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Abstract. Closeness centrality is an important concept in social net-
work analysis. In a graph representing a social network, closeness cen-
trality measures how close a vertex is to all other vertices in the graph. In
this paper, we combine existing methods on calculating exact values and
approximate values of closeness centrality and present new algorithms
to rank the top-k vertices with the highest closeness centrality. We show
that under certain conditions, our algorithm is more efficient than the
algorithm that calculates the closeness-centralities of all vertices.

1 Introduction

Social networks have been the subject of study for many decades in social sci-
ence research. In recent years, with the rapid growth of Internet and World Wide
Web, many large-scale online-based social networks such as Facebook, Friend-
ster appear, and many large-scale social network data, such as coauthorship net-
works, become easily available online for analysis [Ne04a, Ne04b, EL05, PP02].
A social network is typically represented as a graph, with individual persons
represented as vertices, the relationships between pairs of individuals as edges,
and the strengths of the relationships represented as the weights on edges (for
the purpose of finding the shortest weighted distance, we can treat lower-weight
edges as stronger relationships). Centrality is an important concept in studying
social networks [Fr79, NP03]. Conceptually, centality measures how central an
individual is positioned in a social network. Within graph theory and network
analysis, various measures (see [KL05] for details) of the centrality of a vertex
within a graph have been proposed to determine the relative importance of a
vertex within the graph. Four measures of centrality that are widely used in net-
work analysis are degree centrality, betweenness centrality4, closeness centrality,
and eigenvector centrality5. In this paper, we focus on shortest-path closeness

4 For a graph G = (V,E), the betweenness centrality CB(v) for a vertex v is CB(v) =∑
s,t:s 6=t 6=v

σv(s,t)
σ(s,t)

where σ(s, t) is the number of shortest paths from s to t, and

σv(s, t) is the number of shortest paths from s to t that pass through v.
5 Given a graph G = (V,E) with adjacency matrix A, let xi be the eigenvector central-

ity of the ith node vi. Then vector x = (x1, x2, · · · , xn)T is the solution of equation



centrality (or closeness centrality for short) [Ba50,Be65]. The closeness central-
ity of a vertex in a graph is the inverse of the average shortest-path distance from
the vertex to any other vertex in the graph. It can be viewed as the efficiency
of each vertex (individual) in spreading information to all other vertices. The
larger the closeness centrality of a vertex, the shorter the average distance from
the vertex to any other vertex, and thus the better positioned the vertex is in
spreading information to other vertices.

The closeness centrality of all vertices can be calculated by solving all-
pairs shortest-paths problem, which can be solved by various algorithms taking
O(nm + n2 log n) time [Jo77, FT87], where n is the number of vertices and m
is the number of edges of the graph. However, these algorithms are not efficient
enough for large-scale social networks with millions or more vertices. In [EW04],
Eppstein and Wang developed an approximation algorithm to calculate the close-
ness centrality in time O( logn

ε2 (n log n + m)) within an additive error of ε∆ for
the inverse of the closeness centrality (with probability at least 1 − 1

n ), where
ε > 0 and ∆ is the diameter of the graph.

However, applications may be more interested in ranking vertices with high
closeness centralities than the actual values of closeness centralities of all ver-
tices. Suppose we want to use the approximation algorithm of [EW04] to rank
the closeness centralities of all vertices. Since the average shortest-path distances
are bounded above by ∆, the average difference in average distance (the inverse
of closeness centrality) between the ith-ranked vertex and the (i + 1)th-ranked
vertex (for any i = 1, . . . , n− 1) is O(∆n ). To obtain a reasonable ranking result,
we would like to control the additive error of each estimate of closeness central-
ity to within O(∆n ), which means we set ε to Θ( 1

n ). Then the algorithm takes
O(n2 log n(n log n+m)) time, which is worse than the exact algorithm.

Therefore, we cannot use either purely the exact algorithm or purely the
approximation algorithm to rank closeness centralities of vertices. In this paper,
we show a method of ranking top k highest closeness centrality vertices, com-
bining the approximation algorithm and the exact algorithm. We first provide
a basic ranking algorithm TOPRANK(k), and show that under certain condi-
tions, the algorithm ranks all top k highest closeness centrality vertices (with

high probability) in O((k+ n
2
3 · log

1
3 n)(n log n+m)) time, which is better than

Ax = λx, where λ is the greatest eigenvalue of A to ensure that all values xi are
positive by the Perron-Frobenius theorem. Google’s PageRank [BP98] is a variant
of the eigenvector centrality measure. The PageRank vector R = (r1, r2, · · · , rn)T ,
where ri is the PageRank of webpage i and n is the total number of webpages, is
the solution of the equation

R =
1 − d

n
· 1 + dLR.

Here d is a damping factor set around 0.85, L is a modified webpage-adjacency
matrix: li,j = 0 if page j does not link to i, and normalised such that, for each j,∑n
i=1 li,j = 1, i.e., li,j =

ai,j
dj

where ai,j = 1 only if page j has link to page i, and

dj =
∑n
i=1 ai,j is the out-degree of page j.



O(n(n log n+m)) (when k = o(n)), the time needed by a brute-force algorithm
that simply computes all average shortest distances and then ranks them. We
then use a heuristic to further improve the algorithm. Our work can be viewed
as the first step toward designing and evaluating efficient algorithms in finding
top ranking vertices with highest closeness centralities. We discuss in the end
several open problems and future directions of this work.

2 Preliminary

We consider a connected weighted undirected graph G = (V,E) with n vertices
and m edges (|V | = n, |E| = m). We use d(v, u) to denote the length of a
shortest-path between v and u, and ∆ to denote the diameter of graph G, i.e.,
∆ = maxv,u∈V d(v, u). The closeness centrality cv of vertex v [Be65] is defined
as

cv =
n− 1

Σu∈V d(v, u)
. (2.1)

In other words, the closeness centrality of v is the inverse of the average (shortest-
path) distance from v to any other vertex in the graph. The higher the cv, the
shorter the average distance from v to other vertices, and v is more important
by this measure. Other definitions of closeness centralities exist. For example,
some define the closeness centrality of a vertex v as 1

Σu∈V d(v,u) [Sa66], and some

define the closeness centrality as the mean geodesic distance (i.e the shortest

path) between a vertex v and all other vertices reachable from it, i.e., Σu∈V d(v,u)
n−1 ,

where n ≥ 2 is the size of the network’s connected component V reachable from
v. In this paper, we will focus on closeness centrality defined in equation (2.1).

The problem to solve in this paper is to find the top k vertices with the
highest closeness centralities and rank them, where k is a parameter of the
algorithm. To solve this problem, we combine the exact algorithm [Jo77, FT87]
and the approximation algorithm [EW04] for computing average shortest-path
distances to rank vertices on the closeness centrality. The exact algorithm iterates
Dijkstra’s single-source shortest-paths (SSSP for short) algorithm n times for all
n vertices to compute the average shortest-path distances. The original Dijkstra’s
SSSP algorithm [Di59] computes all shortest-path distances from one vertex, and
it can be efficiently implemented in O(n log n+m) time [Jo77,FT87].

The approximation algorithm RAND given in [EW04] also uses Dijkstra’s
SSSP algorithm. RAND samples ` vertices uniformly at random and computes
SSSP from each sample vertex. RAND estimates the closeness centrality of a
vertex using the average of ` shortest-path distances from the vertex to the `
sample vertices instead of to all n vertices. The following bound on the accu-
racy of the approximation is given in [EW04], which utilizes the Hoeffding’s
theorem [Ho63]:6

Pr{| 1

ĉv
− 1

cv
| ≥ ε∆} ≤ 2

n2` ε2

logn (n−1
n )2

, (2.2)

6 In this paper, log means natural logarithm with base e.



for any small positive value ε, where ĉv is the estimated closeness centrality of
vertex v. Let av be the average shortest-path distance of vertex v, i.e.,

av =
Σu∈V d(v, u)

n− 1
=

1

cv
.

Using the average distance, inequality (2.2) can be rewritten as

Pr{|âv − av| ≥ ε∆} ≤
2

n2` ε2

logn (n−1
n )2

, (2.3)

where âv is the estimated average distance of vertex v to all other vertices. If
the algorithm uses ` = α logn

ε2 samples (α > 1 is a constant number) which will
cause the probability of ε∆ error at each vertex to be bounded above by 1

n2 ,
the probability of ε∆ error anywhere in the graph is then bounded from above
by 1

n (≥ 1 − (1 − 1
n2 )n). It means that the approximation algorithm calculates

the average lengths of shortest-paths of all vertices in O( logn
ε2 (n log n+m)) time

within an additive error of ε∆ with probability at least 1 − 1
n , i.e., with high

probability (w.h.p.).

3 Ranking algorithms

Our top-k ranking algorithm is based on the approximation algorithm as well
as the exact algorithm. The idea is to first use the approximation algorithm
with ` samples to obtain estimated average distances of all vertices and find a
candidate set E of top-k′ vertices with estimated shortest distances. We need to
guarantee that all final top-k vertices with the exact average shortest distances
are included in set E with high probability. Thus, we need to carefully choose
number k′ > k using the bound given in formula (2.3). Once we find set E,
we can use the exact algorithm to compute the exact average distances for all
vertices in E and rank them accordingly to find the final top-k vertices with
the highest closeness centralities. The key of the algorithm is to find the right
balance between sample size ` and the candidate set size k′: If we use a too small
sample size `, the candidate set size k′ could be too large, but if we try to make
k′ small, the sample size ` may be too large. Ideally, we want an optimal ` that
minimizes ` + k′, so that the total time of both the approximation algorithm
and the computation of exact closeness centralities of vertices in the candidate
set is minimized. In this section we will show the basic algorithm first, and then
provide a further improvement of the algorithm with a heuristic.

3.1 Basic ranking algorithm

We name the vertices in V as v1, v2, . . . , vn such that av1 ≤ av2 ≤ · · · ≤ avn . Let
âv be the estimated average distance of vertex v using approximation algorithm
based on sampling. Figure 1 shows our basic ranking algorithm TOPRANK(k),
where k is the input parameter specifying the number of top ranking vertices



the algorithm should extract. The algorithm also has a configuration parameter
`, which is the number of samples used by the RAND algorithm in the first step.
We will specify the value of ` in Lemma 2. Function f(`) in step 4 is defined

as follows: f(`) = α′
√

logn
` (where α′ > 1 is a constant number), such that

the probability of the estimation error for any vertex being at least f(`) · ∆ is
bounded above by 1

2n3 , based on inequality (2.3) (when setting ε = f(`)). For

example, we can set α′ to be any value at least 4
√

2.5/3, which works for any
n ≥ 4.

Algorithm TOPRANK(k)
1 Use the approximation algorithm RAND with a set S of ` sampled vertices to obtain the

estimated average distance âv for each vertex v.
// Rename all vertices to v̂1, v̂2, . . . , v̂n such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n .

2 Find v̂k.

3 Let ∆̂ = 2 minu∈S maxv∈V d(u, v).

// d(u, v) for all u ∈ S, v ∈ V have been calculated at step 1 and ∆̂ is determined in O(`n) time.
4 Compute candidate set E as the set of vertices whose estimated average distances are less than

or equal to âv̂k + 2f(`) · ∆̂.
5 Calculate exact average shortest-path distances of all vertices in E.
6 Sort the exact average distances and find the top-k vertices as the output.

Fig. 1. Algorithm for ranking top-k vertices with the highest closeness centralities.

Lemma 1. Algorithm TOPRANK(k) given in Figure 1 ranks the top-k vertices
with the highest closeness centralities correctly w.h.p., with any configuration
parameter `.

Proof. We show that the set E computed at step 4 in algorithm TOPRANK(k)
contains all top-k vertices with the exact shortest distances w.h.p.

Let T = {v1, . . . , vk} and T̂ = {v̂1, . . . , v̂k}. Since for any vertex v, the
probability of the estimate âv exceeding the error range of f(`) ·∆ is bounded
above by 1

2n3 , i.e., Pr (¬{av − f(`) ·∆ ≤ âv ≤ av + f(`) ·∆}) ≤ 1
2n3 , we have

Pr

(
¬{
∧
v∈T

âv ≤ av + f(`) ·∆ ≤ avk + f(`) ·∆}

)
≤ k

2n3
≤ k

2n2
.

Next, we want to achieve a similar inequality as above for vertices v̂ ∈ T̂ . How-
ever, T̂ and its nodes are random variables, and thus to apply Hoeffding inequal-
ity as given in (2.3) we need another level of union bound, as given below. For



every v̂i ∈ T̂ , we have

Pr (¬{av̂i ≤ âv̂k + f(`) ·∆}) ≤Pr (¬{av̂i ≤ âv̂i + f(`) ·∆})

= Pr

(⋃
v∈V
¬{av̂i ≤ âv̂i + f(`) ·∆} ∧ {v̂i = v}

)
≤
∑
v∈V

Pr (¬{av ≤ âv + f(`) ·∆} ∧ {v̂i = v})

≤
∑
v∈V

Pr (¬{av ≤ âv + f(`) ·∆})

≤
∑
v∈V

1

2n3
=

1

2n2
.

Then we take another union bound for all v̂i ∈ T̂ , and obtain

Pr

¬{∧
v̂∈T̂

av̂ ≤ âv̂k + f(`) ·∆}

 ≤ k

2n2
.

The above inequality means that, with error probability of at most k
2n2 , there

are at least k vertices whose real average distances are less than or equal to
âv̂k + f(`) ·∆, which means avk ≤ âv̂k + f(`) ·∆ with error probability bounded
above by k

2n2 . Then âv ≤ avk + f(`) ·∆ ≤ âv̂k + 2f(`) ·∆ for all v ∈ T with error

probability bounded above by k
n2 . Moreover, we have ∆ ≤ ∆̂, because for any

u ∈ S, we have

∆ = max
v,v′∈V

d(v, v′) ≤ max
v,v′∈V

(d(u, v) + d(u, v′))

= max
v,v′∈V

d(u, v) + max
v,v′∈V

d(u, v′) = 2 max
v∈V

d(u, v).

and thus

∆ ≤ 2 min
u∈S

max
v∈V

d(u, v) = ∆̂.

Therefore, for all v ∈ T , âv ≤ âv̂k +2f(`) · ∆̂ with probability at least (1− 1
n )

(because k ≤ n). Hence, TOPRANK(k) includes all top-k vertices with exact
average distances in E in step 4, and TOPRANK(k) finds these exact k vertices
in steps 5 and 6, with high probability. This finishes the proof of the lemma. 2

We now evaluate the complexity of algorithm TOPRANK(k). The major
computation tasks are ` computations of SSSP in step 1 and |E| computations
of SSSP in step 5. We need to choose an appropriate ` to minimize the sum
of these computations. The number of computations of SSSP in step 5 depends
on the distribution of estimated average distances of all vertices. The following
lemma provides an answer when this distribution is uniform.



Lemma 2. If the distribution of estimated average distances is uniform with
range c∆ (c is a constant number), then TOPRANK(k) takes O((k + n

2
3 ·

log
1
3 n)(n log n+m)) time, when we choose ` = Θ(n

2
3 · log

1
3 n).

Proof. TOPRANK(k) takes O(`(n log n + m)) time at step 1 because SSSP
algorithm takes O(n log n+m) time and TOPRANK(k) iterates SSSP algorithm
` times.

Since the distribution of estimated average distances is uniform with range

c∆, there are n · 2f(`)·∆̂
c∆ vertices between âv̂k and âv̂k + 2f(`) · ∆̂, and n · 2f(`)·∆̂

c∆

is O(nf(`)) because ∆̂ = 2 minu∈S maxv∈V d(u, v) ≤ 2 maxu,v∈V d(u, v) = 2∆.
So, the number of vertices in E is k+O(nf(`)) and TOPRANK(k) takes O((k+
O(nf(`)))(n log n+m)) time at step 5.

Therefore, we select an ` that could minimize the total running time at step 1
and 5. In other words, we choose an ` to minimize ` + nf(`), which implies

` = Θ(n
2
3 · log

1
3 n). Then TOPRANK(k) takes O(n

2
3 · log

1
3 n(n log n+m)) time

at step 1, and takes O((k + n
2
3 · log

1
3 n)(n log n + m)) at step 5. Obviously

TOPRANK(k) takes O(n
2
3 · log

1
3 n(n log n + m)) time at the other steps. So,

TOPRANK(k) takes O((k + n
2
3 · log

1
3 n)(n log n+m)) total running time. 2

Combining Lemmata 1 and 2, we arrive at the following theorem.

Theorem 1. If the distribution of estimated average distances is uniform with
range c∆ (c is a constant number), then algorithm TOPRANK(k) given in Fig-
ure 1 ranks the top-k vertices with the highest closeness centralities in O((k +

n
2
3 · log

1
3 n)(n log n+m)) time w.h.p., when we choose ` = Θ(n

2
3 · log

1
3 n).

Theorem 1 only addresses the case when the distribution of estimated average
distances is uniform. In this case, the complexity of TOPRANK(k) is better than
a brute-force algorithm that simply computes all average shortest distances and
ranks them, which takes O(n(n log n + m)) time (assuming k = o(n)). Even
though the theorem is only for the case of uniform distribution, it could be
applied to more general situations, as explained now. Given an estimated average
distance x, its density d(x) is the number of vertices whose estimate average
distance is around x. The uniform distribution means that the density d(x)
is the same anywhere in the range of x. For any other distribution, it has an
average density of d, which is the average of d(x) over all x’s. Suppose that
the distribution is such that when x is sufficiently small, d(x) ≤ d (this property
requires further investigation but we believe it is reasonable for social networks).
Let x0 be the largest value such that for all x ≤ x0, d(x) ≤ d. Then, in our
algorithm, as long as âv̂k + 2f(`) · ∆̂ ≤ x0, the number of vertices between âv̂k
and âv̂k +2f(`) ·∆̂ is at most n · 2f(`)·∆̂

c∆ , as given in the proof of Lemma 2. Thus,
Lemma 2 uses a conservative upper bound for this number, and it will still hold
for the distributions with the above property.

Even with the above generalization, however, the savings from O(n(n log n+

m)) to O((k + n
2
3 · log

1
3 n)(n log n+m)) is still not very significant. Ideally, we



would like a ranking algorithm that is O(poly(k)(n log n+m)), where poly(k) is a
polynomial of k, which means the number of SSSP calculations is only related to
k, not n. This is possible for small k when the distribution of estimated average
distances is not uniform but other distributions like the normal distribution. In
this case, the number of additional SSSP computations for vertices in the range
from âv̂k to âv̂k + 2f(`) · ∆̂ could be small and not related to n. We leave this as
a future research work (see more discussion in Section 4).

3.2 Improving the algorithm with a heuristic

Algorithm TOPRANK2(k)
1 Use the approximation algorithm RAND with a set S of ` sampled vertices to obtain the

estimated average distance âv for each vertex v.
// Rename all vertices to v̂1, v̂2, . . . , v̂n such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n .

2 Find v̂k.

3 Let ∆̂ = 2 minu∈S maxv∈V d(u, v).
4 Compute candidate set E as the set of vertices whose estimated average distances are less than

or equal to âv̂k + 2f(`) · ∆̂.
5 repeat
6 p← |E|
7 Select additional q vertices S+ as new samples uniformly at random.

8 Update estimated average distances of all vertices using new samples in S+ (need to compute
SSSP for all new sample vertices).

9 S ← S ∪ S+; `← `+ q; ∆̂← min(∆̂, 2 minu∈S+ maxv∈V d(u, v))
// Rename all vertices to v̂1, v̂2, . . . , v̂n such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n .

10 Find v̂k.
11 Compute candidate set E as the set of vertices whose estimated average distances are less

than or equal to âv̂k + 2f(`) · ∆̂.
12 p′ ← |E|
13 until p− p′ ≤ q
14 Calculate exact average shortest-path distances of all vertices in E.
15 Sort the exact average distances and find the top-k vertices as the output.

Fig. 2. Improved algorithm for ranking vertices with top k closeness centralities

The algorithm in Figure 1 spends its majority of computation on the following
two steps: (1) step 1 computing SSSP for ` samples, and (2) step 5 computing
SSSP for all candidates in set E. The key in reducing the running time of the
algorithm is to find the right sample size ` to minimize `+ |E|, the total number
of SSSP calculations. However, this number is difficult to obtain before running
the algorithm, especially when the distribution of average distances is unknown.
In this section, we improve the algorithm by a heuristic to achieve the above
goal.

The idea of the heuristic is to incrementally add new samples to compute
more accurate average distances of all vertices. In each iteration, q new sample
vertices are added. After computing the new average distances with these q
new vertices, we obtain a new candidate set E. If the size of the candidate
set E decreases more than q, then we know that the savings by reducing the
number of candidates outweigh the cost of adding more samples. In this case, we



continue the next iteration of adding more samples. This procedure ends when
the cost of adding more samples outweighs the savings obtained by the reduced
number of candidates. Figure 2 provides this heuristic algorithm. Essentially,
this is the dynamic way of finding the optimal ` to minimize `+ |E| (or to make
∆` = −∆|E|, where ∆` is the small change in ` and ∆|E| is the corresponding
change in |E|).

The initial value of the ` in step 1 can be obtained based on Theorem 1
if we know that the distribution of the estimated average distances is uniform.
Otherwise, we can choose a basic value, for example k, since we need to compute
at least k SSSP in step 14 in any case. The incremental unit q could be a small
value, for example, log n. However, we do not know yet if |E| strictly decreases
when the sample size ` for estimating average distances increases, and if the
rate of decrease of |E| slows down when adding more and more sample vertices.
Therefore, it is not guaranteed that the heuristic algorithm will always stop at
the optimal sample size `. An open problem is to study the conditions under
which the change of |E| with respect to the change of sample size ` indeed has
the above properties, and thus the heuristic algorithm indeed provides the most
efficient solution.

4 Conclusion and discussions

This paper can be viewed as the first step towards the design of more efficient al-
gorithms in obtaining highest ranked closeness centrality vertices. By combining
the approximation algorithm with the exact algorithm, we obtain an algorithm
that has better complexity than the brute-force exact algorithm.

There are many directions to extend this study.
– First, as mentioned in the previous section, we are interested in more efficient

algorithms such that the number of SSSP computations is only related to
k, not to n. This may be possible for some classes of social networks with
certain properties on their average distance distributions.

– Second, the condition under which the heuristic algorithm results in the
least number of SSSP computation is an open problem and would be quite
interesting to study.

– Third, we may be able to obtain faster algorithm if we can relax the problem
requirement. Instead of finding all top-k vertices with high probability, we
may allow the output to have an error bound t, which is the number of
vertices that should be ranked within top-k vertices but are missed in the
output. Generally, given an algorithm for top-k query of various centralities,
we define the hit-ratio, denoted as η(A), of an output A = {v1, v2, · · · , vκ}
(not necessarily of size k) as |A∩Qk|k , where Qk is the actual set of top-k
vertices. Let r(vi) denote the the actual rank of vi. Here, we require that
r(vi) < r(vi+1), for i ∈ [1, κ − 1]. Thus we have r(vi) ≥ i. We define the

accuracy of A, denoted as α(A), as κ(κ+1)
2
∑κ
i=1 r(vi)

(other definitions of accuracy

are possible). Clearly, η(A) ∈ [0, 1] and α(A) ∈ [0, 1]. The hit-ratio and
accuracy of an algorithm are then its worst performance over all possible



inputs. We then may only require that Pr (η(A) ≥ 1− %, α(A) ≥ 1− ε) ≥
1−δ, for sufficiently small %, ε and δ. Such relaxations in the requirement may
allow much more efficient algorithms, since we observe that the complexity
of our algorithm is mainly because we need to include all vertices in the
extra range from âv̂k to âv̂k + 2f(`) · ∆̂ in order to include all top-k vertices
with high probability.

– Fourth, we would like to study the stability of our algorithms for top-k query
using random sampling. Costenbader et al. [CV03] studied the stability of
various centrality measures. Their study shows that, with a 50% sample of
the original network nodes, average correlations for the closeness measure
ranged from 0.54 to 0.71.

– Finally, we can look into other type of centralities and see how to rank
them efficiently using the technique in this paper. For example, Brandes
[Br00] presents an algorithm for betweenness centrality of weighted graph
with time-complexity n(m+ n log n). Brandes et al. [BP00] present the first
approximation algorithm for betweenness centrality. Improvements over their
method were presented recently in [GS08,BK07].
To conclude, we would like to provide a brief comparison of our algorithms

with the well known PageRank algorithm [BP98]. PageRank is an algorithm used
to rank the importance of the webpages, which are viewed as vertices connected
by directed edges (hyperlinks). As explained in Footnote 5, PageRank is a vari-
ant of the eigenvector centrality. Thus, it is a different measure from closeness
centrality. More importantly, by definition the PageRank of a vertex (a webpage)
depends on the PageRanks of other vertices linking to it, so the PageRank cal-
culation requires computing all PageRank values of all vertices, even if only the
top-k PageRank vertices are desired. However, for closeness centrality measure,
our algorithms do not need to compute closeness centralities for all vertices.
Instead, we may start with rough estimates of closeness centralities of vertices,
and through refining the estimates we reduce the candidate set containing the
top-k vertices. This results in reduced time complexity in our computation.
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