deduction of y from Z. Let R be
the last rule applied in the deduction. Let j1, . . . , jk < r be such that in the last step of the
deduction, y is derived from xj1 , . . . , xjk . So y a xj1 , . . . , xjk is a SaidMon extension of R.
By induction there are germs Xi for xji so that:

(i) Xi aeD Z.
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By Claims 6.12 and 6.14, R is depth-conservative on germs. By Claim 6.11, SaidMon exten-
sions of R are also depth-conservative on germs. Applying this to the instance y a xj1 , . . . , xjk
and the germs Xi for xji it follows that there is a germ Y for y so that:

(ii) Y aeDX1 ∪ · · · ∪Xk.

Combining the deductions in (i) and (ii) we get Y aeD Z. �

Corollary 6.17. Let y and z be infons of depth ≤ D. Then y ≤ z iff y aeD z.

Proof. The right-to-left direction is obvious as y aeD z ⇒ y ae z ⇒ y ≤ z. For the left to right
direction, suppose y ≤ z. Then y ab z by Lemma 6.3. By the last lemma, there is a germ Y
for y so that Y aeD z. Since y has depth ≤ D, y aeD Y by Claim 6.9. We have y aeD Y aeD z, so
by composing deductions, y aeD z. �

Corollary 6.17 is already enough to conclude that whether or not y ≤ z can be decided by
an algorithm. The algorithm lists all infons which are aeD z, where D is the maximum depth
of y and z, avoiding duplications in sums. So long as duplications in sums are avoided, there
are only finitely many infons to go over.

Still, the number of infons to go over is too large. We now obtain a more efficient algorithm
for deciding whether y ≤ z, by more carefully sifting the relevant infons.

Let relevant be a new synthetic function of type Info → Info. We shall add to the
computation of whether y ae Z a computation of whether certain infons are relevant (meaning
relevant to the computation), and restrict Del and Sum.3 to the following weaker rules:

p tdOn q tdOnd x a p tdOn x, q exists,
relevant(p tdOn q tdOnd x).

(wDel.3)

x+ y a x, y, relevant(x+ y).(wSum.3)

In a deduction, wSum.3 allows deducing infon x+y from infons x, y, and relevant(x+y).
It is the addition of relevant(x+ y) to the requirement list that differentiates wSum.3 from
the unrestricted rule Sum.3. A similar addition requiring the relevance of the conclusion
differentiates wDel.3 from the unrestricted Del.

We view relevant(y) as a “virtual” infon; it is only important internally, to the compu-
tation. Most of the house rules are such that they will not produce “real” infons (meaning
infons in the original vocabulary) from virtual ones. The exception is Exists, and we therefore
weaken it to:

q exists a x, for q and x so that q regcomp x ∧ original(x).(wExists)

Here original(x) holds iff x is in the original vocabulary, without relevant. Computation
of original(x) is easy, and without loss of generality we may assume that the relation is a
substrate relation.

The virtual infons pref relevant(x) are added only as a technical tool in computing the
fixed point. The following rules allow deducing such infons during the computation. The
rules are designed to allow deducing enough virtual infons so as to compensate for the added
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restriction in wDel.3 and wSum.3.

p saidd relevant(x) a p tdOnd x, p saidd y,(Relevant.1)

if quoteDepth(y) ≥ quoteDepth(x).

relevant(p tdOn x) a p said q tdOnd x.(Relevant.2)

relevant(x) a relevant(x+ y).(Relevant.3a)

relevant(y) a relevant(x+ y).(Relevant.3b)

p saidd relevant(x) a relevant(p saidd x), p exists.(Relevant.4)

relevant(p tdOn x) a relevant(p tdOn0 x).(Relevant.5)

relevant(q tdOnd x) a relevant(p tdOnd x), q exists.(Relevant.6)

relevant(p tdOn x) a relevant(p tdOn q tdOnd x).(Relevant.7)

The first rule expresses the intuition that if p tdOnd x, and p says anything at all of the
same quotation depth as x or of greater quotation depth, then it is important to deduce
whether he says x (in which case we should later deduce x). The second rule expresses the
intuition that if p says that q tdOnd x, then it is important to deduce whether p tdOn x (in
which case we should later deduce q tdOnd x). The remaining rules extract + and saidd
from relevant, close relevance downward, and (in the case of 5 and 6) add some sideways
closure. They are important for technical reasons.

Definition 6.18. A careful ensue-deduction from a set X of canonical infons is a sequence
x1, . . . , xr satisfying the conditions in Definition 6.2 with the following modification: Del,
Sum.3, and Exists are removed from the list of rules whose SaidMon extensions may be used
in the deduction, replaced by wDel.1–3, wSum.3, and wExists, and Relevant is added.

A careful deduction is thus a deduction using the rules allowed for an enhanced deduction
except for Del, Sum.3, and Exists; using restricted counterparts wDel.3, wSum.3, and wExists
for these rules; and using Relevant. We write y ac Z to indicate that there is a careful
deduction of y from Z. Note that there is no need to consider depth restrictions, since none
of the rules allowed in a careful deduction increases depth.

We shall see that the time complexity of computing whether y ac Z only has the quotation
depth of Z in the exponent, and is polynomial in all other parameters. For y and Z in
the original vocabulary that does not include relevant, we shall see that y ab Z iff y ac Z ∪
{relevant(y)}.

We start with the latter task, and check to begin with that, for infons in the original
vocabulary, no more can be deduced using ac than can be deduced using ae.

Claim 6.19. Let X, y, and Z be in the original vocabulary (without relevant). Suppose
y acX ∪ {relevant(z) | z ∈ Z}. Then y aeX.

Proof. By induction on the length of the careful deduction leading to y, dividing into cases
depending on the rule used in the last step of the deduction.

The rule used in the last step cannot be Relevant, since it would not lead to an infon in
the original vocabulary.

Suppose the rule used in the last step is wDel.3. Then y has the form pref p tdOn q tdOnd
x, and pref p tdOn x and pref q exists appear earlier in the deduction. By induction both
are aeX. Using a SaidMon extension of Del it follows that so is y.
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A similar argument works when the rule used in the last step is wSum.3.
Suppose the rule used in the last step is Sum.1 or Sum.2. Then y has the form pref u or

pref v, where the infon pref (u+ v) appears earlier in the deduction. We need the following
subclaim: u and v are in the original vocabulary.

In fact, by induction on the length of the careful deduction it is easy to prove the stronger
subclaim, that the deduction cannot reach infons of any of the following forms:

(1) pref p tdOnd f where f is not in the original vocabulary.
(2) Infons with nested occurrences of relevant.
(3) Infons pref (f + g) with f + g not in the original vocabulary.

Item 1 is used in the proof of 2, which in turn is used in the proof of 3. The subclaim that
u and v are in the original vocabulary follows from 3.

Returning to the main proof, knowing that u and v are both in the original vocabulary, and
pref (u+v) appears earlier in the deduction, we conclude by induction that pref (u+v)aeX.
An application of a SaidMon extension of Sum.1 and Sum.2 now shows pref u and pref v are
both aeX.

Suppose the rule used in the last step is any of Said0∞, SelfQuote, Trusted0∞, TrustAp-
plication, Del-, Role.1–2, wDel.1, and wDel.2. Let y a y1, . . . , yk be the instance of the rule
that is used in the last step. Note that in all those rules, every non-regular variable appearing
on the right-hand-side of a also appears on the left-hand-side. From this and the fact that y
is in the original vocabulary (without relevant), it follows that each of the infons y1, . . . , yk
is in the original vocabulary. These infons are deduced before y, and by induction therefore
they are all aeX. So y aeX.

Suppose finally that the rule used in the last step is wExists. Then y has the form pref q
exists, and there is a previous infon of the form pref x in the deduction, with q regcomp

x, and original(x). By induction pref x aeX, and using a SaidMon extension of Exists it
follows from this that pref q exists aeX. �

We now work to show that if y ae z, then y ac z + relevant(y).

Claim 6.20. If X is a germ for y, then y acX ∪ {relevant(y)}.

Proof. Let x1, . . . , xr = y be a deduction of y from X, using only SaidMon extensions Del,
Trust0∞, and Sum.3. We work by induction on the length of the deduction, dividing into
cases depending on which rule is used in the last step of the deduction.

Suppose that the last step in the deduction is a SaidMon extension of the rule Sum.3.
Then y has the form pref (u + v), and both pref u and pref v occur previously in the
deduction. Using Relevant.3, relevant(pref u) and relevant(pref v) are acr relevant(y).
By induction, pref u acrX ∪ {relevant(pref u)}, and similarly with v. By Relevant.4,
pref relevant(u + v) acr relevant(y). Combining all these deductions we see that pref
u, pref v, and pref relevant(u + v) are acr X ∪ {relevant(y)}. Now using the SaidMon
extension of wSum.3 obtained by prepending pref to the rule we conclude that y = pref (u+
v)acrX ∪ {relevant(y)}.

A similar argument handles the case that the last step in the deduction involves Del or
Trust0∞, using Relevant.7 and wDel.3 rather than Relevant.3 and wSum.3 in the case of
Del, and using Relevant.5 and Trust0∞ in the case of Trust0∞. �

Remark 6.21. Suppose as in the last claim that X is a germ for y. Suppose further that
y has the form p saidd v. Then y acrX ∪ {p saidd relevant(v)}. To see this, note that
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by Remark 6.8, X contains a set p saidd U where U is a germ for v. By the last claim v
acr U ∪ {relevant(v)}, and prepending p saidd to the deduction witnessing this it follows
that y acrX ∪ {p saidd relevant(v)}.

Lemma 6.22. Suppose that y ab Z. Then there is a germ Y for y so that Y acr Z.

Proof. We repeat the proof of Lemma 6.16 and the results leading to it (namely Claims 6.12
and 6.14), replacing aeD by acr throughout. The replacement can be done trivially in all
cases where Del and Sum.3 are not used, as all other rules allowed in enhanced deductions
are also allowed in careful deductions. (Exists is not allowed in careful deductions, but all
its instances on infons in the original vocabulary are allowed, and only these instances show
up in the proof of Lemma 6.16.) The uses of Del and Sum.3 are listed in Remark 6.15. We
go over them now, checking that ae can be replaced by acr.

Consider first item (a) in Remark 6.15, which indicates a possible use of Del and Sum.3 in
the equation p saidd u aeD {p tdOnd u}∪U2, tagged (a) in the proof of Claim 6.14, where U2

is a germ for p saidd u. We must check that p saidd u acr {p tdOnd u}∪U2, so that aeD can
be changed to acr in the equation. Now U2 is a germ for p saidd u. The rules allowed in the
definition of a germ do not increase quotation depth, and indeed do not introduce any new
prefixes. So there must be an infon p saidd v in U with quoteDepth(v) ≥ quoteDepth(u).
Applying Relevant.1 we therefore get p saidd relevant(u) acr {p tdOnd u} ∪ U2. U2 is a
germ for p saidd u, and so by Claim 6.20, or More precisely Remark 6.21, p saidd u acr
U2 ∪ {relevant(p saidd u)}. Combining these deductions we get p saidd u acr {p tdOnd
u} ∪ U2, as needed.

Consider next item (b) in Remark 6.15. We have to check that p tdOn x acr U1 ∪ {p said
q1 tdOne x}, where U1 is a germ for p tdOn x. By Relevant.2, relevant(p tdOn x) acr p
said q1 tdOne x. By Claim 6.20, p tdOn x acr U1 ∪ {relevant(p tdOn x)}. Combining the
two deductions we get p tdOn x acr U1 ∪ {p said q1 tdOne x}, as required.

Item (c) in Remark 6.15 is a special case of item (b), with e =∞.
Consider finally item (d). We have to check that p saidd q1 tdOn g∗ acr {p tdOn ql+1

tdOndl+1
g∗} ∪ U2, where U2 is a germ for p saidd q1 tdOn g∗.

Note first that U2, being a germ for p saidd q1 tdOn g∗, must have an infon of the form p
saidd v. Using Relevant.1 we therefore get that:

(i) p saidd relevant(ql+1 tdOndl+1
g∗) acr {p tdOn ql+1 tdOndl+1

g∗} ∪ U2.

Since U2 is a germ for p saidd q1 tdOn g
∗, there must be an infon of the form p saidd v in U2

with q1 regcomp v. So p saidd q1 exists acr U2 by an application of a SaidMon extension of
wExists. Extending the deduction leading to (i) with the SaidMon extension of Relevant.6
and (if dl+1 = 0) Relevant.5 obtained by prepending p saidd, we get:

(ii) p saidd relevant(q1 tdOn g∗) acr {p tdOn ql+1 tdOndl+1
g∗} ∪ U2.

By Claim 6.20, or more precisely Remark 6.21, p saidd q1 tdOn g∗ acr U2 ∪ {p saidd
relevant(q1 tdOn g

∗)}. Combining this with (ii) we get p saidd q1 tdOn g
∗ acr {p tdOn ql+1

tdOndl+1
g∗} ∪ U2, as required. �

Corollary 6.23. The following are equivalent for infons y and z in the original vocabulary
(without relevant):

(1) y ab Z.
(2) y acr Z + relevant(y).
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Proof. Suppose first that y ab Z. By Lemma 6.22, there is a germ Y for y so that Y acr Z.
Now using Lemma 6.20 it follows that y acr Z + relevant(y).

Conversely, suppose that y acr Z + relevant(y). Then by Claim 6.19, y ae z, and hence
y ab Z. �

Recall that our aim in this subsection is to reach an algorithm which, given a set of infons
Z and another set I of infons of interest, produces all infons in I which ensue Z. By Corollary
6.23 the algorithm need simply produce all infons which are acr Z ∪{relevant(w) | w ∈ I}.
This can be done by repeatedly going over the deduction rules, adding to a list all infons which
follow from previously added infons using one of the rules. The process must be iterated
until it ceases to add new infons. The time complexity of the algorithm is polynomial in
length(Z∪I) multiplied by the number of infons which might be added (this number bounds
the number of iterations which may be needed). We end this subsection by finding a bound
on the number (and indeed the set) of infons which may be produced by a careful deduction
from Z ∪ {relevant(w) | w ∈ I}.

Let Z and I be given. Let B be the set of regular components of infons in Z. Let δ be
the largest quotation depth of an infon in Z.

Claim 6.24. If y ab Z then all regular components of y belong to Z, and the quotation depth
of y is at most δ.

Proof. Immediate by induction on the deduction of y from Z; none of the deduction rules
increases quotation depth, or adds new regular components. �

In light of the claim we may assume that all regular components of infons in I belong to
B, and all infons in I have quotation depth ≤ δ; if I has infons which do not satisfy these
conditions we might as well remove them, as they cannot be deduced from Z.

We say that x is a component of y if x labels a node in the semantic tree of y.
Let T1 consist of all infons of the following forms:

(1) Components of infons in Z ∪ I.
(2) p attribute where p ∈ B and attribute is an attribute component of an infon in Z ∪ I,

or exists.
(3) p tdOnd x where p ∈ B and either tdOn0 x or tdOn x is an attribute component of

an infon in Z ∪ I.

Let T consist of all infons of the forms p1 saidd1 . . . pl saiddl
x and p1 saidd1 . . . pl saiddl

relevant(x) where x ∈ T1, l + quoteDepth(x)≤ δ, pi ∈ B, and di ∈ {0, 1}.

Claim 6.25. T is closed under careful deductions.

Proof. The proof is immediate by inspection of the rules allowed in careful deductions. Let
us only comment that the restriction in Relevant.1 that there must exist some y so that p
saidd y and quoteDepth(y) ≥quoteDept(x) is used to guarantee that SaidMon extensions
of the rules, when applied to infons in T , only produce infons pref relevant(x) with the
depth of pref plus the quotation depth of x being at most δ. �

Claim 6.26. The size of T is bounded by 3 · (δ + 1) · N · (2 · b)δ+1, where δ is the largest
quotation depth in Z, N is the number of components of infons in Z∪I, and b is the number
of regular components of infons in Z.
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Proof. The size of T1 is at most N + 2 ·N · b, which is bounded by 3 ·N · b. (We may assume
that Z has at least one regular component, for otherwise the only infons which ensue Z
are those which belong to Z, and there is nothing to compute.) The size of T is at most
2 · (δ + 1) · (2 · b)δ times the size of T1. �

Since Z∪{relevant(w) | w ∈ I} is contained in T by the definition of T , it follows from the
last two claims that the number of infons which are acr Z∪{relevant(w) | w ∈ I} is at most
3·(δ+1)·N ·(2·b)δ+1. This induces a bound polynomial in (length(Z∪I))·(2·b)δ+1 on the time
complexity of the algorithm producing all these infons. By Corollary 6.23, this algorithm
produces all infons in I which ensue Z, achieving our initial goal for this subsection. But
we shall not use the algorithm directly, and instead fold it into the algorithm for answering
basic queries, in the next subsection.

6.2. The algorithm. Fix a substrate X, an authorization policy A, and a query Q = (a
knowsd t(v1, . . . , vk)). (Below we refer to d as d(Q), and to k as k(Q).) We describe how to
compute the answer to Q under A.

We intend to reduce the computation of the answer to a computation of a fixed point
Π̄(X̊) where Π̄ is a logic program derived from A and the house rules, X̊ is a finite partial
substructure of X. The reduction will use the results of the previous subsection, and the
following safety conditions, which as we noted in the preamble to this section were imposed
as part of the assertion form in Subsection 4.1:

• Variables range only over regular elements.
• Variables must be “knowledge bound” in the sense that if a variable v, other than

the target of the assertion, occurs in the assertion, then the premise of the assertion
must include knowledge of an infon which has v as a regular component.
• Non-ground regular expressions in the assertion head must also be knowledge bound.

We begin though by producing the program Π̄. It will consist of the assertions in A, the
house rules K0∞ and Say2know, and enough additional rules to compute the consequences
of KMon (and KSum) without having to compute any more of ensue than is necessary and
possible within our intended time bounds. These additional rules will be the KMon conse-
quences of the deduction rules of the previous subsection, and assertions on the relevance of
infons occurring in the query Q or in bodies of assertions in A.

Definition 6.27. The companion of an assertion A :d x ← x1, . . . , xn, con or A :d x to p
← x1, . . . , xn, con is the assertion

A :d relevant(x1 + · · ·+ xn).

The companion to the query Q = (a knowsd(Q) t(v1, . . . , vk(Q))) is the assertion

a :d(Q) relevant(t).

Here, as in the previous subsection, relevant is a new synthetic function, not occurring in
the original vocabulary of the policy A and the query Q.

Definition 6.28. By a knowledge consequence of a deduction rule

R = (y a x1, . . . , xn if body)

we mean the rule

p knowsd y ← p knowsd x1,. . . ,p knowsd xn, body.
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(The part body is empty except in the rules Relevant.1, wExists, and Exists, and in these
rules it is a substrate constraint.) The SaidMon extensions of the knowledge consequence of
R are the rules of the form

p knowsd pref y ← p knowsd pref x1,. . . ,p knowsd pref xn, body

where pref has the form p1 saidd1 . . . pl saiddl
. The depth of the extension is the maximum

depth of the infons pref x1, . . . , pref xn.

To give a quick example,

p knowsd q said0 r exists ← p knowsd q said0 x, r regcomp(x), original(x)

is a SaidMon extension of a knowledge consequence of the rule wExists of the previous
subsection.

Let δ be the maximum quotation depth of an assertion in A. Let Π̄ be the program
consisting of:

(1) All the assertions in A.
(2) The companions of the assertions in A and of the query Q.
(3) The house rules K0∞ and Say2know.
(4) The SaidMon extensions, of depth ≤ δ, of the knowledge consequences of the rules

allowed in careful deductions, namely the rules Sum.1 and Sum.2, Said0∞, Self-
Quote, Trusted0∞, TrustApplication, Del−, Role.1–2, wDel.1–3, wSum.3, wExists,
and Relevant.

Algorithm. It will follow from the proofs below that the answer to Q under A can be
computed by running the program Π̄ on the substrate generated by synthetic functions from
the regular element interpreting ground regular expressions in A and in Q, and this can
be taken as the algorithm. The substrate has a finite regular layer, as A is finite, but an
infinite synthetic layer. The program Π̄ terminates in finite time, and indeed polynomial in
(length(A) + length(Q))δ+1+w, because of the restriction in clause 4 of its definition to rules
allowed in careful deductions. Still the program correctly computes the answer to Q. These
facts follow from the proofs below. The proofs use the results of the previous subsection,
relating careful deductions to the ensue order.

The actual algorithm we write below is slightly different, in that we restrict the substrate
further, to be finite, so as to derive the polynomial time bound directly from Theorem A.3.

Claim 6.29. (1) The length of Π̄ is linear in length(A) + length(Q) + δ · 2δ+1.
(2) The width of Π̄ is at most max{width(A), δ + 3}.

Proof. The fourth clause in the definition of Π̄ contributes a number of rules proportional to
2δ+1, as there are 2δ+1 prefix expressions of depth ≤ δ (determined by the alternation pattern
of said and said0). The lengths of the rules contributed by this clause is proportional to δ, as
the length of the prefix is proportional to δ and the rest is fixed. The third clause contributes
two rules of fixed length, and the contribution of the first two clauses is proportional to
length(A) + length(Q). This proves condition 1 in the claim.

As for condition 2, width(A) bounds the width of the rules in the first two clauses in the
definition of Π̄, 3 bounds the width of the rules in the third clause, and δ + 3 bounds the
width in the fourth clause. �

Let B consists of the values of the following regular expressions:
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(1) All principals who own assertions in A, and the principal a whose knowledge is to be
queried.

(2) All ground regular expressions appearing in heads of assertions in A.

Let T0 consist of all expressions (including subexpressions) which appear in A or in Q, and
all expressions of the form p saidd x where x is the head of an assertion of form (As2) in A.
Let T1 consist of all expressions in T0 plus expressions of the following forms:

(1) p attribute where p is a principal variable and attribute is an attribute expression in
T0, or exists.

(2) p tdOnd x where p is a principal variable and either tdOn0 x or tdOn x is an attribute
expression in T0.

Let T consist of all expressions of the forms p1 saidd1 . . . pl saiddl
x and p1 saidd1 . . . pl

saiddl
relevant(x) where x ∈ T1, l + quoteDepth(x)≤ δ, pi are Principal variable, and

di ∈ {0, 1}.
Let X̊ be the restriction of the substrate X to the universe consisting of the values of all

expressions in T under assignments of values from B to their variables. The computation
leading to Claim 6.26 shows that the size of X̊ is bounded by a polynomial in (length(A) +
length(Q))δ+1. (The number of expressions which appear in A and in Q is bounded by
length(A) + length(Q). The size of |B| too is bounded by length(A) + length(Q).)

We intend to prove:

Lemma 6.30. The formula “a knowsd(Q) t(b1, . . . , bk(Q)) ∧ a knowsd(Q) b1 exists ∧ . . . ∧ a
knowsd(Q) bk(Q) exists” holds in Π(X) iff it holds in Π̄(X̊). Further, if Π̄(X̊) |= a knowsd(Q)

b exists, then b ∈ B.

Granted the lemma, we can compute the answer to Q under A by following these steps:

(1) Determine δ from A and Q.

(2) Determine the restricted substrate X̊, and the program Π̄.

(3) Compute the fixed point Π̄(X̊).
(4) Produce the set of tuples (b1, . . . , bk), with elements taken from B, so that the for-

mula “a knowsd(Q) t(b1, . . . , bk(Q)) ∧ a knowsd(Q) b1 exists ∧ . . . ∧ a knowsd(Q) bk(Q)

exists” holds in Π̄(X̊).

The time required to perform task 1 is linear in length(A) + length(Q). The time required
for task 2 is polynomial in (length(A) + length(Q))δ+1. (The time required to produce T1 is
linear in length(A) + length(Q), and the size of B is bounded by length(A) + length(Q), but

the time required to produce the prefixes in forming T and instantiate them in forming X̊
introduces the factor (2·|B|)δ+1. The time required to produce Π̄ is proportional to its length,
which by Claim 6.29 is certainly bounded by a polynomial in (length(A) + length(Q))δ+1.)

By Theorem A.3, the time required for task 3 is bounded by a polynomial in |X̊| · length(Π̄) ·
|B|width(Π̄), which in turn is bounded by a polynomial in (length(A) + length(Q))δ+1+w.
Finally task 4 involves going over |B|k(Q) tuples, and as w bounds the width k(Q) of the
query, the time required for this task too is bounded by a polynomial in (length(A) +
length(Q))δ+1+w. The following theorem is thus a corollary of Lemma 6.30:

Theorem 6.31. There is an algorithm which given a policy Aand a query Q computes the
answer to Q under A in time complexity bounded by (length(A) + length(Q))δ+1+w, where δ
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is the maximal quotation depth of assertions in A, and w is the maximal width of assertions
in A.

The rest of this subsection is dedicated to the proof of Lemma 6.30.

Claim 6.32. Let r ∈ B.

• If Π̄(X̊) |= r knowsd z and b regcomp z, then b ∈ B.

• If Π̄(X̊) |= q saysd z to r, then q ∈ B, and if b regcomp z then b ∈ B.

Proof. The two conditions of the claim would follow by simultaneous induction on the stage
in the iteration used to compute the least fixed point for Π̄, provided we can prove that:

(1) If R is an instance of a rule in Π̄ with conclusion r knowsd z, and b regcomp z, then:
(a) b ∈ B, or
(b) there is a clause r knowsd′ z′ in the premise of R so that b regcomp z′, or
(c) there is a clause q saysd′ z′ to r in the premise of R so that b = q or b regcomp

z′.
(2) If R is an instance of a rule in Π̄ with conclusion q saysd z to r, then q ∈ B, and for

every regular component b of z we have:
(a) either b ∈ B,
(b) or else there is a clause r knowsd′ z′ in the premise of R so that b regcomp z′.

Inspection of the rules in items 3 and 4 in the definition of Π̄ immediately establishes
conditions 1 and 2 for their instances. (The third possibility in condition 1 appears because
of the inclusion of rule Say2know.) It remains to check the conditions for instances of
assertions in A, and their companions.

We deal first with instances of assertions of the form (As1). Note that this includes also
the companions of all assertions in Π. Suppose that

A :d x ← x1, . . . , xn, con

is an assertion of this form. Recall from Subsection 4.1 that the full assertion is
A knowsd x ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧

A knowsd τ1 exists ∧ · · · ∧ A knowsd τk exists

where τ1, . . . , τk include (among other things) all non-ground regular components of x. The
values of the ground components of x are by definition elements of B. Thus, if an instance
of the assertion leads to a conclusion A knowsd z, and b regcomp z, then either b ∈ B or else
there is a clause A knowsd b exists in the premise of the instance, as required for 1.

Suppose next that
A :d x to p ← x1, . . . , xn, con

is an assertion of the form (As2) in A. Recall from Subsection 4.1 that the full assertion is

A saysd x to p ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd τ1 exists ∧ · · · ∧ A knowsd τk exists

where τ1, . . . , τk include all non-ground regular components of x, other than p. p is instanti-
ated to r which is assumed to be an element of B. The value of A belongs to B by definition,
and so do the values of the ground regular components of x. Condition 2 follows. �

Claim 6.33. For infon f in the original vocabulary (without relevant):

(1) If Π̄(X̊) |= p saysd f to q, then Π(X) |= p saysd f to q.
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(2) If Π̄(X̊) |= p knowsd f , then Π(X) |= p knowsd f .

Proof. Let ΓΠ̄ be the immediate action operator of the program Π̄. Let Π̄(Π(X)) be the
least fixed point of ΓΠ̄ above Π(X), namely the limit of the structures Xn where X0 = Π(X)
and Xn+1 = ΓΠ̄(Xn).

By Claim 6.19, repeated applications of ΓΠ̄ to Π(X) do not add to knowsd any instances
p knowsd y with y in the original vocabulary. It follows that Π(X) and in Π̄(Π(X)) agree on
saysd and on the restriction of knowsd to infons in the original vocabulary.

Certainly if Π̄(X̊) |= p knowsd f , then Π̄(Π(X)) |= p knowsd f , and by the above this
implies that Π(X) |= p knowsd f for infon f in the original vocabulary. This establishes
condition 2 of the claim, and a similar implication chain establishes condition 1. �

Let knows∗d be defined by the following clauses. Infons here are in the original vocabulary.

(1) If p ∈ B then p knows∗d f just in case that there is a set Y of infons so that:

• Π̄(X̊) |= p knowsd y for each y ∈ Y , and
• Y is a germ for f .

(2) If p 6∈ B then p knows∗d f for all infons f .

Let saysto∗d be defined by the following clauses. Again infons are in the original vocabu-
lary.

(1) If p ∈ B then q says∗d f to p just in case that Π̄(X̊) |= q saysd f to p.
(2) If p 6∈ B then q says∗d f to p for all f and all q.

Claim 6.34. (1) If p knows∗d f , and p knows∗d g, then p knows∗d f + g.
(2) If p knows∗d f and g ≤ f then p knows∗d g.
(3) If p knows∗0 f then p knows∗ f .

(4) If p ∈ B and p knows∗d q exists then Π̄(X̊) |= p knowsd q exists.

Proof. All conditions are obvious for p 6∈ B. So suppose p ∈ B. Condition 1 in this case
follows from the fact that if F is a germ for f , and G a germ for g, then F ∪G is a germ for
f+g. Condition 3 follows from the fact that Π̄(X̊) satisfies the house rule K0∞. Condition 4
holds because any germ for the infon q exists must actually include the infon. Let us prove
condition 2. The proof makes heavy use of the results of the previous subsection, connecting
≤ with acr.

We use p knowsd Y to abbreviate the conjunction of p knowsd y for y ∈ Y .
Suppose Y is a germ for f , and Π̄(X̊) |= p knowsd Y . Since g ≤ f , and since Y is a germ

for f , g ≤ Y . It follows by Lemma 6.22 that there is a germ Z for g so that Z acr Y . By

Claim 6.25 and the definition of X̊, all steps of the careful deduction leading from Y to Z
involve infons in X̊. From this, the fact that Π̄(X̊) |= p knowsd Y , and the inclusion of the

knowledge consequences of the careful deduction rules in Π̄, it follows that Π̄(X̊) |= p knowsd
Z. Since Z is a germ for g, p knows∗d g. �

Let X∗ be the superstrate structure defined by the following clauses:

(1) The relation knowsd of X∗ is the relation knows∗d.
(2) The relation saystod of X∗ is the relation saysto∗d.
(3) The relation ≤ of X∗ is the relation ≤ of Π(X).

Claim 6.35. Let x(v1, . . . , vk) be a expression for an infon in the original vocabulary. Let ξ
be an assignment of values b1, . . . , bk to the variables of x. Suppose that the assertion A :d
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relevant(x(v1, . . . , vk)) is included in Π̄. Let c be the value of A, and let f = x(b1, . . . , bk)
be the value of x under ξ.

Suppose that c knowsd f ∧ c knowsd b1 exists ∧ · · · ∧ c knowsd bk exists holds in X∗.
Then it holds also in Π̄(X̊).

Proof. Suppose c knows∗d f . By definition of knows∗d this means that there is a germ Y for f
so that:

(i) Π̄(X̊) |= c knowsd Y .

If τ(v1, . . . , vk) is a regular component of x(v1, . . . , vk) then τ(b1, . . . , bk) is a regular compo-
nent of f , and so it must be a regular component of an infon in Y . It therefore follows from
(i) that:

(ii) Π̄(X̊) |= c knowsd τ(b1, . . . , bk) exists, for each regular component τ of x.

A similar argument, but starting from c knows∗d bj exists instead of c knows∗d f , shows
that:

(iii) Π̄(X̊) |= c knowsd bj exists, for each j ≤ k.

By assumption the assertion A :d relevant(x(v1, . . . , vk)) is included in Π̄. The body of
the assertion has only clauses requiring the existence of v1, . . . , vk and the existence of all
regular components of x(v1, . . . , vk). By conditions (ii) and (iii), the instance of the body

given by the assignment ξ is true in Π̄(X̊), and it follows that:

(iv) Π̄(X̊) |= c knowsd relevant(x(b1, . . . , bk)).

By Corollary 6.23, f = x(b1, . . . , bk)acr Y ∪ {relevant(f)}. By Claim 6.25 and the

definition of X̊, all steps of the careful deduction leading from Y ∪ {relevant(f)} to f

involve infons in X̊. From this, conditions (i) and (iv), and the inclusion of the knowledge
consequences of the careful deduction rules in Π̄, it follows that

(v) Π̄(X̊) |= c knowsd f .

This and condition (iii) complete the proof of the claim. �

Lemma 6.36. X∗ is a fixed point for Π.

Proof. The relation ≤ of X∗ is by definition a fixed point for the ensue rules in Π. By Claim
6.34, X∗ is a fixed point for K0∞, KSum and KMon. X∗ is a fixed point for instances of
Say2Know with p 6∈ B, simply because p knows∗d f for all infons f in this case. X∗ is a fixed
point for instances of Say2Know with p ∈ B by the following chain of implications:

q says∗d f to p ⇒ Π̄(X̊) |= q saysd f to p

⇒ Π̄(X̊) |= p knows q saidd f

⇒ p knows∗ q saidd f.

The first implication holds by the definition of saysto∗d in the case p ∈ B, the second by

rule Say2Know in Π̄(X̊), and the third by the definition of knows∗d.
It remains to show that X∗ is a fixed point for each of the assertions in A. We handle

assertions of the form (As2). The argument for assertions of the form (As1) is similar and
slightly easier.

Fix an assertion

(a) A :d x to p ← x1, . . . , xn, con
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in A, and an assignment ξ of values to the variables of the assertion, so that the body of the
instance of the assertion generated by making the assignment ξ is true in X∗. Let

(b) c :d f to b ← f1, . . . , fn, con

be the instance of (a) obtained by making the assignment ξ. We have to show that c says∗d
f to b.

If b 6∈ B then by definition c says∗d g to b for all infons g, and there is nothing further to
show. So we may assume that b ∈ B.

Recall from Subsection 4.1 that the full form of (a) is

A saysd x to p ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd τ1 exists ∧ · · · ∧ A knowsd τk exists

(c)

where p, τ1, . . . , τk include all the variables of the assertion. ξ must assign value b to p, so as
to obtain the instance (b) above. Let bj be the values of τj under ξ.

Since the instance of (c) obtained by making the assignment ξ is true in X∗, X∗ |= c

knowsd bj exists for each j. By condition 4 of Claim 6.34 it follows that Π̄(X̊) |= c knowsd
bj exists, and by Claim 6.32 this implies that bj ∈ B.

We have now that all values assigned by ξ to the variables of the assertion (a) are in B,

and hence in X̊. The instance (c) therefore holds in Π̄(X̊). The body of the instance is true
in X∗. Using Claim 6.35, and the inclusion of the companion assertion to (a) in Π̄, it follows

that the body is true in Π̄(X̊). So the head must be true in Π̄(X̊), meaning that Π̄(X̊) |= c
saidd f to b. By the definition of saysto∗d it follows that c says∗d f to b. �

Remark 6.37. The “A-bound” restrictions in the assertion forms in Subsection 4.1 are used
several times in the proofs above. The restriction that all non-ground regular components
of x must be A-bound is used in the proof of Claim 6.32, to see that the rules of Π̄ do not
introduce any regular elements not explicitly named in the policy. The restriction that all
variables (other than p, in the case of form (As2)) must be A-bound is used in the proof of
Lemma 6.36 to see that the assignment ξ uses only regular elements from B.

We are now ready to complete the proof of Lemma 6.30, and with it the proof of Theorem
6.31. Recall that we have to show that the formula “a knowsd t(b1, . . . , bk) ∧ a knowsd b1

exists ∧ . . . ∧ a knowsd bk exists” holds in Π(X) iff it holds in Π̄(X̊). (The extra clause
of the lemma, that bj ∈ B, follows from a knowsd bj exists by Claim 6.32.) a and t here
are taken from the query Q, d = d(Q), and k = k(Q).

Proof of Lemma 6.30. The right-to-left direction is immediate from Claim 6.33. Let us prove
the left-to-right direction.

Suppose “a knowsd t(b1, . . . , bk) ∧ a knowsd b1 exists ∧ . . . ∧ a knowsd bk exists” holds
in Π(X). By Lemma 6.36, X∗ is a fixed point for Π. Π(X) is the least fixed point. So all
instances of knowsd true in Π(X) are true in X∗. Thus, the formula is true in X∗. The
assertion a :d relevant(t(v1, . . . , vk)) is a companion to the query Q and was included in
the program Π̄. By Claim 6.35 it follows that “a knowsd t(b1, . . . , bk) ∧ a knowsd b1 exists

∧ . . . ∧ a knowsd bk exists” holds in Π̄(X̊). �

With Lemma 6.30 at hand we know that the answer to Q is the same in Π(X) and in

Π̄(X̊). The latter can be computed in time polynomial in (length(A) + length(Q))δ+1+w.
This completes the proof of Theorem 6.31.
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7. SecPAL-to-DKAL Translation

We describe a natural translation τ of SecPAL into DKAL. To this end, we assume that
the reader is familiar with SecPAL though we recall some of the SecPAL definitions. We
presume, without loss of generality that the sort, constant, function and relation names
introduced explicitly in Section 3 do not occur in SecPAL.

Let p says x abbreviate p says x to all, where all is a fresh variable, distinct from
p and not occurring in x. Let Open DKAL be the special version of DKAL obtained by
augmenting DKAL with double rules

(1) p saysd x← p knowsd x
(2) p knowsd x← p saysd x

We will translate SecPAL into Open DKAL. The double rule 1 reflects the all-knowledge-is-
common nature of SecPAL. The double rule 2 adds a mere convenience. Without it the says
of SecPAL assertions would be translated into the knows of DKAL assertions; the double
rule 2 allows us to translate says to says. In the rest of this section, by default, DKAL
means Open DKAL.

Remark 7.1. It is possible to translate SecPAL to the original DKAL rather than Open
DKAL. We mentioned already that double rule 2 is not essential for translation. The neces-
sary instances of double rule 1 can be incorporated into the translation of SecPAL assertions;
see Remark 7.4 in this connection. By translating SecPAL to the original DKAL we gain
access to the complexity results in Section 6, specifically Theorem 4.7.

7.0.1. Substrate. The SecPAL document [3] speaks about constraint domains. What is a
constraint domain? In our understanding a constraint domain can be faithfully viewed as
a many-sorted first-order structure over which their constraints are evaluated. We consider
a fixed constraint domain and we call the corresponding structure CD which is an allusion
to “constraint domain”. In accordance to the SecPAL restriction of constraint domains,
there is a polynomial time algorithm for evaluating ground quantifier-free formulas over CD.
Without loss of generality, we assume that the domain of any SecPAL variable is a sort of
CD.

Remark 7.2. As far as the basic constraint domain of [3] is concerned, it is straightforward
to view it as a many-sorted first-order structure, except for the relation e matches pattern.
Suppose that e is a constant. What exactly matches the pattern? The name of the constant
or its values? According to first-order logic, it should be the value of e, but, in [3], it is the
name of e. One way to deal with this problem is to declare that the values of constants are
their names. A more flexible approach is to introduce an additional function s that assigns
strings to constants and to change e matches pattern to s(e) matches pattern.

We define a DKAL substrate, called Sub for brevity, appropriate for the given domain
structure CD. Sub is an extension of CD in the following sense.

• The vocabulary of CD is a part of the vocabulary of Sub, so that τF = F for every
member of the CD vocabulary. In particular, all CD sorts are Sub, and all CD
function and relation symbols (including constants) preserve their types.
• The regular elements of Sub are precisely the elements of CD.
• All CD relations and functions (including nullary) have the same interpretation in

both structures.
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7.0.2. Variables and Principal Constants. If e is a SecPAL variable of a CD sort then
τe, syntactically equal to e, is a variable of the same sort. The same applies to function and
relation symbols of CD (including constants).

7.0.3. Constraints. If con is a SecPAL constraint then τ(con) = con.

7.0.4. Predicates. If P is a SecPAL predicate of arity j, then τP , syntactically equal to P ,
is a j-ary synthetic function with Attribute values in Sub. The domain type of τP in Sub is
the domain value of P in SecPAL. If c1, . . . , cj are SecPAL constants such that (c1, . . . , cj) ∈
Dom(P ) then τP (τc1, . . . , τcj), syntactically equal to P (c1, . . . , cj), is an attribute in Sub.
In particular, if j = 0 then τP is an Attribute constant. For example, a nullary predicate
is a friend becomes an Attribute constant.

7.0.5. Verbphrases and facts. SecPAL verbphrases and facts are defined by simultaneous
recursion. We recall the definition and give the translation. Ground SecPAL verbphrases
become attributes in our model, and ground SecPAL facts become infons in our model.

• In SecPAL, if P is a predicate and e1, . . . , ek are SecPAL expressions (variables
or constants) of appropriate sorts then P e1, . . . , ek is a verbphrase. Accordingly
τ(P e1, . . . , ek) = (τP )(τe1, . . . , τek).
• In SecPAL, if e is a principal expression and V is a verbphrase then e V is an fact.

Accordingly

τ(e V ) = I(τe, τV ) = (τe) (τV ).

• In SecPAL, if f is a fact then can say0 f and can say∞ f are verbphrases. Accord-
ingly τ(can say0 f) = tdOn0 τ(f), and τ(can say∞ f) = tdOn τ(f).
• In SecPAL, if e is a principal expression then can act as e is a verbphrase. Accord-

ingly τ(can act as e) = canActAs τe.

It is easy to check by induction that, if we identify SecPAL’s can say with DKAL’s tdOn,
and ignore the difference between can act as and canActAs, we have the following. For
every SecPAL verbphrase V and every SecPAL fact f , the translation τV is syntactically
equal to V and the translation τf is syntactically equal to f . In light of this we sometimes
write just f and V instead of τf and τV below.

Lemma 7.3. For every SecPAL fact f and substitution θ, we have τ(θ(f)) = θ(τ(f)).

The proof is obvious.

7.0.6. Assertions. A SecPAL assertion has the form A says f if f1, . . . , fn, con, where
A is a constant, n ≥ 0, f is a fact, every fi is a fact, and con is a constraint. We define
τ(A says f if f1, . . . , fn, con) to be the following DKAL double assertion:

Ad : f to all ← f1, . . . , fn, con.

Remark 7.4. This simple translation takes advantage of the new house rules introduced in
the beginning of this section. If one prefers to translate SecPAL into DKAL without any
additional house rules, one has to work a bit harder. In SecPAL, “a fact is flat when it
does not contain can say,” and every fact f has the form e1 can sayd1 . . . en can saydn

g where n ≥ 0 and g is flat. We refer to g as the flat seed of f . We refer to each of



DKAL 55

the facts ek+1 can saydk+1
. . . en can saydn g, 0 ≤ k ≤ n, as a subfacts of f . Define

τ(A says f if f1, . . . , fn, con) to be the set of the following DKAL assertions:

Ad : f ← f1, . . . , fn, con

Ad : f ′ to all ← f ′

where f ′ ranges over the subfacts of f . Notice that A broadcasts not only knowledge of f ,
but also knowledge of the proper subfacts f ′ of f . The following example shows that this is
necessary: In SecPAL , assertions

A says B can say foo←
B says foo←

imply A says foo. The translation of these assertions to DKAL leads to assertions
which imply A knows foo. But if f ′ were to range only over {f} in our translation of
SecPAL assertions, that knowledge would not be shared with other principals. �

7.0.7. Assertion context. In SecPAL, an assertion context AC is a set {α1, . . . , αn} of
assertions. Accordingly τ AC is the union of the sets ταi.

SecPAL semantics is given by three deduction rules [3, §2]. It is common in logic, to use
symbol ` for derivability and symbol |= for satisfaction in a structure. In [3], symbol |= is
used for both purposes. Here we stick to the standard usage. Accordingly some occurrences
of |= in [3] will be replaced by ` in our exposition.

Theorem 7.5 (Embedding Theorem). Let AC be a safe SecPAL assertion context, and let
Π be the open DKAL program consisting of the house rules and the assertions

⋃
α∈AC τα.

Further, let A be a SecPAL principal constant, f be a SecPAL ground flat fact expression,
and d range over {0,∞}. If

AC, d ` A says f

in SecPAL then

Π(Sub) |= A saysd f

in open DKAL

Proof. Induction on the length ` of the given SecPAL deduction, proving the implication
not only for flat facts f , but also for nested facts provided they include only constants
which appear in AC. The inductive steps are obvious, and we make only the following two
comments.

First, the proof takes advantage of the additional house rules that essentially equate knows
and says.

Second, the SecPAL safety condition guarantees that the only variable assignments rel-
evant to computing flat consequences of AC are those with values explicitly mentioned as
constants in the flat atomic assertions of AC (namely assertions of the form A says g where
g is flat). Using the open DKAL rules, every principal knows of the existence of each of these
elements. Note also that, according to SecPAL syntax, all regular components of the ex-
pression τf (aka f) are variables. Thus, the parts A knows ti exists in the full forms of
assertions A :d f to all ← f1, . . . , fn, con in τ(AC) hold automatically under all relevant
assignments. �
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Remark 7.6. The following analog of the embedding theorem is true if one uses the translation
of Remark 7.4, avoiding the extra rules of open DKAL: Let AC be a safe SecPAL assertion
context, and let Π be the DKAL program consisting of the house rules and the assertions⋃
α∈AC τα with the translation τ of Remark 7.4. Further, let A be a SecPAL principal

constant, f be a SecPAL ground fact expression, and d range over {0,∞}. Suppose f is
either flat, or nested with all its constants appearing in AC. If

(A) AC, d ` A says f

in SecPAL then

(B1) Π(Sub) |= A knowsd f,

(B2) Π(Sub) |= e knows A saidd f

in DKAL, and the assertions

(B3) Ad′ : f ′ to all ← f ′

belong to Π, where e ranges over all principals, d′ ∈ {0,∞}, and f ′ ranges over subfacts of f
other than f itself. The proof is again an obvious induction on the length of the given SecPAL
deduction. The implication if (A) then (B1) is the analog of the embedding theorem; the
addition of the implications if (A) then (B2) and if (A) then (B3) is a strengthening needed
in the inductive proof, as replacement for the first extra double rule of open DKAL.

Theorem 7.7. The converse of the embedding theorem is not true. There is an assertion
context AC and a SecPAL query A says f such that Π(Sub) |= A says f but AC,∞ 6`
A says f .

Proof. Consider the following SecPAL assertion context AC:

1. A says B can say D can say foo.
2. B says C can say foo. (It’s foo, not D can say foo.)
3. C says D can say foo.
4. D says foo.

In SecPAL, you get only these consequences:

5. C says foo (from 3 and 4).
6. B says foo (from 2 and 5).

But you do not get A says foo. On the other hand, making the translation to DKAL, and
then translating the consequences back to SecPAL, you also get:

7. B says C can say D can say foo (from 2).
8. B says D can say foo (from 7 and 3).
9. A says D can say foo (from 1 and 8).

10. A says foo (from 9 and 4).

The difference between SecPAL and DKAL appears in line 7. In line 2, B trust C on foo

and lets C delegate the trust with no depth restrictions. In DKAL, but not in SecPAL, this
results in line 7, which formulates an instance of delegatability of the trust on the part of
C. �

We see Theorem 7.7 as an advantage of DKAL: more justified requests get positive answers.
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8. Discussion

Related work. The “speaks-for” paper [1] introduced the use of logic for expressing autho-
rization policies in decentralized systems, and introduced the “says” modality, which has been
used in trust management languages later on. Though the principals calculus of [1] is not
part of the later, EFPL based languages, the constructs delegates and represents in Del-
egation Logic, can say and can act as in SecPAL, and tdOn, canActAs, and canSpeakAs

in DKAL, all have functions similar to those of the operators controls and speaks for

of [1]. DKAL incorporates a feature of speaks-for which is not present in the earlier EFPL
languages, and that is the ability to nest quotations.

The expression “trust management” was coined in [8], which introduced PolicyMaker.
PolicyMaker evolved into KeyNote [9]. KeyNote allows a principal to delegate a subset of
his rights to another principal. An end principal has a right on a resource if there is a
delegation chain for this right leading to him from the authority on the resource. KeyNote
has thresholds, and so more involved scenarios, using directed graphs rather than chains,
can come up. Still there are common authorization scenarios that cannot be expressed with
KeyNote. Typically they involve a situation where a right is to be granted on the basis of
an attribute, and the attribute originates from a source not directly related to the right. For
an example see the introduction to [16].

Delegation Logic [15, 16], Binder [11], and SecPAL [4] are more recent languages, all
based on EFPL. Binder builds very directly on Datalog, plus the modality “says” which
allows Datalog programs of one principal to rely on assertions made by others. Trust by
principal A in another principal B on a relation pred(x1, . . . , xn) is expressed by A placing
the Datalog rule pred(x1, . . . , xn) :- B says pred(x1, . . . , xn). Delegation Logic, SecPAL, and
DKAL, all have vocabulary specifically designed for authorization policies. In all three, the
semantics for the constructs which expressed trust, delegates in the case of Delegation
Logic, can say in the case of SecPAL, and tdOn in the case of DKAL, are similar to the
Datalog rule for trust in Binder. The similarity is greatest in DKAL. Binder and Delegation
Logic are relational, except for the modality “says”. SecPAL goes beyond that, by allowing
nesting of can say and can say0. In translation to Datalog with constraints, one introduces
a new predicate for each nested fact occurring in the policy being translated. SecPAL also
introduces a distinction between two kinds of “says”, which we refer to as says∞ and says0.
(In the SecPAL terminology they correspond to AC,∞ |= p says f and AC, 0 |= p says f .)
The distinction between the two is used to define semantics that prevent circumventing of
delegation bounds.

The RT family languages [18] are also based on relational EFPL: Datalog in some cases
and Datalog with constraints in others. The languages have roles instead of attributes,
and principals may condition membership in a role they control on membership in a roles
controlled by other principals. Both RT and SecPAL extend Datalog with constraints. In
RT tractability with constraints is obtained by assuming that the constraint domain satisfies
quantifier elimination. SecPAL uses instead a syntactic safety condition that guarantees that
constraint variables are instantiated at the time of evaluation.

A recent language SeNDlog [2] adds targeting of communication to Binder. The targeting
of communication, inspired by a database query language NDlog, adds to confidentiality and,
as in DKAL, can be used to avoid information leakage. Though DKAL is more expressive,
its semantics for targeting of communication are similar to those of SeNDlog.
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Conclusion and future work. We designed an authorization language DKAL which ex-
ceeds the expressivity of previous languages in the literature in several respects, yet main-
tains the same time complexity bounds for answering authorization queries. The language
has several innovative features, including targeted communication and a distinction between
knowing and saying, very flexible formation of expressions allowing unrestricted use of func-
tions that can be nested and mixed, extended use of an underlying substrate which may
be very rich, strong semantics for quotations, and an information order that contributes to
succinctness and understanding of the language.

We showed that policies written using SecPAL, a very expressive language recently pro-
posed in [4], can be translated into DKAL, and in particular all authorization scenario
expressible using SecPAL are also expressible using DKAL. We presented several situations,
both user-centric and traditional, where the new features of DKAL are useful: for example
in prevention of information leakage, abstraction of cryptographic signatures, and flexible
design of a modular and distributed authorization policy. We presented an algorithm for
answering queries to DKAL authorization policy, within the time complexity bounds of
previous languages.

The DKAL query answering algorithm is currently implemented in Prolog. Future work
includes developing criteria for ensue rules which may be added to the house rules by users
without harming the time complexity results, syntax and semantics for targeting assertions
(at the moment only targeting of infons is expressible within the language), and deployment.

Appendix A. Logic

Existential fixed-point logic, EFPL, was introduced in [7]. Here we present EFPL in a
way that is convenient for our purposes. We also extend EFPL with first-order queries. The
extension is straightforward but the resulting logic is more expressive than EFPL and may
be called EFPL++ .

We presume some that the reader is familiar with some introductory text on mathematical
logic, e.g. [13] or [22]. This appendix is essentially self-contained but it isn’t a textbook.

A.1. First-order logic. We recall many-sorted first-order logic.

A.1.1. Vocabulary. A vocabulary consists of sort symbols, function symbols and relation
symbols. Each function symbol and each relation symbol has a non-negative integer arity
and a type. Nullary function symbols are known as constant symbols. It is presumed that
there are only finitely many sort symbols, relation symbols and function symbols of positive
arity. It is not excluded that the number of constant symbols is infinite.

The type of a function of positive arity r has the form

(D1 ∪ · · · ∪Dn)→ S

where S is a sort symbol, n ≥ 1, each component Dm has the form S1× · · · × Sr where each
Si is a sort symbol, and different components are distinct. Typically n = 1, but we have in
the main part of the paper a binary function I of the type

(Principal× Speech) ∪ (Regular× Attribute)→ Info.

The type of an r-ary relation has the same form except that S is replaced with the name
Boole of the set that consists of the truth values “true” and “false”. The type of a constant
symbol is a sort symbol. The type of a nullary relation symbol is Boole. Every vocabulary



DKAL 59

contains the equality sign which is a binary relation symbol. If S1, . . . , S` are all sort symbols,
then the type of the equality symbol is

(S1 × S1) ∪ · · · ∪ (S` × S`).

Each sort S of the vocabulary is endowed with an infinite list of variables, the variables of
type S. All vocabulary symbols and all the variables are strings in a fixed finite alphabet.

A.1.2. Total structures. A total structure X of a vocabulary Υ consists of a nonempty
set called the universe of X, together with interpretations of the vocabulary symbols over
the universe. The sorts, that is the interpretations of the sort symbols, are subsets of the
universe. Accordingly the domain D1 ∪ · · · ∪Dn of an r-ary function or relation consists of
r-tuples of elements of (the universe of) X. The union of all sorts is the entire universe. A
sort may be empty, and the sorts are not necessarily disjoint.

A function symbol F is interpreted by a function, called F or FX , whose type is given
by the type of the symbol F . Similarly a relation symbol P is interpreted by a relation,
called P or PX , whose type is given by the type of the symbol P . For example the binary
function interpreting the function symbol I mentioned above has (i) one argument of type
Principal and another argument of type Speech or (ii) one argument of type Regular and
another argument of type Attribute. In either case, its values are of type Info.

The interpretations of the function and relation symbols are the basic functions and re-
lations of X. A nullary basic function designates a particular element of X, a constant of
X. The equality sign is interpreted in the obvious way. The vocabulary symbols are the
identifiers of their interpretations in the structure. For example, two constants with the
same value are different constants.

Typically the components Dm of the domain D1 ∪ · · · ∪Dn of a basic function or relation
are disjoint but we do not require that. Indeed, if there are non-disjoint sorts S and S ′ then
the components S × S and S ′ × S ′ of the equality domain are not disjoint.

A variable assignment over a structure X is a mapping from a set of variables to the
universe of X. A variable of type S is mapped to an element of type S.

A.1.3. expressions. A constant of type S is a expression of type S. Similarly a variable of
type S is a expression of type S. Composite expressions are constructed from constants and
variables by means of function symbols of positive arity. If f is an r-ary function symbol of
type D → S and t1, . . . , tr are expressions of types S1, . . . , Sr respectively and S1 × · · · × Sr
is a component of D, then f(t1, . . . , tr) is a expression of type S.

Let X be a total structure and ξ a variable assignment over X. Given a expression t
with variables in Dom(ξ), compute the value V alξX(t) of t in X under ξ as follows. If t is a

variable then V alξX(t) = ξ(t). Suppose that t = f(t1, . . . , tr) where r may be zero, and let

V alξX(ti) = ai for i = 1, . . . , r. Then V alξX(t) = fX(a1, . . . , ar).

A.1.4. Atomic formulas. An atomic formula has the form P (t1, . . . , tr) where P is an r-ary
relation symbol and t1, . . . , tr are expressions of types S1, . . . , Sr such that S1× · · · × Sr is a
component of the type of P .

Let X be a total structure, ξ a variable assignment over X, P (t1, . . . , tr) an atomic formula

with variables in Dom(ξ), and V alξX(ti) = ai for i = 1, . . . , r. Then the truth value of
P (t1, . . . , tr) is that of P (a1, . . . , ar).
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A.1.5. Formulas: syntax. Atomic formulas are formulas, and all variables of an atomic
formula ϕ are free in ϕ. Composite formulas are built from atomic formulas by means of
propositional connectives and quantifiers ∀ and ∃. We will use only three propositional
connectives: conjunction, disjunction and negation.

If ϕ is a formula then the negation ¬ϕ is a formula, and the free variables of ¬ϕ are those
of ϕ. If ϕ and ψ are formulas, then the conjunction ϕ ∧ ψ and the disjunction ϕ ∨ ψ are
formulas. In either case, the free variables are those of ϕ plus those of ψ.

If ϕ is a formula then (∀v)ϕ and (∃v)ϕ are formulas. In either case, the free variables are
those of ϕ minus v.

A.1.6. Formulas: semantics. Let X be a total structure and ξ a variable assignment over
X. Consider formulas ϕ with free variables in Dom(ξ). Each such formula has a truth value

TrValξX(ϕ) in the structure X under ξ. If TrValξX(ϕ) is “true”, we say that ϕ holds (or is

true) in X under ξ. And if TrValξX(ϕ) is “false”, we say that ϕ fails (or is false) in X under

ξ. The computation of TrValξX(ϕ) proceeds by induction on ϕ.
The case when ϕ is atomic was addressed above. If ϕ = ¬ψ then the truth value of ϕ is the

opposite of that of ψ. Suppose that ϕ is ψ1 ∧ ψ2 or ϕ is ψ1 ∨ ψ2. In the case of conjunction,
ϕ holds in X under ξ if both ψ1 and ψ2 hold; otherwise ϕ fails. In the case of disjunction,
ϕ holds in X under ξ if at least one of the formulas ψi holds; otherwise ϕ fails.

Let v be a variable of type S, and suppose that ϕ is (∀v)ψ(v) or ϕ is (∃v)ψ(v). First, we
consider two degenerated cases. If S is empty, then (∀v)ψ(v) holds and (∃v)ψ(v) fails in X

under ξ. If S is nonempty but v is not a free variable of ψ then TrValξX(ϕ) = TrValξX(ψ).
Suppose that S is nonempty and that v is a free variable of ψ. To emphasize the latter,

we’ll write ψ(v) instead of ψ. For every element a of the sort S, let ψ(a) be the truth value
of ψ(v) in X under the variable assignment obtained from ξ by mapping v to a (whether ξ
was defined at v or not). If every ψ(a) equals “true”, then both (∃v)ψ(v) and (∀v)ψ(v) hold
in X under ξ. If every ψ(a) equals “false”, then both (∃v)ψ(v) and (∀v)ψ(v) fail. Otherwise
(∃v)ψ(v) holds but (∀v)ψ(v) fails.

A.1.7. Bounded quantification. We extend the syntax of formulas with an additional
formula-formation rule: If β(v) and ψ(v) are formulas then so are

(∀v : β(v))ψ(v), (∃v : β(v))ψ(v).

The colon reads “such that” here. The free variables of either formula are the free variables
of β(v) distinct from v plus the free variables of ϕ(v) distinct from v.

Accordingly we extend the inductive definition of the semantics of formulas with an addi-
tional case where v is a variable of type S and ϕ is (∀v : β(v))ψ(v) or ϕ is (∃v : β(v))ψ(v).
For every element a of type S, let β(a) be the truth value of β(a) in X under the variable
assignment obtained from ξ by mapping v to a; and let s be the set of elements a such that
β(a) equals “true”. The truth values of formulas (∀v : β(v))ψ(v) and (∃v : β(v))ψ(v) are
defined as those of formulas (∀v)ψ(v) and (∃v)ψ(v) respectively except that v ranges over s
rather than over S. In other words, think of s as a new type of the variable v.

Normally there is no need to extend the syntax of formulas by means of bounded quan-
tification because the displayed formulas are equivalent to

(∀v)[β(v)→ ϕ(v)], (∃v)[β(v) ∧ ϕ(v)]
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respectively. One problem is that we don’t want to use the implication sign. More impor-
tantly, we are about to introduce partial structures. The equivalences do not survive the
generalization.

A.1.8. Partial structures. A partial structure is like a total structure except that basic
functions may be partial. In particular some constants may be undefined. Total structures
are special partial structures.

Contrary to prevailing logic tradition, our structures are by default partial. Accordingly,
any non-empty subset U of a structure X gives rise to a substructure of X with universe U .
Even if X is total, the substructure may be partial.

We described above how to evaluate expressions and formulas in a given total structure X
under a sufficiently broad variable assignment ξ. The evaluation process is similar in the case
when X is partial. Just take into account that, since basic functions may be undefined, the
value of a expression may be undefined, and the truth value of a formula may be undefined.

Fortunately we do not have to deal with undefined values in the main part of the paper.
Whenever we evaluate a formula ϕ in a structure X, the domains of the basic functions of
X are sufficiently broad, so that undefined values do not come up during the evaluation of
ϕ.

A.1.9. Monotonicity lemma.

Lemma A.1. Let ϕ be a formula where negation is applied only to atomic formulas, and
let P be a relation symbol such that no atomic formula with relation symbol P is negated in
ϕ. Then ϕ is monotone in P in the following sense. Suppose that ϕ holds in a structure
X under a variable assignment ξ. If you enlarge the interpretation PX of P in X, without
changing the rest of the structure or the variable assignment, then ϕ holds in the modified
structure under the assignment ξ.

The lemma is well known and is easily proved by induction on ϕ.

A.2. Logic Programs. Fix a vocabulary Υ. In this subsection, by default, expressions and
formulas are of vocabulary Υ.

We presume that vocabulary Υ is split into two disjoint part, the substrate part Υ− and
superstrate part Υ−Υ−, and that the superstrate part consists of relation symbols only. If Y is
an Υ structure then the substrate of Y is the reduct of Y to Υ−. In other words, the substrate
is obtained from Y by forgetting the interpretations of the superstrate relation symbols.
Those interpretations form the superstrate of Y . An atomic formula with a substrate (resp.
superstrate) relation symbol is substrate (resp. superstrate) atomic formula.

A.2.1. Syntax. A substrate constraint is a quantifier-free formula in the substrate vocabu-
lary.

A logic rule R of vocabulary Υ has the form H ← B where H is a superstrate atomic
formula and B is a conjunction of superstrate atomic formulas and at most one substrate
constraint. (We could allow a rule to have several substrate constraints, but the conjunction
of substrate constraints is a substrate constraint. Thus the “at most one substrate constraint”
requirement does not restrict generality.) H is the head of the rule, and B is the body. B can
be empty in which case R is bodiless. We typically write H alone for a bodiless rule H ← B.
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Since our constants are strings in a fixed finite alphabet, and the same applies to our
variables, the rule R is a string in a fixed finite alphabet. The length of R is the length of
that string. The width of R is the number of variables in R.

If σ is a substitution, that is a function from variables to expressions, then σ(R) is the rule
obtained from R by simultaneously replacing every variable v with expression σ(v); the rule
σ(R) is a substitution instance of R. Given an Υ structure X, we say that an assignment ξ
of elements of X to the variables of R is safe for R over X if the value of every expression
in R is defined.

A logic program Π of vocabulary Υ is a finite set of logic rules of vocabulary Υ. The head
relation of any Π rule is a head relation of Π. The length of Π is the sum of the lengths of
its rules. The width of Π is the maximum of the widths of its rules.

A.2.2. Syntactic sugar. Notation

H1, . . . , Hm ← B

stands for m rules Hi ← B. Notation

H ← B1 ∨ · · · ∨Bn

stands for n rules H ← Bj. The two abbreviations can be used together. Notation

H1, . . . , Hm ← B1 ∨ · · · ∨Bn

stands for mn rules Hi ← Bj.

A.2.3. Semantics. Given a structure X of substrate vocabulary Υ−, a logic program Π
computes the superstrate relations over X and thus computes a Υ structure Π(X) with
substrate X. We will describe the computation. In general, the computation is infinite but
the case of interest to us is when X is finite. In that case, the computation is finite.

Partially order partial Υ structures with substrate X as follows: Y ≤ Z if PY ⊆ PZ
for every superstrate relation symbol P . The program Π gives rise to an immediate-action
operator ΓΠ on Υ structures with substrate X. If Y is an Υ structure then ΓΠ(Y ) ≥ Y . If
P is a superstrate relation symbol of arity r then the interpretation PΓΠ(Y ) of P in ΓΠ(Y )
is the union of PY and the set of tuples (a1, . . . , ar) satisfying the following condition: there
exists a rule P (t1, . . . , tr)← B in Π and there exists a safe assignment ξ of elements of Y to
the variables of the rule such that, in structure Y under assignment ξ, B holds and every ti
evaluates to ai.

An Υ structure Y such that ΓΠ(Y ) = Y is a fixed point of ΓΠ. Since ΓΠ is monotone,
by Knaster-Tarski theorem [25], there is the least fixed point of ΓΠ. That fixed point is the
desired structure Π(X) uniquely determined by Π over X. The original structure X is the
substrate of Π(X).

Here is one way to construct Π(X). Let X0 be the Υ structure obtained from X by
initializing all superstrate relations to the empty relations of appropriate types. For each
n, let Xn+1 = ΓΠ(Xn). Finally let Xω be the limit of structures Xn which means that
PΠ(X) =

⋃
n PXn for every superstrate relation symbol P . The limit structure Xω is a fixed

point of ΓΠ [7, Theorem 9]. It is easy to check by induction on n that Xn ≤ Y for every fixed
point Y of ΓΠ. It follows that Xω ≤ Y for every such Y so that Xω is the least fixed point of
ΓΠ and therefore Π(X) = Xω. The Υ structures Xn will be called standard approximations
to Xω.
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Remark A.2. In set theory, ω is the least infinite ordinal; that explains the use of ω here.
Notice that the limitXω can be reached at some finite stageXm in which caseXn = Xm = Xω

for all n > m.

A.2.4. Complexity. We analyze the fixed-point computation, that is the computation of
Π(X) described above, under some assumptions about the logic program Π and substrate
X.

First, reflecting the peculiarity of our applications, we assume that the substrate elements
split into two disjoint layers, regular and synthetic, so that we have regular elements and
synthetic elements. Every substrate sort is a part of one of the two layers, so that we have
regular sorts and synthetic sorts. All variables of Π are regular, that is of regular sorts. (The
reader not interested in the splitting of X into two layers may want to concentrate on the
special case where the synthetic layer is empty.)

Second, we assume that there is an algorithm Eval that evaluates the basic functions and
relations of X. In the function case, given a function name F and an element tuple ā of the
appropriate length, Eval determines whether F (ā) is defined and, if yes, computes the value.
In the relation case, given a relation name R and an element tuple ā of the appropriate
length, Eval determines whether R(ā) is true or false. Furthermore, we assume that Eval
works in constant time. This allows us to abstract from the presentation form of the elements
of X. In addition, the constant-time assumption simplifies the complexity analysis of the
fixed-point computation. Essentially we will count only the number of Eval calls and will
ignore Eval’s computation time. Alternatively we could make a natural assumption that
elements of X are given as strings and that Eval works in time bounded by a polynomial
of the maximal string length. That polynomial would have to be taken into account in the
following theorem but would not affect our exposition in any essential way. The analysis of
Eval is orthogonal to the main issue of this paper.

Theorem A.3. The time of the fixed-point computation is bounded by

k ·N r · nw ·O(`) · o(N)

where k is the number of superstrate relations, ` is the length of Π, N is the total number
of elements of X, r is the maximal arity of superstrate relations, n is the number of regular
elements of X, and w is the width of Π.

Proof. The number of true (as well as all) instances of superstrate relations in Π(X) is k ·N r.
An application of the immediate-action operator ΓΠ produces at least one new true instance
of a superstrate relation unless the fixed point has been reached. It follows that the fixed
point is reached in k ·N r steps, and so it remains to prove that the computation time of one
application of ΓΠ is bounded by nw ·O(`) · o(N).

Without loss of generality the whole program Π uses only w distinct variables. To compute
the new true instances of the superstrate relations, it suffices to evaluate Π under each of
the nw assignments of regular elements of X to the variables of Π. It remains to prove that
the evaluation time of Π under an assignment ξ is bounded by O(`) · o(N).

To evaluate Π under ξ, we traverse the parse tree for Π in the depth-first fashion. At some
nodes, we call Eval to evaluate an instance of a substrate function or relation. At some other
nodes, that belong to the bodies of logic rules, we check whether an instance of a superstrate
relation is in the current table of the relation. Finally, at some of the remaining nodes, that
belong to the heads of logic rules, we check whether an instance of a superstrate relation is



64 YURI GUREVICH AND ITAY NEEMAN

in the current table of the relation and, if not, then we insert it there. It suffices to show that
the time needed to handle any single node is o(N). This is trivial in the case of Eval due to
our assumption that it works in constant time. This is also obvious for the table operations.
The entries in the tables are in the lexicographical order, and binary search is used. �

Recall that the vocabulary is fixed. It follows that k is fixed.

Corollary A.4. (1) Restrict attention to logic programs of bounded width. Then the
computation time is bounded by ` times a polynomial in N . For a fixed program, the
computation time is bounded by a polynomial in N .

(2) Restrict attention to logic programs of bounded width and assume that the total num-
ber N of substrate elements is bounded by a polynomial of the number n of regular
elements. Then the computation time is bounded by ` times a polynomial in n. For
a fixed program, the computation time is bounded by a polynomial in n.

A.2.5. Equivalence. Logic programs Π1 and Π2 are equivalent if Π1(X) = Π2(X) for every
substrate structure X. Rules R1 and R2 are equivalent if Π∪{R1} is equivalent to Π∪{R2}
for every program Π. The following lemma is obvious

Lemma A.5. A rule P (t1, . . . , tr)← B is equivalent to

P (v1, . . . , vr)← B ∧ v1 = t1 · · · ∧ vr = tr.

where v1, . . . , vr are fresh variables.

A.3. EFPL and EFPL++. We recall the notion of EFPL formulas and introduce
EFPL++queries.

Again we fix a vocabulary that is split into a substrate and a purely relational superstrate.
In [7], substrate relations are called negatable, and superstrate relations are called positive.

A.3.1. Existential fixed-point logic. EFPL formulas are defined by induction in [7]. They
start with atomic formulas and the negations of atomic substrate formulas. They use only
two propositional connectives to build new formulas: conjunction and disjunction. They use
existential quantification, and do not use universal quantification; that is behind the E in
the notation EFPL. In our case, where structures are partial, we would use also bounded
existential quantification. And that there is recursion, in the form of a fixed point; that
explains the FP in the notation EFPL. Logic programs are used to populate superstrate
relations. We do not use EFPL formulas in the main part of this paper, and so we refer the
interested reader to paper [7] for details.

Let us mention, however, that every EFPL formula with nested recursions can be rewritten
in an equivalent form with no nested recursions. The following proposition illustrates the
un-nesting process.

Proposition A.6. Consider logic programs Π1 and Π2 such that (a) the head relations of
Π1 may occur only in the bodies of Π2 rules and (b) the head relations of Π2 do not occur at
all in Π1. And let X be an arbitrary substrate structure. Then Π2(Π1(X)) = (Π1 ∪ Π2)(X).

Conditions (a) and (b) guarantee that structure Π2(Π1(X)) is well defined.

Proof. To simplify notation, assume that Π1 has only one head relation P , and Π2 has only
one head relation Q. Let Γ1, Γ2, Γ3 be the operators ΓΠ1 , ΓΠ2 and ΓΠ1∪Π2 respectively. Γ1

operates on structures of vocabulary Υ− ∪ {P} with Υ− reduct X; let Y1 be the least fixed
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point of Γ1. Γ2 operates on structures of vocabulary Υ with Υ− ∪ {P} reduct Y1; let Y2 be
the least fixed point of Γ2. And Γ3 operates on structures of vocabulary Υ with Υ− reduct
X; let Z be the least fixed point of Γ3. We need to show that Y2 = Z. We prove that Y2 ≤ Z
and Z ≤ Y2.

As far as relation P is concerned, there is no difference between Π1 and Π1 ∪ Π2, and so
PY1 = PZ . It follows that Y1 is the Υ− reduct of Z and thus Γ2 is applicable to Z. Since
Γ3(Z) = Z, no rule in Π1 ∪ Π2 produces any new tuples at Z. It follows that Γ2(Z) = Z
and so Y2 ≤ Z by the definition of Y2. Further, Γ3 is applicable to Y2. Since Γ2(Y2) = Y2, no
Π2 rule produces any new tuples at Y2. Since Π1 does not use any head relation symbols of
Π2, the program Π1 operates on the Υ− ∪ {P} reduct of Y2 which is Y1 and which is equal
to Γ1(Y1); so no Π1 rule produces any new tuples at Y2. It follows that Γ3(Y2) = Y2 and so
Z ≤ Y2 by the definition of Z. �

A.3.2. EFPL++. We introduce EFPL++queries and quickly discuss what should
EFPL++formulas be.

Syntactically an EFPL++query is simply a first-order formula where the negation can be
applied only to atomic substrate formulas. Note that universal quantification is allowed.

Let ϕ(v1, . . . , vk) be a query with free variables as shown. To compute the truth value of
a query ϕ(v1, . . . , vk), we need three things. First we need a substrate structure X. Second
we need a logic program Π such that every superstrate relation of ϕ is a head relation of Π.
Finally we need a variable assignment ξ over X whose domain includes {v1, . . . , vk}. The
desired truth value of ϕ given appropriate X, Π and ξ is the truth value of the first-order
formula ϕ at structure Π(X) under ξ.

In addition to the truth value of the query ϕ(v1, . . . , vk), we define the answer to
ϕ(v1, . . . , vk). This requires only two things: a substrate structure X and a logic program
Π such that every superstrate relation of ϕ(v1, . . . , vk) is a head relation of Π. Let v̄ be the
tuple (v1, . . . , vk), so that ϕ(v̄) is ϕ(v1, . . . , vk). For any tuple ā = (a1, . . . , ak) of elements of
X, let v̄ 7→ ā be the variable assignment ξ such that ξ(vi) = ai for all i = 1, . . . , k. We say
that ϕ(ā) holds in X if ϕ(v̄) holds in X under the variable assignment v̄ 7→ ā. The answer
to query ϕ(v̄) at X under Π is the set {ā : ϕ(ā) holds at X}.

We do not use EFPL++formulas in the main part of the paper. Such a formula is given
by a logic program Π and a query ϕ whose superstrate relations are head relations of the
program. A formula given by Π and ϕ is evaluated at a substrate structure X under an
appropriate variable assignment ξ. Its truth value is the truth value of query ϕ at X under
Π and ξ.
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Appendix B. Tables of vocabulary, house rules, and assertion forms

The tables below present the DKAL vocabulary and house rules. DKAL assertion forms
are summarized following the second table.

Regular Sort ::= Regular
| Principal
| . . .

Synthetic Sort ::= Synthetic
| Info
| Speech
| Attribute

Regular Function Symbol ::= . . .

Synthetic Function Symbol ::= saidd : Info→ Speech
| tdOnd : Info→ Attribute
| canActAs : Principal→ Attribute
| canSpeakAs : Principal→ Attribute
| I : (Regular×Attribute)∪ (Principal× Speech)→ Info
| exists : Attribute
| . . .

Substrate Relation Symbol ::= regcomp : Regular×Synthetic
| . . .

Superstrate Relation Symbol ::= ensues : Info×Info
| knowsd : Principal×Info
| saystod : Principal×Info×Principal

Here subscript d ∈ {0,∞}, and subscript ∞ is usually omitted. I usually omitted in
writing. Relation ensues is abbreviated to ≤.

Figure 6. DKAL vocabulary
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p knows q saidd x ← q saysd x to p(Say2know)

a knowsd x ← a knowsd y, x ≤ y(KMon)

a knowsd x1 + x2 ← a knowsd x1, a knowsd x2(KSum)

p knows x ← p knows0 x(K0∞)

x ≤ x(EOrder)

x ≤ z ← x ≤ y, y ≤ z

x ≤ x+ y(ESum)

y ≤ x+ y

x+ y ≤ z ← x ≤ z, y ≤ z

p saidd (x+ y) ≤ p saidd x + p saidd y(SaidSum)

t exists ≤ x ← t regcomp x(Exists)

x ≤ p saidd x + p tdOnd x(TrustApp)

p tdOn (q tdOnd x) ≤ p tdOn x + q exists(Del)

p saidd x ≤ p saidd y ← x ≤ y(SaidMon)

p tdOn0 x ≤ p tdOn x(Trust0∞)

p said x ≤ p said0 x(Said0∞)

p saidd x ≤ p saidd p saidd x(SelfQuote)

p tdOnd x ≤ p tdOnd p tdOnd x(Del−)

p attribute ≤ q attribute + p canActAs q(Role)

q speech ≤ p speech + p canSpeakAs q

Again, subscript d ∈ {0,∞}, and subscript ∞ is usually omitted.

Figure 7. DKAL House Rules

Assertion forms. There are two forms of DKAL assertions:

1. A :d x ← x1, . . . , xn, con,

2. A :d x to p ← x1, . . . , xn, con.

Here A in both forms is a ground principal expression denoting the owner of the assertion;
d is either ∞ or 0, and ∞ is typically omitted; x, x1, . . . , xn are infon expressions; and con
is a substrate constraint, that is a conjunction of possibly-negated atomic formulas in the
substrate vocabulary. All variables are of type Regular; p is a principal variable called the
target variable. Assertion 1 is a knowledge assertion. It does not have a target variable, and
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it gives rise to rule

A knowsd x←
A knowsd x1,...,A knowsd xn,

A knowsd t1 exists,...,

A knowsd tk exists, con

where the list t1, . . . , tk consists of the variables in x, x1, . . . , xn, con and of the non-ground
regular components of assertion head x. Assertion 2 is a speech assertion and gives rise to
rule

A saysd x to p←
A knowsd x1, ..., A knowsd xn,

A knowsd t1 exists, . . . ,

A knowsd tk exists, con

where the list t1, . . . , tk consists of the variable of the assertion and the non-ground regular
components of the assertion head x, with the exception of the target variable p.
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