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Abstract. In collaboration architectures, a computer must perform both 
processing and transmission tasks. Intuitively, it seems that these independent 
tasks should be executed in concurrent threads. We show that when multiple 
cores are not available to schedule these tasks, a sequential scheme in which the 
processing (transmission) task is done first tends to optimize feedback 
(feedthrough) times for most users. The concurrent policy gives feedback and 
feedthrough times that are in between the ones supported by the sequential 
policies. However, in comparison to the process-first policy, it can noticeably 
degrade feedback times, and in comparison to the transmit-first policy, it can 
noticeably degrade feedthrough times without noticeably improving feedback 
times. We present definitions, examples, and simulations that explain and 
compare these three scheduling schemes for centralized and replicated 
collaboration architectures using both unicast and multicast communication.  

Keywords: collaboration architecture, scheduling policy, response time, feedback 
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1   Introduction 

An important issue in collaborative systems is the architecture of the implementation, 
which has an impact on the performance, the level of sharing, and correctness of the 
system. This area has been studied extensively [3] and has identified several 
important dimensions. In this paper, we focus on two related questions that have been 
largely ignored previously – the manner in which the tasks needed to implement 
collaborative systems are scheduled and the impact of the scheduling policy on local 
and remote response times. We refer to local response times as feedback times and 
remote response times as feedthrough times. Feedback times are also sometimes 
called simply response times [4]. 

Two mandatory tasks performed by a collaborative system are processing and 
transmission of user commands. The nature of these tasks depends on (a) whether 
computation is centralized or replicated and (b) whether the commands are unicast or 
multicast. We consider all four cases in the evaluation of policies for scheduling these 
tasks. 

The implementation and evaluation of scheduling schemes depend on how many 
cores are available for scheduling. For example, if two cores are available for 
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scheduling, it is possible to carry out processing and transmission tasks in parallel. 
Thus, additional cores have the potential to improve feedback and feedthrough times. 
However, we assume only one core is available to execute the tasks of a collaborative 
application, leaving multi-core scheduling as future work.  

The rest of this paper is organized as follows. We first describe more precisely the 
processing and transmission tasks. We then motivate, illustrate, and qualitatively 
compare the sequential and concurrent policies for scheduling these tasks. Following 
this, we present simulation results that quantitatively compare these policies in 
realistic collaborations and give brief conclusions and directions for future work. 

2   Processing and Transmission Tasks 

The processing and transmission tasks in collaborative systems depend on the 
underlying architecture. Two popular collaboration architectures are the centralized 
and replicated architectures. In both cases, it is assumed that an application is logically 
separated into a program and user-interface components. The program component 
manages the object that is shared by all of the users. The user-interface component 
allows interaction with the shared object by manipulating state that is not shared by the 
users. A separate user-interface component runs on each user’s machine. 

In the centralized architecture, all of the user-interface components are mapped to a 
single program component. The computer running the program component is called a 
master and the other computers are called slaves. A master computer receives input 
commands from and sends output commands to all of its slaves. In addition, a master 
is responsible for processing all input commands and their outputs. A slave, on the 
other hand, is responsible for transmitting input commands from its user to the master 
and processing the output of all input commands. A centralized architecture with six 
users in which user1 is the master is shown in Fig. 1 (top). The figure shows the 
transmission of an output for an input entered by user1. In the replicated architecture, 
each user-interface component is mapped to the program component running on the 
local computer. Thus, all of the computers are masters. To keep the program 
components on different masters in sync, whenever a master receives an input 
command from the local user, it transmits the command to all of the other computers. 
A replicated architecture with six users is shown in Fig. 2 (top). The figure shows the 
transmission by user1’s computer to all of the other computers after user1 enters an 
input command. 

One issue with the traditional architectures is that if inputs or outputs are large and 
the number of users is high, then the cost of transmitting an input or output to many 
users is also high. As a result, master computers can become performance bottlenecks. 
It is possible to overcome this problem by using the bi-architecture model [4], in 
which a collaborative system is separated into two sub-architectures. As in the 
traditional architecture case, the user-interface components are still mapped to 
program components; however, the mapping in this case is not bi-directional. In 
particular, a slave computer sends input commands to the master computer to which it 
is mapped, but the master computer does not have to directly send input and output 
commands to all of the other masters and its slaves, respectively. Instead, multicast is 
used allowing more than just the master to transmit the commands. 
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Fig. 1. (top) Traditional centralized architecture and (bottom) the bi-architecture model with a 
centralized architecture in which multicast is used for communication 
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Fig. 2. (top) Traditional replicated architecture and (bottom) the bi-architecture model with a 
replicated architecture in which multicast is used for communication 

The idea of multicast requires, for each source of messages, the construction of a 
multicast overlay that defines the paths a message takes to reach the destinations. The 
bi-architecture model makes several assumptions regarding multicast. First, because 
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IP-multicast is not widely deployed, the model assumes an application-layer multicast 
in which end-hosts form the overlay. Second, the model assumes that only the users’ 
computers can be used in the overlay. This is consistent with the notion of peer-to-
peer sharing systems.  

With multicast, every computer may perform some part of the transmission task. 
For example, if multicast is used in the centralized architecture, then a slave 
computer, in addition to processing any outputs that it receives, may also need to 
forward the outputs to other slaves as shown in Fig. 1 (bottom). Fig. 1 (bottom) shows 
the transmission after user1’s computer, which is the master, computes the output for a 
command entered by user1. The master transmits the output only to computers 
belonging to user2, user3, and user4. User4’s computer, which is a slave, then forwards 
the output to the computers belonging to user5 and user6. Similarly, if multicast is 
used in the replicated architecture, a master computer that receives an input command 
from another master may, in addition to processing the command, have to forward it 
to other masters as shown in Fig. 2 (bottom). Fig. 2 (bottom) shows the transmission 
of an input command entered by user1. User1’s computer transmits the command only 
to computers belonging to user2, user3, and user4. User4’s computer forwards the 
command entered by user1 to computers belonging to user5 and user6. When unicast is 
used for communication among the computers, the bi-architecture model reduces to 
the traditional model. 

3   Scheduling of Tasks 

While the bi-architecture model specifies the tasks that the users’ computers will 
carry out, it leaves as an implementation issue the scheduling of these tasks on each 
computer. In this section, we motivate, illustrate, and qualitatively analyze three 
useful scheduling policies. 

3.1   Running Example 

To illustrate and compare the policies we consider in this paper, we will use the 
replicated-multicast architecture shown in Fig. 2 (bottom) with the following 
additional properties: (a) user1’s computer transmits commands first to user4, then to 
user2, and finally to user3, while user4’s computer forwards the commands first to 
user5 and then to user6; (b) user1 enters all of the commands; (c) the users all have the 
same computers; (d) the network latency between any two computers is D; (e) the 
time the computers require to process an input and output command is 3T and T, 
respectively; and (f) the time the computers require to transmit an input command to a 
single destination is T. The relationships between the various times were carefully 
selected to allow this theoretical example to be used to easily compare all of the 
policies. In our simulations, we use realistic values for all of these parameters, which 
do not assume, for instance, that the network latencies among the users are the same. 

For all of the scheduling policies we consider, we illustrate user1’s feedback time 
and user6’s feedthrough time. The reason we consider user6 instead of other users is 
because user6 is the “farther” from the source than any other user. As Fig. 2 (bottom)  
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shows, the path from user1 to user6 is longer than the path from user1 to any other 
user, except user5. The paths from user1 to user5 and user6 both go through user4. 
Since user4 transmits first to user5 and then to user6, we consider user6 to be farther 
away than user5 is from user1. Once the calculation of user6’s feedthrough time is 
understood, the feedthrough times of other users are easy to derive. Therefore, these 
feedthrough times are presented without derivation in Table 1.  

3.2   Process-first and Transmit-First Scheduling Policies 

One way of scheduling the processing and transmission tasks it to execute them 
sequentially. There are two sequential policies possible in which either the processing 
or the transmission task is performed first. 

The process-first policy provides better feedback times than the transmit-first 
policy because, unlike the transmit-first policy, it does not delay the processing of a 
command until the transmission task completes. Comparing the feedthrough times of 
the two policies is more complicated. Transmitting first from a source seems to 
improve the feedthrough times of the destinations. However, as each destination may 
also be a source, delaying the processing of the received command can increase the 
feedthrough time seen by the local user. 

To understand the influence of these factors on the relative feedthrough 
performance of the two policies, consider the feedthrough time of user6 in our running 
example. In all policies, this time consists of four components: (1) the total network 
delay the command experiences, (2) the time taken by user6’s computer to process the 
command, (3) user1’s delay, and (4) user4’s delay, where user1’s (user4’s) delay is 
equal to the time that elapses from the moment user1’s (user4’s) computer receives a 
message to the moment it transmits it to user4’s (user6’s) computer. The first two 
components have the same values in all policies. A command always traverses the 
network twice, which requires 2D time. Since user6’s computer does not transmit 
commands to other computers, once it receives the command, it always processes the 
command and the corresponding output in 4T time. The values of the other two 
components are policy-specific. 

The calculation of the policy-specific components when process-first and transmit-
first scheduling are used is shown in Fig. 3 (top) and Fig. 3 (bottom), respectively. As 
Fig. 3 (top) shows, with the process-first policy, user1’s delay is equal to the time 
user1’s computer requires to process the input command and the corresponding 
output, 4T, plus the time it takes to transmit the input to a single destination, T. Thus, 
user1’s delay is equal to 5T. As Fig. 3 (top) also shows user4’s delay is equal to the 
time user4’s computer requires to process the input command and the corresponding 
output, 4T, plus the time it takes to transmit the input to two destinations, 2T. Thus, 
user4’s delay is equal to 6T. Hence, user6’s feedthrough time with the process-first 
policy is 4T+2D+5T+6T=15T+2D. On the other hand, as Fig. 3 (bottom) shows, when 
transmit-first scheduling is used, user1’s delay is equal to the time user1’s computer 
requires to transmit the input command to a single destination, T, while user4’s delay 
is equal to the time user4’s computer requires to transmit the command to two 
destinations, 2T. Hence, user6’s feedthrough time is 4T+2D+T+2T=7T+2D. The 
feedthrough times for the remaining users are given in Table 1. 
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Fig. 3. User1’s feedback time and user6’s feedthrough time for the architecture in Fig. 2 
(bottom) when the (top) process-first and (bottom) transmit-first scheduling is used 

Table 1 shows that in this theoretical example the transmit-first policy gives better 
feedthrough times than the process-first policy for all of the users. However, this is 
not true in all cases. For instance, suppose there were five more users in our example, 
and the multicast overlay was organized so that these five users all receive inputs 
from user4’s computer. In this case, user4’s computer would still receive the command 
4T earlier with the transmit-first than with the process-first policy but would have to 
transmit for 5T longer before processing it. Hence, the benefit from receiving input 
early can, theoretically, get outweighed by the transmission cost; in this example, 
user4’s feedthrough time would increase by T. Such an increase can only happen 
when multicast is used. However, in our experience with a state of the art multicast 
scheme, such an increase does not really occur because usually a small number of 
computers actually forward commands. Moreover, an even smaller number of 
computers forward commands to many destinations. As a result, the number of 
destinations a computer forwards to is usually small enough that the total transmission 
cost for a node is smaller than the benefit the node receives when the transmit-first 
policy is used. Hence, we expect that the transmit-first policy will provide better 
feedthrough times than the process-first policy to most, if not all, of the users. 

Our running example also shows that the process-first policy gives better feedback 
times than the transmit-first policy. As Fig. 3 (top) shows, user1’s process-first  
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Table 1. User1’s feedback times and user2’s, user3’s, user4’s, user5’s, and user6’s feedthrough 
times under the three scheduling policies 

Policy Process-first Transmit-first Concurrent 

User1 4T 7T 7T 

User2 10T+D 6T+D 8T+D 

User3 11T+D 7T+D 10T+D 

User4 9T+D 7T+D 8T+D 

User5 14T+2D 6T+2D 8T+2D 

User6 15T+2D 7T+2D 10T+2D 

 
 

feedback time is 4T. On the other hand, as Fig. 3 (bottom) shows, user1’s transmit-
first feedback time is 7T. 

In summary, a sequential scheme in which the processing (transmission) task is 
done first tends to optimize feedback (feedthrough) times for most users If we are 
interested in both good feedback and good feedthrough times, it is attractive to 
investigate a concurrent approach in which separate threads perform the processing 
and transmission tasks. 

3.3   Concurrent Scheduling Policy 

Intuitively, we would expect a concurrent policy to give feedback and feedthrough 
times in between those supported by the two sequential policies. In fact, in this policy, 
it is possible to get feedback times that are as bad as those of the transmit-first policy 
and feedthrough times that are as bad as those of the process-first policy. 

Let us analyze what happens on user1’s computer in our running example when the 
computer receives an input command. As described above, in this case, the processing 
and transmission task require 4T and 3T time, respectively. We assume that neither 
task blocks because it is difficult to predict their behavior, otherwise. The non-
blocking task assumption is consistent with assumptions made in real-time systems 
when tight performance bounds are required. While results exist for blocking tasks, 
the upper-bounds for the performance in this case are extremely loose. Moreover, the 
non-blocking task assumption is realistic as a well-designed application can help 
ensure that the processing and transmission tasks do not block by using separate 
threads and asynchronous communication, respectively. In addition, we consider 
context switch times negligible as we have found that they are no more than a few 
microseconds on modern operating systems running Pentium 4 desktops, which is 
several orders of magnitude lower than processing and transmission costs we have 
observed in real collaboration scenarios. Finally, for illustration purposes, we assume 
here that the length of the scheduling quantum is much less than the processing and 
transmission costs. In our simulations, we in fact, use a much more realistic value of 
10ms for the quantum size. Given these assumptions and our earlier assumption that a 
single core is available for scheduling, the execution of these tasks for the concurrent 
and the two sequential policies is illustrated in Fig. 4. As Fig. 4 shows, with the  
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Fig. 4. Process and transmission task completion times for user1’s computer for the concurrent, 
process-first, and transmit-first scheduling policies 
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Fig. 5. User1’s feedback time and user5’s feedthrough time for the multicast communication 
architecture in Fig. 2 (bottom) when the concurrent scheduling is used 

concurrent policy, the shorter transmission task completes in 6T time, which is twice 
the time it takes to complete when the task runs standalone. As Fig. 4 also shows, with 
the concurrent policy, the longer processing task completes in 7T time, which is equal 
to the total time required to process the processing and transmission tasks 
sequentially. We can generalize the figure as follows: when the processing and 
transmission tasks are executed concurrently, (a) the shorter of the two will complete 
in exactly twice the time it would complete were it running standalone, and (b) the 
longer of the two will complete in exactly the time required to run the two tasks 
sequentially. In this example, the processing task is the longer one, so user1’s 
feedback time is 3T+4T=7T. 

As mentioned earlier, user6’s feedthrough time equals 4T+2D + user1’s and user4’s 
delays. As Fig. 5 shows, user1’s delay with the concurrent policy is equal to the time 
user1’s computer requires to transmit the command to a single destination while 
concurrently processing the command. Since transmitting to a single destination takes 
T time and the processing task takes 4T time, the transmission to a single destination 
completes in 2T time since it is the shorter of the two tasks. Similarly, as Fig. 5 also 
shows, user4’s delay is going to be 4T. Thus, user6’s feedthrough time equals 
4T+2D+2T+4T=10T+2D. The feedthrough times of all users are shown in Table 1. 
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Based on the feedback times and the feedthrough times in Table 1, it seems that in 
this theoretical example the concurrent policy combines the worst of both sequential 
policies as its feedback time is no better and its feedthrough times are worse than the 
transmit policy. Of course, it is easy to change the example to ensure that the 
concurrent policy offers feedback and feedthrough times between those of the 
transmit-first and process-first policies. Here we chose the example to make the subtle 
point that this is not always the case. In general, however, if the goal is to equally 
favor feedback and feedthrough times, the concurrent policy should be used. 

3.4   Simultaneous Commands 

One issue we have not addressed so far is the scheduling of multiple simultaneous 
commands. In general, two types of commands can occur concurrently with user1’s 
input command: 1) another collaboration-unaware user input command, or 2) a 
collaboration-aware command, such as one caused by the concurrency control or 
awareness mechanisms. Collaboration-aware commands have their own processing 
and/or transmission tasks that must be scheduled. Scheduling of these commands is 
beyond the scope of this paper and we leave it as important future work. In this paper, 
we make the reasonable assumption that tasks for a command are completed 
atomically with respect to tasks for other commands. Given this assumption, once a 
computer begins to perform tasks for user1’s input command, other commands cannot 
affect the feedback and feedthrough times of the command. However, it is possible 
that when user1’s input arrives at a computer, the computer performs tasks for several 
other commands before beginning the tasks for this command. The time the computer 
takes to complete the tasks for these other commands adds to the feedback and 
feedthrough times of user1’s command. 

Collaboration-aware commands simply add some time to the feedback and 
feedthrough times that is independent of the user command scheduling policies. 
Hence, the differences in feedback and feedthrough times illustrated above stand. 
User input commands also add some time to the feedback and feedthrough times of 
user1’s command that is independent of our choice of scheduling policy. The reason is 
that regardless of the scheduling policy, the time that elapses from the moment a 
computer begins performing the first task for a user command to the moment it 
completes the final task for the command is the same. Consider user1’s computer in 
our running example. The time it takes to process user1’s input command and output 
and transmit the input command is 7T in all cases. Thus, the illustrated feedback and 
feedthrough time differences in our running example for the three scheduling policies 
again stand.  

4   Simulations 

Our work so far has made several conclusions about the relative performance of the 
three scheduling policies based on theoretical arguments. While these results are a 
contribution on their own, it is important to see if the differences shown through a 
theoretical evaluation can be significant when the policies are evaluated in practical 
scenarios.  
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We determined the performance of the scheduling policies in practical scenarios 
using bookkeeping or accounting mathematical equations that simulate a collaborative 
system. Such simulation approaches are popular in other fields such as networking and 
real-time systems. Because of lack of space, we omit the equation details. 

4.1   Parameter Values 

To perform meaningful simulations we need realistic values for the parameters that 
influence the performance of the three scheduling policies: (a) input and output 
processing and transmission costs; (b) the number of users; (c) the types of the users’ 
computers; and (d) the network latencies. 

To obtain realistic input and output processing and transmission costs, we 
identified user-commands in logs of actual application use and measured the costs of 
these commands. We logged three different applications, but as we have space to talk 
about the results with only one these applications, we focus only on it. 

We analyzed recordings of two PowerPoint presentations. These recordings 
contain actual data and users’ actions – PowerPoint commands and slides. We 
assumed that the data and users’ actions in the logs are independent of the number of 
collaborators, the processing powers of the collaborators’ computers, and network 
latencies. PowerPoint turned out to be a good choice of an application for which to 
analyze actual logs for two reasons: 1) the parameter values we measured in the 
associated logs were fairly wide spread, and 2) it is frequently used in presentations. 

To obtain the processing and transmission time parameter values, we created a 
collaborative session with several computers. We designated one of the computers as 
the source of the commands, and then we replayed the PowerPoint logs using a Java-
based infrastructure that has facilities for logging and replaying commands.  

We measured the processing and transmission times on the source computer. We 
used a P3 866MHz desktop and a P4 2.4 GHz desktop as sources, both of which were 
running Windows XP. The P3 desktop is used to simulate next generation mobile 
devices. We recorded the average processing and transmission times of each machine 
for PowerPoint. We removed any “outlier” entries from the average calculation, 
caused for instance, by operating system process scheduling issues. To reduce these 
issues, we removed as many active processes on each system as possible. Ideally, 
while we replay the recordings, we should run a set of applications users typically 
execute on their systems. However, the typical working set of applications is not 
publicly available so we would have to guess which applications to run. For fear of 
incorrectly affecting transmission times by running random applications, we used a 
working set of size zero, a common assumption in experiments comparing 
alternatives.  

We had to assign the values of the number of collaborators and the processing 
powers of their machines. In the collaboration recordings that we analyzed, the 
number of users ranged from thirty to sixty. Unfortunately, this is not a wide enough 
range of values; in particular, the maximum value of the parameter needs to be much 
bigger to be representative of large collaborations, such as a company-wide 
PowerPoint presentation. Therefore, we chose synthetic but not unrealistic values for 
the number of observers. As observers do not input commands, they do not influence 
the logs. Moreover, the talks we observed had tight time constraints which did not 
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allow questions. Thus, they were independent of the number of observers. We 
randomly assigned the type of computer of each observer to be a P3 or P4 desktop. 

Based on pings done on two different LANs, we use 0ms to simulate half the 
round-trip time between two computers on the same LAN. Similarly, based on pings 
done between computers on different LANs, we use 15ms and 177ms to simulate half 
the round-trip time between a Northwest and a Southwest U.S. LAN and an East-
coast U.S. and an Indian LAN, respectively. These values defined the minimum and 
maximum network latencies in our evaluation.  

4.2   Simulations 

Using these parameter values, we simulated the feedback and feedthrough times for 
all of the policies for both centralized and replicated architectures when unicast and 
multicast are used for communication. Of all of the existing multicast algorithms, we 
know of only one that that considers the time the users’ computers require for 
transmitting on the network in the building of such a tree, which is the HMDM 
algorithm [2]. In our experience, the cost of transmitting commands can be high in 
data-centric applications such as PowerPoint. Thus, we implemented HMDM in Java 
and used it to create our multicast overlays. 

4.3   Process-First vs. Transmit-First 

Our theoretical results predict that the process-first policy gives better feedback times 
but worse feedthrough times than the transmit-first policy, and vice versa. To check if 
this difference can be significant in practical circumstances, we consider a scenario in 
which a PowerPoint presentation is being given to 200 audience members around the 
world. Based on the ping times we reported earlier, we assume that the latencies 
between all of the users are between 15ms and 177ms. The lecturer is using a next 
generation PDA device. Moreover, the users are organized in a centralized 
architecture in which the lecturer’s computer is the master. Finally, we assume that 
multicast is used for communication. 

Previous work has shown [6] that users can notice feedback times greater than 
50ms. We consider a 50ms increment in feedback times significant. Moreover, since 
we know of no feedthrough thresholds, we assume that 50ms increments in 
feedthrough times are also significant. In this scenario, the process-first policy 
feedback time, 650.4ms, is significantly better than the transmit-first feedback time is, 
761.2ms. The difference between the process-first and transmit-first feedthrough 
times are shown in Fig. 6. As Fig. 6 shows, the process-first feedthrough times results 
are significantly worse, by as much as 2804ms. Hence, there are cases when the 
process-first policy can provide significantly better feedback times and significantly 
worse feedthrough times than the transmit-first policy. The results of another 
simulation, which we do not have room to present, show that the process-first 
feedthrough times can be significantly better than the transmit-first feedthrough times. 
However, for a large majority of the users (99%), the feedthrough times were actually 
either noticeably lower or not noticeably higher with the transmit-first than the 
process-first policy. 
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Fig. 6. Feedthrough times for the process-first (PF), transmit-first (PF), and concurrent (CC) 
scheduling policies 

4.4   Concurrent vs. Sequential 

Our second theoretical result was somewhat counter-intuitive. It showed the 
concurrent policy can be as bad as the transmit-first policy in terms of feedback times 
and worse than the transmit-first policy in terms of feedthrough times. To find out if 
the feedthrough time differences can be significant, we consider the same scenario as 
in the previous result. 

The scenario simulation results confirm that the concurrent policy feedback times 
can be the same as those of the transmit-first policy (761.2ms for both). Moreover, the 
simulation feedthrough times are shown in Fig. 6 and they show that the concurrent 
policy feedthrough times can be significantly worse, by as much as 110.0ms, than the 
transmit-first feedthrough times. Even worse is the fact that more than one quarter of 
the users experience these significant feedthrough time degradations. 

Another theoretical result regarding the concurrent scheduling policy is that it is 
useful if both feedback and feedthrough times are equally favored because with the 
concurrent policy, these times can be in between those provided by the process-first 
and transmit-first scheduling policies. It turns out that these differences can be 
significant in the following practical scenario. 

Consider again the PowerPoint scenario described earlier with three differences: 
(a) there are only 100 users watching the presentation, (b) they are all in the same 
LAN as the lecturer and thus experience only LAN network latencies (i.e. 0ms), and 
(c) unicast is used for communication. 
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Fig. 7. Feedthrough times for the process-first (PF), transmit-first (PF), and concurrent (CC) 
scheduling policies 

In this case, the concurrent policy feedback time, 860.4ms, is significantly worse 
than the process-first policy feedback time, 650.4ms, but is significantly better than 
the transmit-first feedback time, 1502.4ms. Moreover, the concurrent policy 
feedthrough times are significantly better than those of the process-first policy for 
some users. In addition, for those same users, the concurrent policy feedthrough times 
are significantly worse than those of the transmit-first policy, as shown in Fig. 7. As 
Fig. 7 shows, the feedback time for user 6 is (a) 105.2ms better with the concurrent 
than with the process-first policy and (b) 100.0ms worse with the concurrent than 
with the transmit-first policy. 

5   Conclusions and Future Work 

We show that scheduling of processing and transmission tasks can significantly 
influence interactivity. As these are independent tasks, intuitively, it seems that they 
should be executed in concurrent threads scheduled by the operating system. 
However, we show that, when a single-core is available for processing, this policy is 
dominated in several realistic collaborations by sequential policies that are aware of 
the nature of these two tasks. This result also has an implication for multi-core 
scheduling systems. These systems tend to require an application to decompose its 
processing into one or more concurrent threads and schedule these threads on as many 
physical cores/processors as available. Our results show that when the processing and 
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transmission tasks cannot be scheduled simultaneously on multiple cores/processors, 
it may be better, in many scenarios, to execute them in a single thread using process-
first or transmission-first scheduling rather than in multiple threads. Thus the main 
conclusion of our work is that a generic collaboration infrastructure must support all 
three scheduling policies and allow them to be dynamically switched based on system 
and task parameters. 

Certain collaborative applications adapt the amount of processing work done to 
ensure tolerable feedback times. For example, certain game playing applications [1] 
adapt the level of detail presented based on the scene and processing power of the 
computer. Moreover, in many applications, several independent tasks can be 
performed in the processing phase, and in multicast, sends and receives can be 
performed in different threads [5]. Therefore, it would be useful to consider new 
scheduling policies that take into account the fact that the processing/communication 
task can be adapted and broken into independent work units. It would also be useful 
to study the (potentially application-specific) scheduling policies used in current 
commercial collaborative systems, which we have not been able to determine so far. 
Future work is also needed to consider concurrent scheduling on multiple cores, better 
and more formally characterize scenarios in which various scheduling policies should 
be used, create an infrastructure that automatically adapts the policy based on the 
various system and task parameters identified here, and most importantly, study how 
the feedback/feedthrough tradeoff should be made in different collaborations. 
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