
Lazy Scheduling of Processing and Transmission Tasks in
Collaborative Systems

Sasa Junuzovic
Computer Science Department

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
sasa@cs.unc.edu

Prasun Dewan
Computer Science Department

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

dewan@cs.unc.edu

ABSTRACT
A collaborative system must perform both processing and
transmission tasks. We present a policy for scheduling these tasks
on a single core that is inspired by studies of human perception
and the real-time systems field. It lazily delays the execution of
the processing task if the delay cannot be noticed by humans. We
use simulations and formal analysis to compare this policy with
previous scheduling policies. We show that the policy trades-off
an unnoticeable degradation in performance of some users for a
much larger noticeable improvement in performance of others.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications, client/server. C.4
[Performance of Systems] Performance Attributes.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Collaboration architecture; scheduling policy; local and remote
response times; analytical model; simulations.

1. INTRODUCTION
In a collaborative system, a computer must not only process user
commands but also transmit these commands to the computers
belonging to other users. How the processing and transmission
tasks are scheduled can influence the response times seen by local
and remote users, which we refer to as local and remote response
times, respectively. One approach is to create separate threads for
these tasks and schedule the threads using a round-robin policy.
An alternative to this concurrent policy is to schedule the tasks in
a serial order, either processing or transmitting first. Processing
first tends to give the best local response times, transmitting first
tends to give the best remote response times, and concurrent

execution tends to give response times that are in between those
supported by the other two policies [5]. Moreover, these
differences can be significant in certain scenarios when a single
core is available for executing these tasks [5].

One issue with the three existing policies is that there is no way to
control the tradeoff between local and remote response times.
Controlling the tradeoff is particularly attractive when an
unnoticeable increase in one metric can result in a noticeable
decrease in the other metric. Human-perception studies have
shown that certain increases are indeed unnoticeable – users
cannot distinguish between local response times below 50ms [9]
and visual and haptic remote response times below 50ms and
25ms, respectively [4]. On the other hand, users can notice 50ms
changes in local [11] and remote response times [4]. Based on
these observations and the principles in real-time scheduling, we
have devised a new lazy process-first scheduling policy that, like
the process-first policy, gives precedence to the processing task,
but delays its execution if the resulting increase in local response
times cannot be noticed by humans. We can imagine a dual of this
policy, lazy transmit-first scheduling, that like the transmit-first
policy, gives precedence to the transmission task, but delays its
execution if the resulting increases in remote response times are
not noticeable. In this first cut at the idea of lazy scheduling of
collaboration tasks, we have only considered lazy process-first
scheduling, which we shall refer to as simply lazy scheduling.

The general idea of scheduling tasks so that they complete “just in
time” is not new. In real-time systems, for example, there are both
real-time tasks, which need to complete within some absolute
deadline, and non-real-time tasks, which need to complete as soon
as possible. Since in these systems a) there is no benefit to
completing a real-time task before its deadline and b) real-time
tasks typically have processing times which are shorter than their
deadlines, a real-time task can be delayed by the difference
between its deadline and processing time while still being able to
complete in time. The amount the task can be delayed is called
slack time. To improve the performance of non-real-time tasks,
some slack-stealing scheduling algorithms schedule the non-real-
time tasks during the slack times of the real-time tasks. By doing
so, the non-real-time tasks can complete earlier.

The idea of lazy scheduling, however, raised three questions that
have not been answered before. (1) How is it implemented in
various kinds of distributed collaborative systems that exist
today? Previous algorithms devised for supporting slack stealing
cannot be used because neither the processing nor the
transmission tasks have so far been modeled as tasks with
deadlines. (2) How do the response times of lazy scheduling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GROUP’09, May 10–13, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-500-0/09/05...$5.00.

159

compare to those supported by the three existing policies in
arbitrary theoretical scenarios? (3) Are there realistic scenarios in
which it offers significant advantages over the other policies? The
rest of this paper addresses these questions.

2. IMPLEMENTATION
Before we can address scheduling of the processing and
transmission tasks, we must understand the nature of these tasks,
which depends on the processing and communication architecture.

2.1 Processing architecture
Two popular processing architectures are the centralized and
replicated architectures. In both cases, it is assumed that the
shared application is logically divided into separate user-interface
and processing components. The user-interface component
transforms user input into input commands and sends these
commands to the program component. Conversely, it processes
output commands that it receives from the program component
and transforms the result into updates to the display. The program
component processes user input by converting input commands to
output commands. The user-interface component is replicated on
each user’s computer and allows a user to manipulate application
state not shared with the other users. The program component is
logically shared by all users and may be physically centralized or
replicated, depending on the processing architecture. Each user
interface is mapped to exactly one program component.

In the centralized (client-server) architecture, all of the user-
interface components are mapped to a single program component
running on one of the user’s computers. The computer running the
program component is called the master and all of the other
computers are called slaves. In the replicated (peer-to-peer)
architecture, each user-interface component is mapped to the
program component running on the local computer. Whenever a
master receives an input command from the local user, it sends
the command to all of the other computers, thereby ensuring the
program components on different masters are kept in sync.

2.2 Communication architecture
A master computer may use unicast or multicast to communicate
with other computers. The idea of multicast requires the
construction, for each source of messages, a multicast overlay that
defines the paths a message takes to reach the destinations. In this
paper, we make two assumptions regarding multicast. First,
because IP-multicast is not widely deployed, we assume an
application-layer multicast in which end-hosts form the overlay.
Second, as in peer-to-peer file sharing systems, we assume that
only the users’ computers can be used in the overlay.

When considering communication at the application layer, it is
important to use application-layer transmission costs.
Traditionally, the transmission time of a command has been
calculated as “size of message/bandwidth.” However, this
calculation is invalid at the application layer because it accounts
only for the transmission costs at the network interface [2]. Before
the command reaches the network interface, the operating system
must traverse the network stack and copy data buffers along the
way, which takes time. Moreover, the operating system must
perform these steps for each destination. Study by Abdelkhalek et
al. [1] of the server for Quake, a popular multi-player first-person
shooter game, found that these costs can be significant in practice.

They found that the server spent 50% of CPU time on transmitting
commands to clients. Hence, from here on, by transmission costs,
we mean application-layer transmission costs. To ensure good
local response times of slave users, we assume that in a
centralized architecture, the master transmits an output command
to the inputting slave first regardless of whether unicast or
multicast is used.

2.3 Lazy Scheduling Algorithm
Our lazy scheduling algorithm works for both the centralized and
replicated processing architectures and unicast and multicast
communication architectures. It delays the execution of the
processing task on a computer without allowing the local user to
notice the delay. The pseudo-code for the algorithm is shown in
Figure 1. As the figure shows, the algorithm accepts two
parameters, namely, the local and remote response time
degradation thresholds (Line 0). The algorithm supports different
values of these thresholds because, as mentioned above, previous
work has shown that noticeable local and remote response time
degradations can be different.

The starting point of the policy, the Main function, is a loop
which waits for the next command, C, which may be received
from the local user or a remote computer. The first task is to
compute from C the command CtoTrans to be actually
transmitted to other computers (Lines 3-5). In all scheduling
policies, this processing subtask is never delayed as it is necessary
to define the transmission task. If the centralized architecture is
being used and C is an input command, then the transmitted
command is the output command corresponding to the received
command; otherwise it is simply the received command.

The next step is to compute the amount of time, maxTransTime,
by which the (remaining) processing can be delayed, which
depends on whether C is entered by or is a response to a command
entered by the local or remote user (Lines 8-10). When C is an
input command from the local user, then the processing of the
command can be delayed by as much as the time specified in the
local response time degradation threshold. Hence, maxTransTime
is set to this threshold. When C is an output to a command entered
by the local user, however, the command can be delayed for some
time at the master for reasons given later. The delay is stored in
prevDelay property of the command. Thus, maxTransTime is
set to the difference between the local response time threshold and
prevDelay. In all other cases, processing can be delayed by as
much as the remote response time degradation threshold. Since
the computers on the path from the source to the current computer
contribute to the remote response times of the computer, the
processing can be delayed only if the total previous delay for the
command, which is stored in prevDelay, is less than the remote
response time threshold. Thus, maxTransTime is set to the
difference between this threshold and the total previous delay of
the command.

Once maxTransTime has been calculated, the algorithm calls the
Transmit function (Line 11). The Transmit function returns if
it estimates that it will execute for longer than maxTransTime if
it transmits to another destination (Line 16). To approximate the
cost of the next transmission, the Transmit calls the
EstTransTime function. To provide the estimate, the
EstTransTime function could use data from previous
collaborations or can dynamically determine transmission costs

160

based on transmission times of previous commands. If the
Transmit function does not return, it transmits the command to
the next destination. Because it can be called twice for the same
command, once before and once after the processing task is
performed, the function keeps track of destinations to which it has
already sent the command and does not send to those destinations
again when it is called the second time (Lines 17-20). For each
transmitted command, it stores the delays the command has
experienced so far in prevDelay (Line 18), which the next
computer on the path reads (Lines 8-10).

After the Transmit method is called the first time, the processing
of the command completes at the local computer (Lines 12-13),
which depends on the processing architecture. In the centralized
case, only the output command is processed. In the replicated
case, the input and its computed output are processed. Then, the
Transmit method is called again, this time with maxTransTime
set to INIFINITY, which allows the transmission to complete.

We have presented the algorithm with respect to a single input
command for single-core machines. We defer the issues of multi-
core scheduling, simultaneous commands, and concurrency
control to the discussion section.

3. ANALYSIS
We evaluate our lazy algorithm by comparing it with the existing
sequential and concurrent policies. We present and illustrate
equations for the response times for the four policies, and use the
equations to predict the relative performances of the policies.

3.1 Replicated Remote Response Time
We first develop the equations for replicated architecture remote
response times for input commands entered by a master user. To

reach a particular user’s computer, which we refer to as the
destination computer, the command must travel from the source
computer to the destination computer along some path. The path
may consist of additional computers, which we refer to as
intermediate computers. The terms destination and intermediate
are relative to a particular path. An intermediate computer on one
path is a destination computer on a different path as all users see
the output of an input command. Let denote the path from the
source to the destination, denote the number of computers on
the path including the source and destination computers, and

denote the computer on the path , where is
the source and the destination computer.

The replicated remote response time of command to computer
 along path is given by

where is the network latency between the and
 computers on path , is the delay of the

intermediate computer on the path, and is the delay of the
destination computer. The destination and intermediate computers
contribute different delays because the former contributes to the
remote response time of the local user while the latter contribute
to the remote response time of a remote user. This results in a
fundamental difference between the equations for the intermediate
and destination computers. In the case of an intermediate
computer, we must determine when the computer transmits to the
downstream computer. In the case of the destination computer, we
must determine when the input and output processing complete.

The first component of the remote response time equation is
independent of the scheduling policy as it is a sum of the network
latencies on the path from the source to the destination.

3.1.1.1 Transmit-first Policy Delays
The simplest equations for the computer delays along the path
from the source to the destination are those for the transmit-first
policy. Consider first the delay of , the intermediate
computer on path . Its delay is equal to the time that it requires
to transmit the command to the next computer along the path,

. In general, computer may have to transmit to more than
one destination. Therefore, its delay depends on the number of
other computers to which it transmits before transmitting to
computer . Let denote the time usera’s computer
requires to transmit the input command to a single destination,
and denote the position of userb’s computer in usera’s
computer list of destinations. Then, the transmit-first delay of the

computer on the path from the source to the destination equals

The delay of the destination computer also depends on the
number of computers to which it forwards commands because it
must first transmit the command to all of them before processing
the input command and its output. Let () denote the
time usera’s computer requires to process input (output) command

, and let denote the number of destinations to which usera’s
computer forwards commands. Thus, the transmit-first delay of
the destination computer equals

0: INPUT: Local (L) and remote (R) response time
 degradation thresholds

DESTS // this computer’s destinations

Main()
1: loop (forever)
2: wait for command C

3: if(centralized && C.isInput)
4: CtoTrans = Process(C)
5: else CtoTrans = C

6: startTime = now
7: for(each dest in DESTS) dest.sentTo = false

8: if((C.isInput && C.isFromLocalUser) ||
 (C.isOutput && C.isOutputToCmdByLocalUser))
9: maxTransTime = L – C.prevDelay
10: else maxTransTime = R - C.prevDelay

11: Transmit(CtoTrans,maxTransTime)

12: if(centralized) Process(CtoTrans)
13: else Process(Process(C))

14: Transmit(CtoTrans,INIFINITY)

Transmit(CtoTrans,maxTransTime)
15: for(each dest in DESTS)

16: if(now – startTime + EstTransTime(CtoTrans)
 >= maxTransTime) return

17: if(dest.sentTo == false)
18: CtoTrans.prevDelay +=
 now – startTime + EstTransTime(CtoTrans)
19: dest.send(CtoTrans)
20: dest.sentTo = true

Figure 1. The lazy scheduling policy algorithm.

161

To illustrate the remote response time equations for this policy,
consider the replicated-multicast architecture shown in Figure 2.
The figure shows the transmission of an input command entered
by user1. User1’s computer transmits only to computers belonging
to user2, user3, user4, user5, and user6, while user2’s computer
transmits to computers belonging to user7, user8, user9, and user10.
Suppose the architecture has the following additional properties:
1) user1 enters all of the commands; 2) user1’s computer’s
transmission order is user2, user3, user4, user5, and user6, and
user2’s transmission order is user7, user8, user9, and user10; 3) all
of the users have the same computers; 4) the time the computers
require to process an input and output command are 3P and P,
respectively; 5) the time the computers require to transmit an
input command to a single destination is T; 6) that P is much
greater than T; 7) the network latency between all of the
computers is D; and 8) the response degradation thresholds are
both T. We will use this theoretical example as a running example
for illustrating our response time equations.

Consider the remote response time of user10. The path from
user1’s to user10’s computer is of length =3 and , , and
are user1’s, user2’s, and user10’s computers, respectively. User1’s
delay is equal to the time user1’s computer requires to transmit the
command to a single destination, T, since it transmits to user2’s
computer first. Similarly, user2’s delay is equal to the time user2’s
computer requires to transmit the command to four destinations,
4T, since it transmits to user10’s computer last. User10’s
computer’s delay is equal to the time the computer requires to
process the input and the corresponding output command, 4P. But
if user10’s computer had to also forward the command to other
computers, then the delay would include the time the computer
requires to transmit the input command to them. Therefore,
user10’s remote response time is equal to T+4T+4P=5T+4P.

3.1.1.2 Process-first Policy Delays
The equations for the process-first policy delays of the computers
on the path from the source to the destination are similar.
Recall that in this policy, the computer starts the transmission task
after it completes the processing task. Therefore, unlike the
transmit-first delay, the process-first delay on an intermediate
computer includes the time the computer requires to process the
input and the corresponding output command. The process-first
delay of an intermediate computer is given by

In our example, user1’s and user2’s delays are equal to the time
their computers require to process the input and output command,
4P, plus the time they require to transmit the input to one and four
destinations, T and 4T, respectively.

The process-first delay of the destination computer is simply
the time the computer requires to process the input and the
corresponding output command.

3.1.1.3 Concurrent Policy Delays
The delay equations for the concurrent policy are more
complicated. The reason is that when the processing and
transmission tasks execute concurrently, they interfere with each
other’s execution times. We assume that neither task blocks
because it is difficult to predict their behavior, otherwise. The
non-blocking task assumption is consistent with assumptions
made in real-time systems when tight performance bounds are
required. While results exist for blocking tasks, the upper-bounds
for the performance in this case are extremely loose. Moreover,
the non-blocking task assumption is realistic as a well-designed
application can help ensure that the processing and transmission
tasks do not block by using separate threads and asynchronous
communication, respectively. In addition, we consider context
switch times negligible as we have found that they are no more
than a few microseconds on modern operating systems running
Pentium 4 desktops, which is several orders of magnitude lower
than processing and transmission costs we have observed in real
collaboration scenarios. Given these assumptions and our earlier
assumption that a single core is available for scheduling, then the
time required to complete 1) the shorter of the transmission and
processing tasks is equal to twice as long as the time required to
complete it standalone and 2) the longer of the two tasks is equal
to the time required to complete the two tasks sequentially. Both
of these results are illustrated in Figure 3, which shows two tasks
executing concurrently. As the figure shows, as the length of the
scheduling quantum becomes smaller, the time required to
complete the shorter task doubles. On the other hand, the longer
task always completes in the amount of time required to complete
the two tasks separately. This result is captured by the function

where and are execution times of the two tasks. Thus, we
can state the concurrent delay of an intermediate computer as

In our example, user2’s requires 4T time to transmit the command
to user10’s computer and 4P time to process the command and its
output. Therefore, user2’s delay is equal to 8T since the
transmission time is shorter than the processing time.

The delay of the destination computer is similar except that it
captures how long it takes to complete the processing task rather
than how long it takes to complete the transmission task. Thus, the
concurrent delay of the destination computer is

In our example, since user10’s computer does not forward
commands, the time it takes to complete the transmission task is
0. Therefore, its delay is equal to its processing time, 4P.

Figure 3. Concurrent execution time.

!" #"

$%&"&'()*+',-"."/0+-12)345)013"

/+16"

7"

/+16"

8"

9":"!"

9":";<=>"

9":";<?>"

'2@"

Figure 2. Replicated-multicast architecture with ten users.

!"#$%& '$%#$%&
()*+),-&
.*-#*"/"%&

01/)&
!"%/)2,3/&

4)356%/3%$)/17&
./"%),869/:;0"63,1%&,":&</#863,%/:;=$8>3,1%&

01/)?&01/)@&

01/)A&

01/)B&01/)C&

01/)D&

01/)E&01/)F& 01/)G& 01/)AH&

162

3.1.1.4 Lazy Policy Delays
The equations for the lazy policy delays of the computers along
the path from the source to the destination must account for
the local and remote response time degradation thresholds.

Consider the delay of an intermediate computer . This delay
depends on whether the computer transmits to the next computer
on the path, , before or after the processing task. This, in turn
depends on the difference between the sum of the delays the
command has experienced so far and the amount of time by which
the computer can delay the processing task without the local user
noticing the delay, which is the local (remote) response time
degradation threshold if the computer is (not) the source. Let

Then, the lazy delay of an intermediate computer is

In our theoretical example, recall that we assumed that both the
local and remote response time degradation thresholds are T.
Since the time user1’s computer requires to transmit to a single
destination is T, then according to the lazy policy algorithm,
user1’s computer will transmit to user2’s computer before
performing the processing task. Therefore, user1’s delay is equal
to T. On the other hand, user2’s computer will immediately begin
performing the processing task in order to meet the remote
response time threshold because the command has already been
delayed by T. Therefore, user2’s delay is equal to the time user2’s
computer requires to process the input and output command, 4P,
plus the time it requires to transmit the command to four
destinations, 4T.

The delay on the destination computer is slightly different as it
tries to forward the command to as many other computers as
possible while satisfying the remote response time threshold.
Hence, if the time the computer requires to complete the
transmission task plus the amount of time the command has
already been delayed is less than the amount of time by which the
computer can delay the processing time without the local user
noticing the delay, then it will complete the transmission task
before performing the processing task. Otherwise, if the amount
the command had been delayed so far is less than the remote
response time threshold, then the computer will transmit for only
the difference between the two before performing the processing
task. Otherwise, it will perform the processing task immediately.
Hence, the delay of the destination computer is

In our example, since user10’s computer does not forward the
command to other computers, its delay is the processing time, 4P.

3.2 Replicated Local Response Time
So far, we have presented only the equations for the replicated
remote response times. We next present the equations for
replicated local response times for commands entered by a master
user. Recall that the local response time is the time that elapses
from the moment a user enters an input command to the moment
the user sees the output for the command, which is equivalent to
the time that elapses from the moment the inputting user’s
computer receives the command to the moment the computer
completes processing the output of the command. Therefore, the
local response time is exactly the delay of the destination
computer defined above. This makes sense because the inputting
user’s computer is both the source and the destination. Thus, the
transmit-first, process-first, concurrent, and lazy local response
time equations for command entered by userj are given by

3.3 Other Cases
The equations we have presented have considered the case in
which the processing architecture is replicated and the input
command is entered by a master user. Let us next consider the
centralized architecture and slave commands.

3.3.1 Centralized Architecture
We can obtain the centralized architecture equations for
commands entered by master users from the above replicated
architecture equations by adjusting them for the two main
differences in the two architectures. First, in the centralized
architecture, only the master computer processes input commands,
while all computers process output commands. Therefore, when
calculating the delays of the computers on the path from the
source to the destination, the processing times in the delays are
equal to the time needed to process only output commands.
Second, instead of transmitting input commands, the computers
transmit output commands. Based on these two differences, the
centralized architecture general local and remote response time
equations are, respectively, given by

The new term accounts for the fact that the master computer must
still process the input command. This is the equation that applies
to all scheduling policies.

Next we can derive the policy-specific delays created by the
computers on the path from a source to a destination. The
centralized process-first delay on an intermediate computer is

The remaining delays can be derived similarly.

163

3.3.2 Slave Commands
We can also obtain the equations for input commands entered by
slave users by morphing the above equations for input commands
entered by master users. The only difference between the two
kinds of input commands is that a command entered by a slave
must first reach the master computer. Once the command reaches
the master, the problem reduces to that of calculating the remote
response time from the master to the slave, which we have already
done above. The time the command takes to reach the master
computer is equal to the time the slave computer requires to
transmit the command to a single destination (i.e. the master) plus
the time the command takes to traverse the network between the
slave and master computers. Therefore, we can obtain the
equations for the local and remote response time of command
entered by slave usera whose master is userb by adding the term

 to the response time equations.

In the lazy scheme described so far, a master computer does not
noticeably degrade the (local or remote) response time of its local
user. It should also not noticeably degrade the local response time
of a slave user. Recall that when a slave user inputs a command,
the master transmits the output to that slave first. Moreover, we
have found that the cost of transmitting to a single destination is
typically less than the reported response time degradation
thresholds of 50ms. Thus, the master will transmit the output to
the slave before doing local processing of the output, which
means that the delay is equal to the time the master requires to
transmit the output to a single destination. Since the delay is also
less than the local response time threshold, the slave’s local
response time does not degrade by more than the local response
time degradation threshold.

3.4 Implications
The analysis above helps us better understand the nature of lazy
scheduling and how it differs from the other scheduling policies.
It also helps us formally confirm intuitive expectations and, more
interesting, derive some unintuitive results about the lazy policy.

The lazy policy takes slack time in processing to transmit
commands to other destinations. Thus, it gives processing less
priority than process-first and more priority than concurrent and
transmit-first policies. Intuitively, processing early (late) favors
local (remote) response times, so, this seems to imply that, in
comparison to (a) process-first, the local should be worse and
remote response time better and (b) concurrent and transmit-first,
the local should be better and remote response time worse. Our
equations show that the differences are more subtle because the
algorithm is run on each computer. Because of lack of space, we
show the differences only for the replicated architecture and
master commands. The results, however, apply to other cases also.

3.4.1 Lazy vs. Process-first
The difference in the lazy and process-first local response times is

By definition, the difference is never more than the local response
time degradation threshold, . Thus, the equations predict that
the lazy local response times are never noticeably worse than the
process-first local response times.

To illustrate, consider user1’s local response time in our example.
When the lazy policy is used, user1’s computer delays the

processing task by the local response time threshold, T. Thus,
since the computer requires 4P time for the processing task,
user1’s local response time is equal to T+4P. With the process-
first policy, the computer immediately processes the command,
resulting in a local response time of 4P to user1. Thus, the lazy
local response time is worse than that of the process-policy, but
not by more than the local response time degradation threshold.

While the difference in local response times is expected from the
design of the lazy policy, the difference in the remote response
times are somewhat surprising. Consider first an intermediate
computer. If the accumulated delays are such that this computer
processes the command before transmitting to the downstream
computer, then the difference in the delays is given by

The reason is that in this case the lazy policy behaves like the
process-first policy. In the other case, when the computer
transmits to the downstream computer before processing, the
difference in the delays is given by

Let us now consider the destination computer. If the destination
computer does not delay processing, the lazy policy reduces to
process-first. Hence, in this case

Otherwise, the difference in the delays is

The result can never be more than the remote response time
threshold by definition. Since processing costs can be significant,
the lazy delays on intermediate computers can be significantly
better than the process-first delays. Therefore, the lazy policy
remote response times can be significantly better than the process-
first remote response times.

To illustrate, consider user10’s remote response time in our
example. In this case, user1’s and user2’s computers are the
intermediate computers. User1 and user2 delays are equal to T and
4P+4T, respectively, with the lazy policy, and 4P+T and 4P+4T,
respectively, with the process-first policy. User10’s delays are 4P
because user10 does not forward commands. Thus, user10’s remote
response time is 4P less with the lazy than with the process-first
policy. If P is large, the difference is significant.

These results show some fundamental differences between lazy
and process-first scheduling. The intermediate computers on the
path that delay processing have an additive effect on the
improvement in the remote response time. On the other hand, the
destination computer does not degrade the remote response time
by more than the remote response time threshold. Thus, like local
response times, lazy remote response times can never be
noticeably worse than those of process-first. More important, if
processing costs are high, an unnoticeable increase in the remote
response time of each intermediate computer that delays
processing can result in a noticeable decrease in the remote
response time of the destination computer.

3.4.2 Lazy vs. Transmit-first
The differences in the local response times of the lazy and
transmit-first policies is given by

164

By definition, the difference is always less than or equal to 0.
When the total transmission time at the source is high, then the
difference is also large. Hence, the lazy local response times can
be significantly better than the transmit-first local response times,
as one would expect intuitively.

To illustrate, in our example, user1’s local response time is equal
to T+4P with the lazy policy since T is the local response time
threshold. With the transmit-first policy, the local response time is
equal to 5T+4P since user1’s computer transmits to five
destinations. Thus, the lazy local response time is 4T less than the
transmit-first local response time. Since the local response time
threshold is T, the lazy local response time is significantly less.

The remote response time comparisons for an intermediate node
are also as expected. If the node processes before transmitting to
the downstream computer, the difference in the delay is

Thus, in this case, transmit-first performs better, and the
difference can be noticeable. However, if the intermediate node
delays processing, the delays for the two policies are identical

The results are more interesting when we consider the destination.
If it does not delay processing, then the delay difference in is

Thus, if the sum of the processing times on all of the intermediate
computers on the path from the source to the destination is greater
than the total transmission time of the destination computer, then
the transmit-first remote response times are better than those of
the lazy policy. If the destination delays processing, on the other
hand, then the difference in the delay is given by

By definition, the difference is always less than or equal to 0.
When it is less than 0 and the intermediate delay difference is
equal to 0, then the lazy remote response time will be better than
the transmit-first remote response time. Hence, remote response
times to some users can be better with the lazy than with the
transmit-first policy, even through transmit-first policy gives
higher priority to the transmission task.

To illustrate, consider user2’s remote response time in our
example. User1’s transmit-first and lazy delays are both equal to T
because in both cases, user1’s computer transmits to user2’s
computer before processing. User2’s lazy delay is equal to 4P
since user2’s computer immediately processes. On the other hand,
user2’s transmit-first delay is equal to 4T+4P since user2’s
computer transmits to four other computers. Thus, user2’s lazy
remote response time is 4T less than the transmit-first remote
response time. Again, since the remote response time threshold is
T, the lazy remote response time is significantly less.

3.4.3 Lazy vs. Concurrent
By using the same difference-based analysis as above, we can
show that the lazy 1) local response times can be significantly
better and never noticeably worse and 2) remote response times

are sometimes better and sometimes worse than those of the
concurrent policy. Thus again, even though the lazy policy gives
higher priority to the transmission task compared to the
concurrent policy, the lazy remote response times can be better.

4. SIMULATIONS
While our theoretical analysis makes some unintuitive
predictions, it is not clear whether these predictions have any
practical significance. Addressing this issue requires us to obtain
realistic values of the equation parameters. For most parameters,
such as processing and transmission costs, values can be obtained
by simply performing measurements on realistic collaborative
applications. The exception is the path between a source and
destination computer, which depends on the multicast tree, which,
in turn, requires us to simulate the algorithm we use to build it.
Thus, we cannot simply plug in the values of parameters in the
equations and use simulations to make the performance
comparisons. We next describe how we chose the parameter
values and simulated the multicast overlay.

4.1 Parameter Values
To perform meaningful simulations we need realistic values for
the parameters that influence the performance of the four
scheduling policies: (a) input and output processing and
transmission costs; (b) the number of users; (c) the types of the
users’ computers; and (d) the network latencies.

To obtain realistic input and output processing and transmission
costs, we identified user-commands in logs of actual application
use and measured the costs of these commands. We logged two
different applications: PowerPoint and a collaborative Checkers
game in which users play as a team against the computer. We
have space to talk about the results with only one them. We have
focused on PowerPoint as it is perhaps the most popular business
collaborative application today. Nonetheless, Checkers is also
important as it represents a computation-intensive game watched,
potentially, by a very large audience.

We analyzed recordings of two PowerPoint presentations. These
recordings contain actual data and users’ actions – PowerPoint
commands and slides. We assumed that the data and users’
actions in the logs are independent of the number of collaborators,
the processing powers of the collaborators’ computers, and
network latencies. PowerPoint turned out to be a good choice of
an application for which to analyze actual logs for two reasons: 1)
the parameter values we measured in the associated logs were
fairly wide spread and 2) it is frequently used in collaborations.

To obtain the processing and transmission time parameter values,
we created a collaborative session with several computers on the
same LAN. We designated one of the computers as the source of
the commands, and then we replayed the PowerPoint logs using a
Java-based infrastructure that has facilities for logging and
replaying commands. We measured the processing and
transmission times on the source computer. We used a P3
866MHz desktop and a P4 2.4 GHz desktop as sources, both of
which were running Windows XP. The P3 desktop is used to
simulate next generation mobile devices. We recorded the average
amortized input and output command transmission times of each
machine for PowerPoint. We removed any “outlier” entries from
the average calculation, caused for instance, by operating system
process scheduling issues. To reduce these issues, we removed as

165

many active processes on each system as possible. Ideally, while
we replay the recordings, we should run a set of applications users
typically execute on their systems. However, the typical working
set of applications is not publicly available so we would have to
guess which applications to run. For fear of incorrectly affecting
our measurements by running random applications, we used a
working set of size zero, a common assumption in experiments
comparing alternatives.

We had to assign the values of the number of collaborators and
the processing powers of their machines. In the collaboration
recordings that we analyzed, the number of users ranged from
thirty to sixty. Unfortunately, this is not a wide enough range of
values; in particular, the maximum value of the parameter needs
to be much bigger to be representative of large collaborations,
such as a company-wide PowerPoint presentation. Therefore, we
chose synthetic but not unrealistic values for the number of
observers. As observers do not input commands, they do not
influence the logs. Moreover, the talks we observed had tight time
constraints which did not allow questions. Thus, they were
independent of the number of observers. We randomly assigned
the type of computer of each observer to be a P3 or P4 desktop.

Based on pings done on two different LANs, we use 0ms to
simulate half the round-trip time between two computers on the
same LAN. We use publicly available network latencies measured
among 1740 computers distributed around the world [7] to
simulate latencies between two computers on different LANs.

4.2 Simulations
Using these parameter values, we simulated the local and remote
response times for all of the policies for both centralized and
replicated architectures with unicast and multicast. Of all of the
existing multicast algorithms, we know of only one that that
considers the time the users’ computers require for transmitting on
the network in the building of such a tree, which is the HMDM
algorithm [2]. We found that the cost of transmitting commands
can be high in the applications we used to gather parameter
values. Thus, we use HMDM to create our multicast overlays.

Our theoretical results predict that in theory, the lazy policy can
significantly improve the performance of some users without
significantly degrading the performance of others. To check if
these improvements can be significant in practical circumstances,
we consider a scenario in which a PowerPoint presentation is
being given to 200 audience members around the world. Based on
the published network latency data between 1740 computers [7],
we set the network latencies between all users equal to those

between a random subset of 200 of the 1740 computers. One issue
with randomly selecting the subset is whether the subset preserves
properties, such as triangle inequality and latency distributions, of
the entire set. Zhang et al. [12] analyzed random subsets taken
from latencies measured between 3997 computers and found that
they were representative of the overall measurements. The
lecturer is using a P3 desktop. Moreover, the users are organized
in a centralized architecture in which the lecturer’s computer is
the master. Furthermore, we assume that multicast is used for
communication. Finally, as mentioned before, users can notice
50ms degradations in local [11] and remote [4] response times.
Thus, we set both response time degradation thresholds to 50ms.

In this scenario, the differences between the remote response
times are shown in Figure 4. As Figure 4 shows, the lazy remote
response times are either significantly better than (1655ms) or
equal to the process-first transmission times, which agrees with
the prediction made by our equations. Furthermore, the lazy
remote response times can be as much as 126.6ms and 146.6ms
better for some users than the transmit-first and concurrent remote
response times, respectively. On the other hand, the lazy remote
response times are worse by as much as 2811ms and 2721ms than
those of the transmit-first and concurrent policies, respectively.
These results agree with the predictions made by the equations. In
addition, they show that for some users, the lazy policy provides
significantly better remote response times than all other policies.

The lazy policy local response time, 700.4ms, is 50ms worse than
the process-first local response times, 650.4ms, which is within
the local response time degradation threshold. The transmit-first
and concurrent local response times are both 873.8ms, which is
significantly worse than those of the lazy policy. These results
agree with the predictions made by the response time equations.

5. RELATED WORK
Our work draws on research in several diverse fields including not
only collaboration architectures but also human-perception
studies, distributed systems, scheduling, and mobile computing.

As mentioned above, previous work has found that users cannot
distinguish between local response times below 50ms [9]. Jay et
al. [4] complement these results by showing that 50ms and 25ms
remote response times for visual and haptic operations,
respectively, are also noticeable. In addition, they found that 50ms
increments in remote response times are noticeable for both kinds
of operations. While no study has directly addressed noticeable
changes in local response times, one can derive them indirectly
from the study of local response times by Youmans [11].
Youmans provided the participants with a button that reduced
local response times by one eight and found that the participants
forced these times into the 300-500ms range, which implies that
43ms decrements in local response times are noticeable.

The lazy policy relies on these thresholds to delay the processing
task. The general idea of completing tasks “just in time” been
studied both in single-processor and distributed [10] real-time
systems. In the distributed case, end-to-end scheduling algorithms
are used, which are related to the lazy policy in the multicast case.
In end-to-end scheduling, a task is divided into subtasks, and each
subtask is allocated to a different processor. The sub-tasks are
governed by precedence constraints – subtask k cannot start until
subtask k-1 completes. Distributing subtasks in this fashion is
similar to building multicast overlays. Multicast schemes divide

Figure 4. Remote response times for PowerPoint simulation.

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

!" '!" #!!" #'!"!
"
#
$
%"
&!
"
'(
$
)
'"
&*
+#

"
&,
#
'-
&

.'"/&0)1"2&

!"#$%"&!"'($)'"&*+#"'&

()*+" ,-" .-" /01/"

2'!"

#!!!"

#$'!"

166

the transmission task into subtasks and schedule each subtask on a
different machine. Precedence constraints are implicit as a
machine must wait for a command to arrive before forwarding it.
However, there are several important differences between end-to-
end scheduling and the lazy policy. First, in end-to-end
scheduling, the system has freedom in mapping a task to any
processor, while in a collaborative system, the processing
architecture constrains the mapping. In particular, regardless of
the architecture, input (output) processing must be done on all
master (master and slave) machines. Thus, processing tasks are
not distributable in end-to-end scheduling. Second, the two kinds
of systems have fundamentally different goals. The main goal of
end-to-end scheduling is to complete the final subtask by the
overall task deadline, while the main goal of the lazy policy is to
meet the processing task deadline on as many computers as
possible. As a result, our scheme trades off local and remote
response times, while end-to-end scheduling schemes only
guarantee that a task completes on time.

“Just in time” task completion has also been used in energy-aware
end-to-end scheduling algorithms for distributed mobile systems.
Seshasayee et al. [8] present an energy-aware scheduling
algorithm that uses slack to complete tasks just in time while
maximizing the battery life of each device. For instance, if a task
completes early, they use dynamic voltage and frequency scaling
to reduce the amount of power consumed by the mobile devices.
As a result, the task completes later, but on time. Unlike our lazy
policy, which trades-off local and remote response times, their
scheme trades-off application lifetime for response times.

6. DISCUSSION
The user experience in a collaborative application suffers when
response times are large. In fact, first-time users of collaboration
technology may never try it again if they face intolerable response
times. In this paper, we have presented a new scheduling policy
that, like process-first, tries to optimize local response times but,
unlike the latter, uses slack time to improve remote response
times. We have shown, both through formal analysis and
simulations, that it is always superior to the process-first policy as
it provides 1) local response times that are as good as or
unnoticeably worse than and 2) remote response times either as
good as or significantly better than those of the process-first
policy. Thus, lazy scheduling should be used if local response
times are more important. Our results also show that neither the
concurrent nor the transmit-first policy dominates the lazy policy.
If all performance parameters are known, our equations make it
possible to determine which one of these three policies would
improve the response times for a particular user.

The analysis we have presented did not account for simultaneous
user commands. Concurrent interaction does not occur in many
practical collaboration scenarios. For instance, in the PowerPoint
logs we analyzed, there was only one presenter who had large
think times between commands. Also, in the Checkers logs we
analyzed, the players used social protocol to avoid entering
commands at the same time. In general, however, simultaneous
commands can occur. The scheduling policies we considered are
flexible enough to handle them if we make the reasonable
assumption that tasks of a command are completed atomically
with respect to those of other commands. A similar approach to
atomicity is made in popular multi-player online games. For
example, the Quake server repeatedly performs a three-step loop

[1]: 1) read client commands; 2) process them; and 3) send replies
to clients. The server does not check for new client commands
until it processes all of the commands it read in the previous loop
iteration. A similar loop executes on each client, only it receives
commands from the local user and the server and sends the user’s
commands to the server. Such atomic processing is performed in
all published gaming literature we found.

A side effect of scheduling tasks for a command atomically is that
commands are not allowed to overlap, which can potentially rule
out telepointer and other continuous motions such as drag and
drop and, in our studied scenario of PowerPoint presentations,
quickly browsing though a succession of slides and animations.
Non-overlapped execution of continuous operations may result in
these operations appearing discontinuous to users. However, as
we illustrate next, this does not manifest itself as a real problem in
a large number of scenarios when tasks for a command are
scheduled atomically. Consider a telepointer motion. The motion
will appear smooth if the telepointer commands are generated and
processed at a rate of thirty per second (or one every 33ms). We
have found that on a P4 desktop, the processing and transmission
times of a telepointer command are 0.83 and 0.06ms, respectively.
Thus, if the application generates a telepointer command every
33ms, then a P4 desktop has 32.17ms to perform the transmission
task. When unicast is used, the command can be transmitted to as
many as 536 destinations. When multicast is used, the number of
users supported is even higher because each P4 computer that
forwards commands can forward to as many as 536 destinations.
The telepointer costs, as well as costs of other continuous motions
(such as a drag-and-drop), are going to be different on other
processors. Although we expect that they are still low, studies are
needed to determine these costs and the range of scenarios in
which the scheduling policies we considered can support them.

Another issue with simultaneous commands is that they may
conflict when different users enter them. In collaborative systems,
conflicts are resolved by concurrency control mechanisms, which
have their own processing and transmission tasks. Scheduling of
these tasks is beyond the scope of this paper. Regardless of the
how exactly the concurrency control tasks are scheduled, which is
left as future work, their impact on response times can be captured
by the equations we have presented. Concurrency control
mechanisms are pessimistic or optimistic by nature. Pessimistic
schemes prevent the execution of a user’s command until they
verify that the command does not conflict with other users’
commands. Our equations can handle the time required for such
verification by adding it to the processing time of the command.
Optimistic schemes do not prevent an action from executing and
they recover from any conflicts that result using transformation
operations, state rollback, or undo/redo mechanisms [3]. Our
equations handle the time required to use these mechanisms by
adding it to the processing time of the command which caused the
conflict. Thus, our equations support concurrency control tasks
though they do not consider efficient scheduling of these tasks.

When conflicts occur, the effect of pessimistic and optimistic
concurrency control mechanisms on the response times is not
clear. The reason is that in both cases, processing times of some
commands will be increased causing new tradeoffs between local
and remote response times. For instance, when conflicts are
resolved using operation transformations, remote response times
are improved but can significantly degrade local response times
[6]. On the other hand, when there are no conflicts, then only

167

pessimistic schemes inflate processing times. Thus, when lazy
scheduling is used, optimistic schemes allow for larger processing
delays than pessimistic schemes. This is yet another performance
argument for using optimistic instead of pessimistic schemes.

Interestingly, Greenberg and Marwood [3] observe that the
amount of conflicts that happen under optimistic concurrency
control mechanisms is a function of remote response times. More
specifically, the lower the remote response times, the sooner a
user becomes aware of other users’ actions, and thus makes fewer
conflicting actions. Our equations can be used to choose a
scheduling policy that provides the lowest remote response times
among inputting users (as opposed to observing users), and thus
reduce potential conflicts. A reduction in conflicts would reduce
the use of conflict recovery mechanisms. In turn, this enables the
lazy scheduling policy to further delay processing commands,
thus improving remote response times even more in a self-feeding
cycle. This cycle calls for reducing remote response times as
much as possible, even if the users cannot notice the reduction.

Our work can be extended in a number of ways. A useful notion
would be to combine the idea of lazy scheduling with concurrency
control. Merging these ideas can create a new pessimistic-
optimistic hybrid concurrency control scheme, which works as
follows. When a user enters a command, the scheme behaves
pessimistically at first. If the time required to check for conflicts
is longer than the local response time degradation threshold,
however, the scheme turns optimistic and uses conflict resolution
mechanisms to handle any conflicts that occur. If, on the other
hand, the time required for conflict checking is less than the local
response time threshold, the scheme remains pessimistic. Such a
scheme would be useful because the user would never notice the
delays during the pessimistic phase, yet conflicts detected during
the phase can be handled easily by rejecting the user’s command.

It would also be useful to study the impact on performance of
different response time degradation thresholds. As mentioned
above, we used 50ms as the noticeable response time thresholds in
our PowerPoint simulations. However, the studies that found
these thresholds did not use PowerPoint commands. Although
unlikely, the noticeable response time differences in PowerPoint
may be more than 50ms, and user studies are needed to verify this
claim. Previous work has shown that tolerable response time
thresholds can be higher than their noticeable counterparts [9].
We used noticeable thresholds in our simulations based on the
fact users would always prefer a system that provides noticeably
better performance, if all else is equal (e.g., cost, functionality,
etc.). Moreover, the tolerable thresholds are a function of users’
expectations and can be expected to drop as users find systems
with better than expected performance.

Although we have focused on scheduling tasks on a single-core,
the policies we have presented can be ported to multi-core
systems. The lazy policy can be adapted to multi-core scenarios
by delaying the processing task on all of the (one of the) cores if
the processing task is (is not) parallelizable. Moreover, the
concurrent scheme can perform the processing and transmission
tasks in parallel on different cores. The sequential schemes would
simply use all cores for one and then for the other task. Future
studies are needed to evaluate the response time differences
provided by these policies on multi-core systems.

It would also be useful to create a collaborative framework that
periodically evaluates the equations we have provided during

collaborative sessions, and based on the history of past
collaborations of the same kind, dynamically chooses the policy
that best suits the current needs of the collaborators. Moreover, it
would be useful to investigate the dual of the lazy (process-first)
policy presented here, one in which the transmission task is given
precedence over the processing task. It would also be useful to tie
multicast to scheduling by building an overlay that accounts for
the scheduling policy. Finally, it would also be useful to compare
the scheduling policies used in current commercial collaborative
systems, such as those used in multi-player games, with the lazy
policy. Some of these applications, such as Quake, can have large
processing and transmission costs. The lazy policy should do well
in these applications because of the additive effect on the remote
response time improvement when processing costs are high.

7. ACKNOWLEDGEMENTS
This work was funded in part by a Natural Science and
Engineering Research Council of Canada scholarship, a Microsoft
Research fellowship, and NSF grants IIS 0312328, IIS 0712794,
and IIS-0810861. The comments of the reviewers substantially
improved the paper.

8. REFERENCES
[1] Abdelkhalek, A., Bilas, A., and Moshovos, A. 2001.

Behavior and performance of interactive multi-player game
servers. ISPASS 2001.

[2] Brosh, E. and Shavitt, Y. 2004. Approximation and heuristic
algorithms for minimum delay application-layer multicast
trees. INFOCOM 2004.

[3] Greenberg, S. and Marwood, D. 1994. Real time groupware
as a distributed system: concurrency control and its effect on
the interface. CSCW 1994.

[4] Jay, C., Glencross, M., and Hubbold, R. 2007. Modeling the
effects of delayed haptic and visual feedback in a
collaborative virtual environment. TOCHI 2007.

[5] Junuzovic, S. and Dewan, P. 2008. Serial vs. concurrent
scheduling of transmission and processing tasks in
collaborative systems. CollaborateCom 2008.

[6] Li, D., and Li, R. 2008. An operational transformation
algorithm and performance evaluation. JCSCW, 17, 5-6.

[7] p2pSim: a simulator for peer-to-peer protocols.
http://pdos.csail.mit.edu/p2psim/kingdata. Mar 4, 2009.

[8] Seshasayee, B., Nathuji, R., and Schwan, K. 2007. Energy-
aware mobile service overlays: cooperative dynamic power
management in distributed mobile systems. Autonomic
Computing (ICAC) 2007.

[9] Shneiderman, B. 1998. Response time and display rate. in
Designing the user-interface: strategies for effective human-
computer interaction. Addison-Wesley Longman.

[10] Sun, J. and Liu, J. 1996. Synchronization protocols in
distributed real-time systems. ICDCS 1996.

[11] Youmans, D.M. 1981. User requirements for future office
workstations with emphasis on preferred response times.
IBM United Kingdom Laboratories.

[12] Zhang, B., Ng, T.S.E, Nandi, A., Riedi, R., Druschel, P., and
Wang, G. 2006. Measurement-based analysis, modeling, and
synthesis of the internet delay space. IMC 2006.

168

