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ABSTRACT 
A collaborative system must perform both processing and 
transmission tasks. We present a policy for scheduling these tasks 
on a single core that is inspired by studies of human perception 
and the real-time systems field. It lazily delays the execution of 
the processing task if the delay cannot be noticed by humans. We 
use simulations and formal analysis to compare this policy with 
previous scheduling policies. We show that the policy trades-off 
an unnoticeable degradation in performance of some users for a 
much larger noticeable improvement in performance of others.  

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications, client/server. C.4 
[Performance of Systems] Performance Attributes. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Collaboration architecture; scheduling policy; local and remote 
response times; analytical model; simulations. 

1. INTRODUCTION 
In a collaborative system, a computer must not only process user 
commands but also transmit these commands to the computers 
belonging to other users. How the processing and transmission 
tasks are scheduled can influence the response times seen by local 
and remote users, which we refer to as local and remote response 
times, respectively. One approach is to create separate threads for 
these tasks and schedule the threads using a round-robin policy. 
An alternative to this concurrent policy is to schedule the tasks in 
a serial order, either processing or transmitting first. Processing 
first tends to give the best local response times, transmitting first 
tends to give the best remote response times, and concurrent 

execution tends to give response times that are in between those 
supported by the other two policies [5]. Moreover, these 
differences can be significant in certain scenarios when a single 
core is available for executing these tasks [5]. 

One issue with the three existing policies is that there is no way to 
control the tradeoff between local and remote response times. 
Controlling the tradeoff is particularly attractive when an 
unnoticeable increase in one metric can result in a noticeable 
decrease in the other metric. Human-perception studies have 
shown that certain increases are indeed unnoticeable – users 
cannot distinguish between local response times below 50ms [9] 
and visual and haptic remote response times below 50ms and 
25ms, respectively [4]. On the other hand, users can notice 50ms 
changes in local [11] and remote response times [4]. Based on 
these observations and the principles in real-time scheduling, we 
have devised a new lazy process-first scheduling policy that, like 
the process-first policy, gives precedence to the processing task, 
but delays its execution if the resulting increase in local response 
times cannot be noticed by humans. We can imagine a dual of this 
policy, lazy transmit-first scheduling, that like the transmit-first 
policy, gives precedence to the transmission task, but delays its 
execution if the resulting increases in remote response times are 
not noticeable. In this first cut at the idea of lazy scheduling of 
collaboration tasks, we have only considered lazy process-first 
scheduling, which we shall refer to as simply lazy scheduling. 

The general idea of scheduling tasks so that they complete “just in 
time” is not new. In real-time systems, for example, there are both 
real-time tasks, which need to complete within some absolute 
deadline, and non-real-time tasks, which need to complete as soon 
as possible. Since in these systems a) there is no benefit to 
completing a real-time task before its deadline and b) real-time 
tasks typically have processing times which are shorter than their 
deadlines, a real-time task can be delayed by the difference 
between its deadline and processing time while still being able to 
complete in time. The amount the task can be delayed is called 
slack time. To improve the performance of non-real-time tasks, 
some slack-stealing scheduling algorithms schedule the non-real-
time tasks during the slack times of the real-time tasks. By doing 
so, the non-real-time tasks can complete earlier. 

The idea of lazy scheduling, however, raised three questions that 
have not been answered before. (1) How is it implemented in 
various kinds of distributed collaborative systems that exist 
today? Previous algorithms devised for supporting slack stealing 
cannot be used because neither the processing nor the 
transmission tasks have so far been modeled as tasks with 
deadlines. (2) How do the response times of lazy scheduling 
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compare to those supported by the three existing policies in 
arbitrary theoretical scenarios? (3) Are there realistic scenarios in 
which it offers significant advantages over the other policies? The 
rest of this paper addresses these questions. 

2. IMPLEMENTATION 
Before we can address scheduling of the processing and 
transmission tasks, we must understand the nature of these tasks, 
which depends on the processing and communication architecture. 

2.1 Processing architecture 
Two popular processing architectures are the centralized and 
replicated architectures. In both cases, it is assumed that the 
shared application is logically divided into separate user-interface 
and processing components. The user-interface component 
transforms user input into input commands and sends these 
commands to the program component. Conversely, it processes 
output commands that it receives from the program component 
and transforms the result into updates to the display. The program 
component processes user input by converting input commands to 
output commands. The user-interface component is replicated on 
each user’s computer and allows a user to manipulate application 
state not shared with the other users. The program component is 
logically shared by all users and may be physically centralized or 
replicated, depending on the processing architecture. Each user 
interface is mapped to exactly one program component. 

In the centralized (client-server) architecture, all of the user-
interface components are mapped to a single program component 
running on one of the user’s computers. The computer running the 
program component is called the master and all of the other 
computers are called slaves. In the replicated (peer-to-peer) 
architecture, each user-interface component is mapped to the 
program component running on the local computer. Whenever a 
master receives an input command from the local user, it sends 
the command to all of the other computers, thereby ensuring the 
program components on different masters are kept in sync. 

2.2 Communication architecture 
A master computer may use unicast or multicast to communicate 
with other computers. The idea of multicast requires the 
construction, for each source of messages, a multicast overlay that 
defines the paths a message takes to reach the destinations. In this 
paper, we make two assumptions regarding multicast. First, 
because IP-multicast is not widely deployed, we assume an 
application-layer multicast in which end-hosts form the overlay. 
Second, as in peer-to-peer file sharing systems, we assume that 
only the users’ computers can be used in the overlay.  

When considering communication at the application layer, it is 
important to use application-layer transmission costs. 
Traditionally, the transmission time of a command has been 
calculated as “size of message/bandwidth.” However, this 
calculation is invalid at the application layer because it accounts 
only for the transmission costs at the network interface [2]. Before 
the command reaches the network interface, the operating system 
must traverse the network stack and copy data buffers along the 
way, which takes time. Moreover, the operating system must 
perform these steps for each destination. Study by Abdelkhalek et 
al. [1] of the server for Quake, a popular multi-player first-person 
shooter game, found that these costs can be significant in practice. 

They found that the server spent 50% of CPU time on transmitting 
commands to clients. Hence, from here on, by transmission costs, 
we mean application-layer transmission costs. To ensure good 
local response times of slave users, we assume that in a 
centralized architecture, the master transmits an output command 
to the inputting slave first regardless of whether unicast or 
multicast is used.  

2.3 Lazy Scheduling Algorithm 
Our lazy scheduling algorithm works for both the centralized and 
replicated processing architectures and unicast and multicast 
communication architectures. It delays the execution of the 
processing task on a computer without allowing the local user to 
notice the delay. The pseudo-code for the algorithm is shown in 
Figure 1. As the figure shows, the algorithm accepts two 
parameters, namely, the local and remote response time 
degradation thresholds (Line 0). The algorithm supports different 
values of these thresholds because, as mentioned above, previous 
work has shown that noticeable local and remote response time 
degradations can be different.  

The starting point of the policy, the Main function, is a loop 
which waits for the next command, C, which may be received 
from the local user or a remote computer. The first task is to 
compute from C the command CtoTrans to be actually 
transmitted to other computers (Lines 3-5). In all scheduling 
policies, this processing subtask is never delayed as it is necessary 
to define the transmission task. If the centralized architecture is 
being used and C is an input command, then the transmitted 
command is the output command corresponding to the received 
command; otherwise it is simply the received command.  

The next step is to compute the amount of time, maxTransTime, 
by which the (remaining) processing can be delayed, which 
depends on whether C is entered by or is a response to a command 
entered by the local or remote user (Lines 8-10). When C is an 
input command from the local user, then the processing of the 
command can be delayed by as much as the time specified in the 
local response time degradation threshold. Hence, maxTransTime 
is set to this threshold. When C is an output to a command entered 
by the local user, however, the command can be delayed for some 
time at the master for reasons given later. The delay is stored in 
prevDelay property of the command. Thus, maxTransTime is 
set to the difference between the local response time threshold and 
prevDelay. In all other cases, processing can be delayed by as 
much as the remote response time degradation threshold. Since 
the computers on the path from the source to the current computer 
contribute to the remote response times of the computer, the 
processing can be delayed only if the total previous delay for the 
command, which is stored in prevDelay, is less than the remote 
response time threshold. Thus, maxTransTime is set to the 
difference between this threshold and the total previous delay of 
the command.  

Once maxTransTime has been calculated, the algorithm calls the 
Transmit function (Line 11). The Transmit function returns if 
it estimates that it will execute for longer than maxTransTime if 
it transmits to another destination (Line 16). To approximate the 
cost of the next transmission, the Transmit calls the 
EstTransTime function. To provide the estimate, the 
EstTransTime function could use data from previous 
collaborations or can dynamically determine transmission costs 
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based on transmission times of previous commands. If the 
Transmit function does not return, it transmits the command to 
the next destination. Because it can be called twice for the same 
command, once before and once after the processing task is 
performed, the function keeps track of destinations to which it has 
already sent the command and does not send to those destinations 
again when it is called the second time (Lines 17-20). For each 
transmitted command, it stores the delays the command has 
experienced so far in prevDelay (Line 18), which the next 
computer on the path reads (Lines 8-10).  

After the Transmit method is called the first time, the processing 
of the command completes at the local computer (Lines 12-13), 
which depends on the processing architecture. In the centralized 
case, only the output command is processed. In the replicated 
case, the input and its computed output are processed. Then, the 
Transmit method is called again, this time with maxTransTime 
set to INIFINITY, which allows the transmission to complete. 

We have presented the algorithm with respect to a single input 
command for single-core machines. We defer the issues of multi-
core scheduling, simultaneous commands, and concurrency 
control to the discussion section. 

3. ANALYSIS 
We evaluate our lazy algorithm by comparing it with the existing 
sequential and concurrent policies. We present and illustrate 
equations for the response times for the four policies, and use the 
equations to predict the relative performances of the policies. 

3.1 Replicated Remote Response Time 
We first develop the equations for replicated architecture remote 
response times for input commands entered by a master user. To 

reach a particular user’s computer, which we refer to as the 
destination computer, the command must travel from the source 
computer to the destination computer along some path. The path 
may consist of additional computers, which we refer to as 
intermediate computers. The terms destination and intermediate 
are relative to a particular path. An intermediate computer on one 
path is a destination computer on a different path as all users see 
the output of an input command. Let denote the path from the 
source to the destination, denote the number of computers on 
the path including the source and destination computers, and

denote the computer on the path , where is 
the source and the destination computer.  

The replicated remote response time of command  to computer 
 along path is given by 

 

where is the network latency between the and 
 computers on path ,  is the delay of the  

intermediate computer on the path, and  is the delay of the 
destination computer. The destination and intermediate computers 
contribute different delays because the former contributes to the 
remote response time of the local user while the latter contribute 
to the remote response time of a remote user. This results in a 
fundamental difference between the equations for the intermediate 
and destination computers. In the case of an intermediate 
computer, we must determine when the computer transmits to the 
downstream computer. In the case of the destination computer, we 
must determine when the input and output processing complete. 

The first component of the remote response time equation is 
independent of the scheduling policy as it is a sum of the network 
latencies on the path from the source to the destination. 

3.1.1.1 Transmit-first Policy Delays 
The simplest equations for the computer delays along the path  
from the source to the destination are those for the transmit-first 
policy. Consider first the delay of , the intermediate 
computer on path . Its delay is equal to the time that it requires 
to transmit the command to the next computer along the path, 

. In general, computer  may have to transmit to more than 
one destination. Therefore, its delay depends on the number of 
other computers to which it transmits before transmitting to 
computer . Let  denote the time usera’s computer 
requires to transmit the input command  to a single destination, 
and denote the position of userb’s computer in usera’s 
computer list of destinations. Then, the transmit-first delay of the 

computer on the path from the source to the destination equals 
 

The delay of the destination computer  also depends on the 
number of computers to which it forwards commands because it 
must first transmit the command to all of them before processing 
the input command and its output. Let ( ) denote the 
time usera’s computer requires to process input (output) command 

, and let denote the number of destinations to which usera’s 
computer forwards commands. Thus, the transmit-first delay of 
the destination computer equals 

 

0: INPUT: Local (L) and remote (R) response time 
          degradation thresholds 
 

DESTS     // this computer’s destinations 
 

Main() 
1: loop (forever) 
2:  wait for command C 
 

3:  if(centralized && C.isInput) 
4:    CtoTrans = Process(C) 
5:  else CtoTrans = C 
 

6:  startTime = now 
7:  for(each dest in DESTS) dest.sentTo = false 
 

8:  if((C.isInput && C.isFromLocalUser) || 
      (C.isOutput && C.isOutputToCmdByLocalUser)) 
9:    maxTransTime = L – C.prevDelay 
10: else maxTransTime = R - C.prevDelay 
 

11: Transmit(CtoTrans,maxTransTime) 
 

12: if(centralized) Process(CtoTrans) 
13: else Process(Process(C)) 
 

14: Transmit(CtoTrans,INIFINITY) 
 

Transmit(CtoTrans,maxTransTime) 
15: for(each dest in DESTS) 
 

16:  if(now – startTime + EstTransTime(CtoTrans) 
          >= maxTransTime) return 
 

17:  if(dest.sentTo == false) 
18:    CtoTrans.prevDelay +=  
         now – startTime + EstTransTime(CtoTrans) 
19:    dest.send(CtoTrans) 
20:    dest.sentTo = true 
 

Figure 1. The lazy scheduling policy algorithm. 
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To illustrate the remote response time equations for this policy, 
consider the replicated-multicast architecture shown in Figure 2. 
The figure shows the transmission of an input command entered 
by user1. User1’s computer transmits only to computers belonging 
to user2, user3, user4, user5, and user6, while user2’s computer 
transmits to computers belonging to user7, user8, user9, and user10. 
Suppose the architecture has the following additional properties: 
1) user1 enters all of the commands; 2) user1’s computer’s 
transmission order is user2, user3, user4, user5, and user6, and 
user2’s transmission order is user7, user8, user9, and user10; 3) all 
of the users have the same computers; 4) the time the computers 
require to process an input and output command are 3P and P, 
respectively; 5) the time the computers require to transmit an 
input command to a single destination is T; 6) that P is much 
greater than T; 7) the network latency between all of the 
computers is D; and 8) the response degradation thresholds are 
both T. We will use this theoretical example as a running example 
for illustrating our response time equations. 

Consider the remote response time of user10. The path  from 
user1’s to user10’s computer is of length =3 and , , and  
are user1’s, user2’s, and user10’s computers, respectively. User1’s 
delay is equal to the time user1’s computer requires to transmit the 
command to a single destination, T, since it transmits to user2’s 
computer first. Similarly, user2’s delay is equal to the time user2’s 
computer requires to transmit the command to four destinations, 
4T, since it transmits to user10’s computer last. User10’s 
computer’s delay is equal to the time the computer requires to 
process the input and the corresponding output command, 4P. But 
if user10’s computer had to also forward the command to other 
computers, then the delay would include the time the computer 
requires to transmit the input command to them. Therefore, 
user10’s remote response time is equal to T+4T+4P=5T+4P. 

3.1.1.2 Process-first Policy Delays 
The equations for the process-first policy delays of the computers 
on the path  from the source to the destination are similar. 
Recall that in this policy, the computer starts the transmission task 
after it completes the processing task. Therefore, unlike the 
transmit-first delay, the process-first delay on an intermediate 
computer includes the time the computer requires to process the 
input and the corresponding output command. The process-first 
delay of an intermediate computer  is given by 

 

In our example, user1’s and user2’s delays are equal to the time 
their computers require to process the input and output command, 
4P, plus the time they require to transmit the input to one and four 
destinations, T and 4T, respectively. 

The process-first delay of the destination  computer is simply 
the time the computer requires to process the input and the 
corresponding output command. 

 

3.1.1.3 Concurrent Policy Delays 
The delay equations for the concurrent policy are more 
complicated. The reason is that when the processing and 
transmission tasks execute concurrently, they interfere with each 
other’s execution times. We assume that neither task blocks 
because it is difficult to predict their behavior, otherwise. The 
non-blocking task assumption is consistent with assumptions 
made in real-time systems when tight performance bounds are 
required. While results exist for blocking tasks, the upper-bounds 
for the performance in this case are extremely loose. Moreover, 
the non-blocking task assumption is realistic as a well-designed 
application can help ensure that the processing and transmission 
tasks do not block by using separate threads and asynchronous 
communication, respectively. In addition, we consider context 
switch times negligible as we have found that they are no more 
than a few microseconds on modern operating systems running 
Pentium 4 desktops, which is several orders of magnitude lower 
than processing and transmission costs we have observed in real 
collaboration scenarios. Given these assumptions and our earlier 
assumption that a single core is available for scheduling, then the 
time required to complete 1) the shorter of the transmission and 
processing tasks is equal to twice as long as the time required to 
complete it standalone and 2) the longer of the two tasks is equal 
to the time required to complete the two tasks sequentially. Both 
of these results are illustrated in Figure 3, which shows two tasks 
executing concurrently. As the figure shows, as the length of the 
scheduling quantum becomes smaller, the time required to 
complete the shorter task doubles. On the other hand, the longer 
task always completes in the amount of time required to complete 
the two tasks separately. This result is captured by the function 

 

where  and  are execution times of the two tasks. Thus, we 
can state the concurrent delay of an intermediate computer  as 

 

In our example, user2’s requires 4T time to transmit the command 
to user10’s computer and 4P time to process the command and its 
output. Therefore, user2’s delay is equal to 8T since the 
transmission time is shorter than the processing time. 

The delay of the destination computer  is similar except that it 
captures how long it takes to complete the processing task rather 
than how long it takes to complete the transmission task. Thus, the 
concurrent delay of the destination computer is 

 

In our example, since user10’s computer does not forward 
commands, the time it takes to complete the transmission task is 
0. Therefore, its delay is equal to its processing time, 4P. 

 
Figure 3. Concurrent execution time. 
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Figure 2. Replicated-multicast architecture with ten users. 
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3.1.1.4 Lazy Policy Delays 
The equations for the lazy policy delays of the computers along 
the path  from the source to the destination must account for 
the local and remote response time degradation thresholds. 

Consider the delay of an intermediate computer . This delay 
depends on whether the computer transmits to the next computer 
on the path, , before or after the processing task. This, in turn 
depends on the difference between the sum of the delays the 
command has experienced so far and the amount of time by which 
the computer can delay the processing task without the local user 
noticing the delay, which is the local (remote) response time 
degradation threshold if the computer is (not) the source. Let 

 

 

Then, the lazy delay of an intermediate computer  is 

 

In our theoretical example, recall that we assumed that both the 
local and remote response time degradation thresholds are T. 
Since the time user1’s computer requires to transmit to a single 
destination is T, then according to the lazy policy algorithm, 
user1’s computer will transmit to user2’s computer before 
performing the processing task. Therefore, user1’s delay is equal 
to T. On the other hand, user2’s computer will immediately begin 
performing the processing task in order to meet the remote 
response time threshold because the command has already been 
delayed by T. Therefore, user2’s delay is equal to the time user2’s 
computer requires to process the input and output command, 4P, 
plus the time it requires to transmit the command to four 
destinations, 4T. 

The delay on the destination computer is slightly different as it 
tries to forward the command to as many other computers as 
possible while satisfying the remote response time threshold. 
Hence, if the time the computer requires to complete the 
transmission task plus the amount of time the command has 
already been delayed is less than the amount of time by which the 
computer can delay the processing time without the local user 
noticing the delay, then it will complete the transmission task 
before performing the processing task. Otherwise, if the amount 
the command had been delayed so far is less than the remote 
response time threshold, then the computer will transmit for only 
the difference between the two before performing the processing 
task. Otherwise, it will perform the processing task immediately. 
Hence, the delay of the destination computer is 

 

In our example, since user10’s computer does not forward the 
command to other computers, its delay is the processing time, 4P. 

3.2 Replicated Local Response Time 
So far, we have presented only the equations for the replicated 
remote response times. We next present the equations for 
replicated local response times for commands entered by a master 
user. Recall that the local response time is the time that elapses 
from the moment a user enters an input command to the moment 
the user sees the output for the command, which is equivalent to 
the time that elapses from the moment the inputting user’s 
computer receives the command to the moment the computer 
completes processing the output of the command. Therefore, the 
local response time is exactly the delay of the destination 
computer defined above. This makes sense because the inputting 
user’s computer is both the source and the destination. Thus, the 
transmit-first, process-first, concurrent, and lazy local response 
time equations for command  entered by userj are given by 

 

 

 

 

3.3 Other Cases 
The equations we have presented have considered the case in 
which the processing architecture is replicated and the input 
command is entered by a master user. Let us next consider the 
centralized architecture and slave commands. 

3.3.1 Centralized Architecture 
We can obtain the centralized architecture equations for 
commands entered by master users from the above replicated 
architecture equations by adjusting them for the two main 
differences in the two architectures. First, in the centralized 
architecture, only the master computer processes input commands, 
while all computers process output commands. Therefore, when 
calculating the delays of the computers on the path from the 
source to the destination, the processing times in the delays are 
equal to the time needed to process only output commands. 
Second, instead of transmitting input commands, the computers 
transmit output commands. Based on these two differences, the 
centralized architecture general local and remote response time 
equations are, respectively, given by  

 

 

The new term accounts for the fact that the master computer must 
still process the input command. This is the equation that applies 
to all scheduling policies. 

Next we can derive the policy-specific delays created by the 
computers on the path from a source to a destination. The 
centralized process-first delay on an intermediate computer  is 

 

The remaining delays can be derived similarly. 
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3.3.2 Slave Commands 
We can also obtain the equations for input commands entered by 
slave users by morphing the above equations for input commands 
entered by master users. The only difference between the two 
kinds of input commands is that a command entered by a slave 
must first reach the master computer. Once the command reaches 
the master, the problem reduces to that of calculating the remote 
response time from the master to the slave, which we have already 
done above. The time the command takes to reach the master 
computer is equal to the time the slave computer requires to 
transmit the command to a single destination (i.e. the master) plus 
the time the command takes to traverse the network between the 
slave and master computers. Therefore, we can obtain the 
equations for the local and remote response time of command  
entered by slave usera whose master is userb by adding the term 

 to the response time equations.  

In the lazy scheme described so far, a master computer does not 
noticeably degrade the (local or remote) response time of its local 
user. It should also not noticeably degrade the local response time 
of a slave user. Recall that when a slave user inputs a command, 
the master transmits the output to that slave first. Moreover, we 
have found that the cost of transmitting to a single destination is 
typically less than the reported response time degradation 
thresholds of 50ms. Thus, the master will transmit the output to 
the slave before doing local processing of the output, which 
means that the delay is equal to the time the master requires to 
transmit the output to a single destination. Since the delay is also 
less than the local response time threshold, the slave’s local 
response time does not degrade by more than the local response 
time degradation threshold. 

3.4 Implications 
The analysis above helps us better understand the nature of lazy 
scheduling and how it differs from the other scheduling policies. 
It also helps us formally confirm intuitive expectations and, more 
interesting, derive some unintuitive results about the lazy policy. 

The lazy policy takes slack time in processing to transmit 
commands to other destinations. Thus, it gives processing less 
priority than process-first and more priority than concurrent and 
transmit-first policies. Intuitively, processing early (late) favors 
local (remote) response times, so, this seems to imply that, in 
comparison to (a) process-first, the local should be worse and 
remote response time better and (b) concurrent and transmit-first, 
the local should be better and remote response time worse. Our 
equations show that the differences are more subtle because the 
algorithm is run on each computer. Because of lack of space, we 
show the differences only for the replicated architecture and 
master commands. The results, however, apply to other cases also. 

3.4.1 Lazy vs. Process-first 
The difference in the lazy and process-first local response times is  

 

By definition, the difference is never more than the local response 
time degradation threshold, . Thus, the equations predict that 
the lazy local response times are never noticeably worse than the 
process-first local response times. 

To illustrate, consider user1’s local response time in our example. 
When the lazy policy is used, user1’s computer delays the 

processing task by the local response time threshold, T. Thus, 
since the computer requires 4P time for the processing task, 
user1’s local response time is equal to T+4P. With the process-
first policy, the computer immediately processes the command, 
resulting in a local response time of 4P to user1. Thus, the lazy 
local response time is worse than that of the process-policy, but 
not by more than the local response time degradation threshold. 

While the difference in local response times is expected from the 
design of the lazy policy, the difference in the remote response 
times are somewhat surprising. Consider first an intermediate 
computer. If the accumulated delays are such that this computer 
processes the command before transmitting to the downstream 
computer, then the difference in the delays is given by 

 

The reason is that in this case the lazy policy behaves like the 
process-first policy. In the other case, when the computer 
transmits to the downstream computer before processing, the 
difference in the delays is given by 

 

Let us now consider the destination computer. If the destination 
computer does not delay processing, the lazy policy reduces to 
process-first. Hence, in this case 

 

Otherwise, the difference in the delays is 
 

The result can never be more than the remote response time 
threshold by definition. Since processing costs can be significant, 
the lazy delays on intermediate computers can be significantly 
better than the process-first delays. Therefore, the lazy policy 
remote response times can be significantly better than the process-
first remote response times. 

To illustrate, consider user10’s remote response time in our 
example. In this case, user1’s and user2’s computers are the 
intermediate computers. User1 and user2 delays are equal to T and 
4P+4T, respectively, with the lazy policy, and 4P+T and 4P+4T, 
respectively, with the process-first policy. User10’s delays are 4P 
because user10 does not forward commands. Thus, user10’s remote 
response time is 4P less with the lazy than with the process-first 
policy. If P is large, the difference is significant. 

These results show some fundamental differences between lazy 
and process-first scheduling. The intermediate computers on the 
path that delay processing have an additive effect on the 
improvement in the remote response time. On the other hand, the 
destination computer does not degrade the remote response time 
by more than the remote response time threshold. Thus, like local 
response times, lazy remote response times can never be 
noticeably worse than those of process-first. More important, if 
processing costs are high, an unnoticeable increase in the remote 
response time of each intermediate computer that delays 
processing can result in a noticeable decrease in the remote 
response time of the destination computer. 

3.4.2 Lazy vs. Transmit-first 
The differences in the local response times of the lazy and 
transmit-first policies is given by 
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By definition, the difference is always less than or equal to 0. 
When the total transmission time at the source is high, then the 
difference is also large. Hence, the lazy local response times can 
be significantly better than the transmit-first local response times, 
as one would expect intuitively. 

To illustrate, in our example, user1’s local response time is equal 
to T+4P with the lazy policy since T is the local response time 
threshold. With the transmit-first policy, the local response time is 
equal to 5T+4P since user1’s computer transmits to five 
destinations. Thus, the lazy local response time is 4T less than the 
transmit-first local response time. Since the local response time 
threshold is T, the lazy local response time is significantly less. 

The remote response time comparisons for an intermediate node 
are also as expected. If the node processes before transmitting to 
the downstream computer, the difference in the delay is 

 

Thus, in this case, transmit-first performs better, and the 
difference can be noticeable. However, if the intermediate node 
delays processing, the delays for the two policies are identical 

 

The results are more interesting when we consider the destination. 
If it does not delay processing, then the delay difference in is 

 

Thus, if the sum of the processing times on all of the intermediate 
computers on the path from the source to the destination is greater 
than the total transmission time of the destination computer, then 
the transmit-first remote response times are better than those of 
the lazy policy. If the destination delays processing, on the other 
hand, then the difference in the delay is given by 

 

By definition, the difference is always less than or equal to 0. 
When it is less than 0 and the intermediate delay difference is 
equal to 0, then the lazy remote response time will be better than 
the transmit-first remote response time. Hence, remote response 
times to some users can be better with the lazy than with the 
transmit-first policy, even through transmit-first policy gives 
higher priority to the transmission task. 

To illustrate, consider user2’s remote response time in our 
example. User1’s transmit-first and lazy delays are both equal to T 
because in both cases, user1’s computer transmits to user2’s 
computer before processing. User2’s lazy delay is equal to 4P 
since user2’s computer immediately processes. On the other hand, 
user2’s transmit-first delay is equal to 4T+4P since user2’s 
computer transmits to four other computers. Thus, user2’s lazy 
remote response time is 4T less than the transmit-first remote 
response time. Again, since the remote response time threshold is 
T, the lazy remote response time is significantly less. 

3.4.3 Lazy vs. Concurrent 
By using the same difference-based analysis as above, we can 
show that the lazy 1) local response times can be significantly 
better and never noticeably worse and 2) remote response times 

are sometimes better and sometimes worse than those of the 
concurrent policy. Thus again, even though the lazy policy gives 
higher priority to the transmission task compared to the 
concurrent policy, the lazy remote response times can be better. 

4. SIMULATIONS 
While our theoretical analysis makes some unintuitive 
predictions, it is not clear whether these predictions have any 
practical significance. Addressing this issue requires us to obtain 
realistic values of the equation parameters. For most parameters, 
such as processing and transmission costs, values can be obtained 
by simply performing measurements on realistic collaborative 
applications. The exception is the path between a source and 
destination computer, which depends on the multicast tree, which, 
in turn, requires us to simulate the algorithm we use to build it. 
Thus, we cannot simply plug in the values of parameters in the 
equations and use simulations to make the performance 
comparisons. We next describe how we chose the parameter 
values and simulated the multicast overlay. 

4.1 Parameter Values 
To perform meaningful simulations we need realistic values for 
the parameters that influence the performance of the four 
scheduling policies: (a) input and output processing and 
transmission costs; (b) the number of users; (c) the types of the 
users’ computers; and (d) the network latencies. 

To obtain realistic input and output processing and transmission 
costs, we identified user-commands in logs of actual application 
use and measured the costs of these commands. We logged two 
different applications: PowerPoint and a collaborative Checkers 
game in which users play as a team against the computer. We 
have space to talk about the results with only one them. We have 
focused on PowerPoint as it is perhaps the most popular business 
collaborative application today. Nonetheless, Checkers is also 
important as it represents a computation-intensive game watched, 
potentially, by a very large audience.  

We analyzed recordings of two PowerPoint presentations. These 
recordings contain actual data and users’ actions – PowerPoint 
commands and slides. We assumed that the data and users’ 
actions in the logs are independent of the number of collaborators, 
the processing powers of the collaborators’ computers, and 
network latencies. PowerPoint turned out to be a good choice of 
an application for which to analyze actual logs for two reasons: 1) 
the parameter values we measured in the associated logs were 
fairly wide spread and 2) it is frequently used in collaborations. 

To obtain the processing and transmission time parameter values, 
we created a collaborative session with several computers on the 
same LAN. We designated one of the computers as the source of 
the commands, and then we replayed the PowerPoint logs using a 
Java-based infrastructure that has facilities for logging and 
replaying commands. We measured the processing and 
transmission times on the source computer. We used a P3 
866MHz desktop and a P4 2.4 GHz desktop as sources, both of 
which were running Windows XP. The P3 desktop is used to 
simulate next generation mobile devices. We recorded the average 
amortized input and output command transmission times of each 
machine for PowerPoint. We removed any “outlier” entries from 
the average calculation, caused for instance, by operating system 
process scheduling issues. To reduce these issues, we removed as 
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many active processes on each system as possible. Ideally, while 
we replay the recordings, we should run a set of applications users 
typically execute on their systems. However, the typical working 
set of applications is not publicly available so we would have to 
guess which applications to run. For fear of incorrectly affecting 
our measurements by running random applications, we used a 
working set of size zero, a common assumption in experiments 
comparing alternatives. 

We had to assign the values of the number of collaborators and 
the processing powers of their machines. In the collaboration 
recordings that we analyzed, the number of users ranged from 
thirty to sixty. Unfortunately, this is not a wide enough range of 
values; in particular, the maximum value of the parameter needs 
to be much bigger to be representative of large collaborations, 
such as a company-wide PowerPoint presentation. Therefore, we 
chose synthetic but not unrealistic values for the number of 
observers. As observers do not input commands, they do not 
influence the logs. Moreover, the talks we observed had tight time 
constraints which did not allow questions. Thus, they were 
independent of the number of observers. We randomly assigned 
the type of computer of each observer to be a P3 or P4 desktop. 

Based on pings done on two different LANs, we use 0ms to 
simulate half the round-trip time between two computers on the 
same LAN. We use publicly available network latencies measured 
among 1740 computers distributed around the world [7] to 
simulate latencies between two computers on different LANs.  

4.2 Simulations 
Using these parameter values, we simulated the local and remote 
response times for all of the policies for both centralized and 
replicated architectures with unicast and multicast. Of all of the 
existing multicast algorithms, we know of only one that that 
considers the time the users’ computers require for transmitting on 
the network in the building of such a tree, which is the HMDM 
algorithm [2]. We found that the cost of transmitting commands 
can be high in the applications we used to gather parameter 
values. Thus, we use HMDM to create our multicast overlays. 

Our theoretical results predict that in theory, the lazy policy can 
significantly improve the performance of some users without 
significantly degrading the performance of others. To check if 
these improvements can be significant in practical circumstances, 
we consider a scenario in which a PowerPoint presentation is 
being given to 200 audience members around the world. Based on 
the published network latency data between 1740 computers [7], 
we set the network latencies between all users equal to those 

between a random subset of 200 of the 1740 computers. One issue 
with randomly selecting the subset is whether the subset preserves 
properties, such as triangle inequality and latency distributions, of 
the entire set. Zhang et al. [12] analyzed random subsets taken 
from latencies measured between 3997 computers and found that 
they were representative of the overall measurements. The 
lecturer is using a P3 desktop. Moreover, the users are organized 
in a centralized architecture in which the lecturer’s computer is 
the master. Furthermore, we assume that multicast is used for 
communication. Finally, as mentioned before, users can notice 
50ms degradations in local [11] and remote [4] response times. 
Thus, we set both response time degradation thresholds to 50ms.  

In this scenario, the differences between the remote response 
times are shown in Figure 4. As Figure 4 shows, the lazy remote 
response times are either significantly better than (1655ms) or 
equal to the process-first transmission times, which agrees with 
the prediction made by our equations. Furthermore, the lazy 
remote response times can be as much as 126.6ms and 146.6ms 
better for some users than the transmit-first and concurrent remote 
response times, respectively. On the other hand, the lazy remote 
response times are worse by as much as 2811ms and 2721ms than 
those of the transmit-first and concurrent policies, respectively. 
These results agree with the predictions made by the equations. In 
addition, they show that for some users, the lazy policy provides 
significantly better remote response times than all other policies. 

The lazy policy local response time, 700.4ms, is 50ms worse than 
the process-first local response times, 650.4ms, which is within 
the local response time degradation threshold. The transmit-first 
and concurrent local response times are both 873.8ms, which is 
significantly worse than those of the lazy policy. These results 
agree with the predictions made by the response time equations. 

5. RELATED WORK 
Our work draws on research in several diverse fields including not 
only collaboration architectures but also human-perception 
studies, distributed systems, scheduling, and mobile computing. 

As mentioned above, previous work has found that users cannot 
distinguish between local response times below 50ms [9]. Jay et 
al. [4] complement these results by showing that 50ms and 25ms 
remote response times for visual and haptic operations, 
respectively, are also noticeable. In addition, they found that 50ms 
increments in remote response times are noticeable for both kinds 
of operations. While no study has directly addressed noticeable 
changes in local response times, one can derive them indirectly 
from the study of local response times by Youmans [11]. 
Youmans provided the participants with a button that reduced 
local response times by one eight and found that the participants 
forced these times into the 300-500ms range, which implies that 
43ms decrements in local response times are noticeable. 

The lazy policy relies on these thresholds to delay the processing 
task. The general idea of completing tasks “just in time” been 
studied both in single-processor and distributed [10] real-time 
systems. In the distributed case, end-to-end scheduling algorithms 
are used, which are related to the lazy policy in the multicast case. 
In end-to-end scheduling, a task is divided into subtasks, and each 
subtask is allocated to a different processor. The sub-tasks are 
governed by precedence constraints – subtask k cannot start until 
subtask k-1 completes. Distributing subtasks in this fashion is 
similar to building multicast overlays. Multicast schemes divide 

 
Figure 4. Remote response times for PowerPoint simulation. 
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the transmission task into subtasks and schedule each subtask on a 
different machine. Precedence constraints are implicit as a 
machine must wait for a command to arrive before forwarding it. 
However, there are several important differences between end-to-
end scheduling and the lazy policy. First, in end-to-end 
scheduling, the system has freedom in mapping a task to any 
processor, while in a collaborative system, the processing 
architecture constrains the mapping. In particular, regardless of 
the architecture, input (output) processing must be done on all 
master (master and slave) machines. Thus, processing tasks are 
not distributable in end-to-end scheduling. Second, the two kinds 
of systems have fundamentally different goals. The main goal of 
end-to-end scheduling is to complete the final subtask by the 
overall task deadline, while the main goal of the lazy policy is to 
meet the processing task deadline on as many computers as 
possible. As a result, our scheme trades off local and remote 
response times, while end-to-end scheduling schemes only 
guarantee that a task completes on time. 

“Just in time” task completion has also been used in energy-aware 
end-to-end scheduling algorithms for distributed mobile systems. 
Seshasayee et al. [8] present an energy-aware scheduling 
algorithm that uses slack to complete tasks just in time while 
maximizing the battery life of each device. For instance, if a task 
completes early, they use dynamic voltage and frequency scaling 
to reduce the amount of power consumed by the mobile devices. 
As a result, the task completes later, but on time. Unlike our lazy 
policy, which trades-off local and remote response times, their 
scheme trades-off application lifetime for response times. 

6. DISCUSSION 
The user experience in a collaborative application suffers when 
response times are large. In fact, first-time users of collaboration 
technology may never try it again if they face intolerable response 
times. In this paper, we have presented a new scheduling policy 
that, like process-first, tries to optimize local response times but, 
unlike the latter, uses slack time to improve remote response 
times. We have shown, both through formal analysis and 
simulations, that it is always superior to the process-first policy as 
it provides 1) local response times that are as good as or 
unnoticeably worse than and 2) remote response times either as 
good as or significantly better than those of the process-first 
policy. Thus, lazy scheduling should be used if local response 
times are more important. Our results also show that neither the 
concurrent nor the transmit-first policy dominates the lazy policy. 
If all performance parameters are known, our equations make it 
possible to determine which one of these three policies would 
improve the response times for a particular user.  

The analysis we have presented did not account for simultaneous 
user commands. Concurrent interaction does not occur in many 
practical collaboration scenarios. For instance, in the PowerPoint 
logs we analyzed, there was only one presenter who had large 
think times between commands. Also, in the Checkers logs we 
analyzed, the players used social protocol to avoid entering 
commands at the same time. In general, however, simultaneous 
commands can occur. The scheduling policies we considered are 
flexible enough to handle them if we make the reasonable 
assumption that tasks of a command are completed atomically 
with respect to those of other commands. A similar approach to 
atomicity is made in popular multi-player online games. For 
example, the Quake server repeatedly performs a three-step loop 

[1]: 1) read client commands; 2) process them; and 3) send replies 
to clients. The server does not check for new client commands 
until it processes all of the commands it read in the previous loop 
iteration. A similar loop executes on each client, only it receives 
commands from the local user and the server and sends the user’s 
commands to the server. Such atomic processing is performed in 
all published gaming literature we found.  

A side effect of scheduling tasks for a command atomically is that 
commands are not allowed to overlap, which can potentially rule 
out telepointer and other continuous motions such as drag and 
drop and, in our studied scenario of PowerPoint presentations, 
quickly browsing though a succession of slides and animations. 
Non-overlapped execution of continuous operations may result in 
these operations appearing discontinuous to users. However, as 
we illustrate next, this does not manifest itself as a real problem in 
a large number of scenarios when tasks for a command are 
scheduled atomically. Consider a telepointer motion. The motion 
will appear smooth if the telepointer commands are generated and 
processed at a rate of thirty per second (or one every 33ms). We 
have found that on a P4 desktop, the processing and transmission 
times of a telepointer command are 0.83 and 0.06ms, respectively. 
Thus, if the application generates a telepointer command every 
33ms, then a P4 desktop has 32.17ms to perform the transmission 
task. When unicast is used, the command can be transmitted to as 
many as 536 destinations. When multicast is used, the number of 
users supported is even higher because each P4 computer that 
forwards commands can forward to as many as 536 destinations. 
The telepointer costs, as well as costs of other continuous motions 
(such as a drag-and-drop), are going to be different on other 
processors. Although we expect that they are still low, studies are 
needed to determine these costs and the range of scenarios in 
which the scheduling policies we considered can support them. 

Another issue with simultaneous commands is that they may 
conflict when different users enter them. In collaborative systems, 
conflicts are resolved by concurrency control mechanisms, which 
have their own processing and transmission tasks. Scheduling of 
these tasks is beyond the scope of this paper. Regardless of the 
how exactly the concurrency control tasks are scheduled, which is 
left as future work, their impact on response times can be captured 
by the equations we have presented. Concurrency control 
mechanisms are pessimistic or optimistic by nature. Pessimistic 
schemes prevent the execution of a user’s command until they 
verify that the command does not conflict with other users’ 
commands. Our equations can handle the time required for such 
verification by adding it to the processing time of the command. 
Optimistic schemes do not prevent an action from executing and 
they recover from any conflicts that result using transformation 
operations, state rollback, or undo/redo mechanisms [3]. Our 
equations handle the time required to use these mechanisms by 
adding it to the processing time of the command which caused the 
conflict. Thus, our equations support concurrency control tasks 
though they do not consider efficient scheduling of these tasks.  

When conflicts occur, the effect of pessimistic and optimistic 
concurrency control mechanisms on the response times is not 
clear. The reason is that in both cases, processing times of some 
commands will be increased causing new tradeoffs between local 
and remote response times. For instance, when conflicts are 
resolved using operation transformations, remote response times 
are improved but can significantly degrade local response times 
[6]. On the other hand, when there are no conflicts, then only 
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pessimistic schemes inflate processing times. Thus, when lazy 
scheduling is used, optimistic schemes allow for larger processing 
delays than pessimistic schemes. This is yet another performance 
argument for using optimistic instead of pessimistic schemes.  

Interestingly, Greenberg and Marwood [3] observe that the 
amount of conflicts that happen under optimistic concurrency 
control mechanisms is a function of remote response times. More 
specifically, the lower the remote response times, the sooner a 
user becomes aware of other users’ actions, and thus makes fewer 
conflicting actions. Our equations can be used to choose a 
scheduling policy that provides the lowest remote response times 
among inputting users (as opposed to observing users), and thus 
reduce potential conflicts. A reduction in conflicts would reduce 
the use of conflict recovery mechanisms. In turn, this enables the 
lazy scheduling policy to further delay processing commands, 
thus improving remote response times even more in a self-feeding 
cycle. This cycle calls for reducing remote response times as 
much as possible, even if the users cannot notice the reduction.  

Our work can be extended in a number of ways. A useful notion 
would be to combine the idea of lazy scheduling with concurrency 
control. Merging these ideas can create a new pessimistic-
optimistic hybrid concurrency control scheme, which works as 
follows. When a user enters a command, the scheme behaves 
pessimistically at first. If the time required to check for conflicts 
is longer than the local response time degradation threshold, 
however, the scheme turns optimistic and uses conflict resolution 
mechanisms to handle any conflicts that occur. If, on the other 
hand, the time required for conflict checking is less than the local 
response time threshold, the scheme remains pessimistic. Such a 
scheme would be useful because the user would never notice the 
delays during the pessimistic phase, yet conflicts detected during 
the phase can be handled easily by rejecting the user’s command. 

It would also be useful to study the impact on performance of 
different response time degradation thresholds. As mentioned 
above, we used 50ms as the noticeable response time thresholds in 
our PowerPoint simulations. However, the studies that found 
these thresholds did not use PowerPoint commands. Although 
unlikely, the noticeable response time differences in PowerPoint 
may be more than 50ms, and user studies are needed to verify this 
claim. Previous work has shown that tolerable response time 
thresholds can be higher than their noticeable counterparts [9]. 
We used noticeable thresholds in our simulations based on the 
fact users would always prefer a system that provides noticeably 
better performance, if all else is equal (e.g., cost, functionality, 
etc.). Moreover, the tolerable thresholds are a function of users’ 
expectations and can be expected to drop as users find systems 
with better than expected performance. 

Although we have focused on scheduling tasks on a single-core, 
the policies we have presented can be ported to multi-core 
systems. The lazy policy can be adapted to multi-core scenarios 
by delaying the processing task on all of the (one of the) cores if 
the processing task is (is not) parallelizable. Moreover, the 
concurrent scheme can perform the processing and transmission 
tasks in parallel on different cores. The sequential schemes would 
simply use all cores for one and then for the other task. Future 
studies are needed to evaluate the response time differences 
provided by these policies on multi-core systems.  

It would also be useful to create a collaborative framework that 
periodically evaluates the equations we have provided during 

collaborative sessions, and based on the history of past 
collaborations of the same kind, dynamically chooses the policy 
that best suits the current needs of the collaborators. Moreover, it 
would be useful to investigate the dual of the lazy (process-first) 
policy presented here, one in which the transmission task is given 
precedence over the processing task. It would also be useful to tie 
multicast to scheduling by building an overlay that accounts for 
the scheduling policy. Finally, it would also be useful to compare 
the scheduling policies used in current commercial collaborative 
systems, such as those used in multi-player games, with the lazy 
policy. Some of these applications, such as Quake, can have large 
processing and transmission costs. The lazy policy should do well 
in these applications because of the additive effect on the remote 
response time improvement when processing costs are high. 
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