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1Based on joint work in progress with Jacek Wesotowski
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o E(X;)=0
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\\\ *] E(Xt) = 0
L\ o E(XsX:) = min{s, t}
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\\\ *] E(Xt) =0
o E(X:X:) = min{s, t}
00 ) ® (Xt) ~ t(Xl/t)
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e E(X;)=0
o E(X.X;) = min{s, t}
0o ‘ o (Xt) ~ t(Xi/t)
T e E(Xe|F<s) = X
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o E(X;)=0

o E(XsX:) = min{s, t}

o (Xt) ~ t(Xl/t)

0 E(X;|F<s) =X

@ Var(X¢|F<s) = (t —s)(1 + X;)
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o E(X;)=0

o E(XsX:) = min{s, t}

o (Xt) ~ t(Xl/t)

0 E(X;|F<s) =X

@ Var(X¢|F<s) = (t —s)(1 + X;)

o Natural two-sided filtration: Fs; = o (X, :u<soru>t)
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o E(X;)=0

o E(XsX:) = min{s, t}

o (Xt) ~ t(Xl/t)

0 E(X;|F<s) =X

@ Var(X¢|F<s) = (t —s)(1 + X;)

o Natural two-sided filtration: Fs; = o (X, :u<soru>t)
0 E(X¢|Fsu) = X+ E=2X, fors<t<u

u—s u—s
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o E(X;)=0

o E(XsX:) = min{s, t}

o (Xt) ~ t(Xl/t)

0 E(X;|F<s) =X

@ Var(X¢|F<s) = (t —s)(1 + X;)

o Natural two-sided filtration: Fs; = o (X, :u<soru>t)
0 E(X¢|Fsu) = X+ E=2X, fors<t<u

u—s u—s

) Var[Xt‘fS’u] = w (1 + UXZ:zxu + Xu—Xs >

u—s u—s
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o E(X;)=0

o E(XsX:) = min{s, t}

o (Xt) ~ t(Xl/t)

0 E(X;|F<s) =X

@ Var(X¢|F<s) = (t —s)(1 + X;)

o Natural two-sided filtration: Fs; = o (X, :u<soru>t)
0 E(X¢|Fsu) = X+ E=2X, fors<t<u

u—s u—s

) Var[Xt‘fS’u] = w (1 + UXZ:zxu + Xu—Xs >

u—s u—s

@ t = 1 should be hidden in these formulas!
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Conditionally on X; and X}

oal KR o E(Xt|X1,Xb):Oé+ﬁt for
02k :\'...: . t e (37 b)
00 }i..- 1‘0 2‘.0
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Conditionally on X; and X}
o E(Xt|X1,Xb) = « + (Ot for
t € (a,b)
e for s < tin (a,b),

Wiodek Bryc ( Cincinnati )

20

cov(Xs Xt| X5, Xp) =
M(s —a)(b—t),
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Conditionally on X; and X}
£ o E(Xt|X1,Xb):Oz+ﬁt for
e ) t e (a, b)
. / e for s < tin (a,b),
cov(Xs Xt| X5, Xp) =
M(s —a)(b—t),
@ time reversibility is usually lost

20
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- Bides _________________________________

Conditionally on X; and X}

0al Lo o E(Xt|X1,Xb):a+ﬁt for
02k :\'...: . t e (37 b)

0 \ ey e . e fors<tin(a,b),
o o.s..-.... ..,.:.. 10 ::.::. .::.‘,1.5 20 Cov(Xth‘Xa, Xb) _
A4 M(s — a)(b—t),

@ time reversibility is usually lost

0 E(X¢|Fsu) = EEX +

u—s

L= X, for s <t < win (a, b)

u—
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Conditionally on X; and X}

ol R ° E(Xt|X1,Xb):a+ﬁt for
! W . te(a,b)

. \ : s . e fors<tin(a,b),

N o.s..-... ..,... 10 ::::. ;‘,1.5 20 COV(XSXt‘Xa, Xb) —_
INN T Akt

@ time reversibility is usually lost

0 E(X¢|Fsu) = 2=tXs 4+ =2 X, for s < t < uin (a, b)

u—s u

@ Var[X¢|Fs ] is the same quadratic polynomial in X, X,
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Conditionally on X; and X}

N o E(X¢| X1, Xp) = o + f3t for
02 '.v.,'.: te (37 b)

- ;
0 N . e fors<tin(ab),

0.5""... ...':...' 10 .':::-’ ;;5 20 COV(XSXt‘X‘;?Xb) =
oD/ M(s — a)(b — t),

@ time reversibility is usually lost

0 E(X¢|Fsu) = 2=tXs 4+ =2 X, for s < t < uin (a, b)

u—s u

@ Var[X¢|Fs ] is the same quadratic polynomial in X, X,

@ But after conversion to "standard form”, two-sided conditional
variances of bridges based on X,, X1 or on Xi, X, are simpler than for
bridges based on X, Xp.
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Standard form

A square-integrable stochastic process Z = (Z):e(a,) is @ quadratic
harness on (a, b) (in standard form) if:
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Standard form

A square-integrable stochastic process Z = (Z):e(a,) is @ quadratic

harness on (a, b) (in standard form) if:
O the first two moments are E(Z;) = 0 and E(Z:Zs) = min{t, s}
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Standard form

A square-integrable stochastic process Z = (Z):e(a,) is @ quadratic
harness on (a, b) (in standard form) if:

O the first two moments are E(Z;) = 0 and E(Z:Zs) = min{t, s}
Q Zis a harness: E(Z;|Fs,) = =27 + EZU fors<t<u

u—s
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Standard form

A square-integrable stochastic process Z = (Z):e(a,) is @ quadratic
harness on (a, b) (in standard form) if:

O the first two moments are E(Z;) = 0 and E(Z:Zs) = min{t, s}
Q Zis a harness: E(Z;|Fs,) = =27 + EZU fors<t<u

u—s

© there exist numerical constants 7,0 € R, 0,7 > 0 and
p € [-2,2/07] such that for all s < t < u,

uZs — sz, —1—02” — Zs

Var[Zt|.7:57u] = Ft,s,u (1 == n
u—s u—s

(uZs —sZ,)?>  (Z,— Zs)? (Zy — Zs)(uZs — sZ,)
TTu=s T u=sr P (u-sp )

where F; s, is an explicit non-random constant.
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Standard form

Brownian bridge on (0, 1):

v
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Standard form

Brownian bridge on (0, 1):
@ moments: E(X;) =0, E(XsX;) =s(1—t)for0<s<t<L1

v
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Brownian bridge on (0, 1):
@ moments: E(X;) =0, E(XsX;) =s(1—t)for0<s<t<L1
@ harness: E(X¢|Xs, Xy) is a linear function of X, X,

v
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Brownian bridge on (0, 1):
@ moments: E(X;) =0, E(XsX;) =s(1—t)for0<s<t<L1
@ harness: E(X¢|Xs, Xy) is a linear function of X, X,

@ conditional variance Var(X:|Xs, X,) is constant (so quadratic)

v
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(Example
Brownian bridge on (0, 1):
@ moments: E(X;) =0, E(XsX;) =s(1—t)for0<s<t<L1
@ harness: E(X¢|Xs, Xy) is a linear function of X, X,
@ conditional variance Var(X:|Xs, X,) is constant (so quadratic)
o Transformation [Billingsley (1968), pg 68]:

Ye= (14 1)Xe/a+0)

converts Brownian bridge into a quadratic harness in standard form
(Wiener process) on (0, 00): the covariance becomes
E(YsY:) = min{s, t}.

v
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(Example
Brownian bridge on (0, 1):
@ moments: E(X;) =0, E(XsX;) =s(1—t)for0<s<t<L1
@ harness: E(X¢|Xs, Xy) is a linear function of X, X,
@ conditional variance Var(X:|Xs, X,) is constant (so quadratic)
o Transformation [Billingsley (1968), pg 68]:

Ye= (14 1)Xe/a+0)

converts Brownian bridge into a quadratic harness in standard form
(Wiener process) on (0, 00): the covariance becomes
E(YsY:) = min{s, t}.

@ The inverse transformation

Xe=(1-1) Wt/(l—t)

represents the Brownian bridge in terms of the Wiener process.

v
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© (X:)t<1 conditionally on X is

(1= t)Ng /1y
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© (X:)t<1 conditionally on X is

(1= t)Ngya-v)

o @ N; is a (centered) Poisson
oz . s process with parameter A
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© (X:)t<1 conditionally on X is

(1= t)Ngya-v)

o @ N; is a (centered) Poisson
process with parameter A
0 @ A =1+ Xy is exponential
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Standard form

© (X:)t<1 conditionally on X is

(1= t)Ngya-v)

@ N; is a (centered) Poisson

.’ .
. st 7 process with parameter A
N e ik 2o @ A =1+ Xj is exponential

PF . .
i / Q (X:)t>1 conditionally on Xj is

(t — 1)Ny /ey
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Standard form

© (X:)t<1 conditionally on X is

(1= t)Ngya-v)

@ N; is a (centered) Poisson
. ; process with parameter A

;,'s. 10 _.-" 7 2o @ A =1+ Xj is exponential

PF . .
i / Q (X:)t>1 conditionally on Xj is

(t — 1)Ny /ey

Which other Lévy processes could be "put together” into a quadratic
harness? Into a martingale?
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Reverse engineering...

Zo—sZy  Z.—Z
Var[zt|fs,u]~1+n”2_z S A

u—=s
(uZs — SZ,)°  (Zu— 2.2  (Zu— Zs)(uZs — sZ)
S (T I (ras S (TS

Proposition (B..-Wesolowski arxiv 2009)

Suppose 3T > 0 such that {Z; : t < T} conditioned on Zt, leads to QH
Y with

Y, — Ys - Y,)?
Var(Yt|‘7:syu) ~1+0y —f—Tyg—i-py....
u—s (u—s)?

Then one of the following cases must happen:
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Reverse engineering...

Var[Zy|Fsul ~1+7

uZs — sz, +QZL,—ZS
u—-s

u—=s
(uZs — SZ,)°  (Zu— 2.2  (Zu— Zs)(uZs — sZ)
S (T I (ras S (TS

Proposition (B..-Wesolowski arxiv 2009)

Suppose 3T > 0 such that {Z; : t < T} conditioned on Zt, leads to QH
Y with

Yo—Ys (Y, — Ys)?

Var(yt|]:57u)N1+9Y —f—Tyﬁ—i-py....

u

Then one of the following cases must happen:
(i) p=0,0=7=0andn=0=0. (Then (Z;) = (W).)
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Reverse engineering...

Zo—sZy  Z.—Z
Var[zt|fs,u]~1+n”2_z S A

u—=s
(uZs — SZ,)°  (Zu— 2.2  (Zu— Zs)(uZs — sZ)
S (T I (ras S (TS

Proposition (B..-Wesolowski arxiv 2009)

Suppose 3T > 0 such that {Z; : t < T} conditioned on Zt, leads to QH
Y with

Y, — Ys - Y,)?
Var(Yt|‘7:syu) ~1+0y —f—Tyg—i-py....
u—s (u—s)?

Then one of the following cases must happen:
(i) p=0,0=7=0andn=0=0. (Then (Z;) = (W).)
(i) p=0,0=71=0andnd > 0. (Our example - bi-Poisson process)
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Reverse engineering...

Zo—sZy  Z.—Z
Var[zt|fs,u]~1+n”2_z S A

u—=s
(uZs — SZ,)°  (Zu— 2.2  (Zu— Zs)(uZs — sZ)
S (T I (ras S (TS

Proposition (B..-Wesolowski arxiv 2009)

Suppose 3T > 0 such that {Z; : t < T} conditioned on Zt, leads to QH
Y with

Y, — Ys - Y,)?
Var(Yt|‘7:syu) ~1+0y —f—Tyg—i-py....
u—s (u—s)?

Then one of the following cases must happen:
(i) p=0,0=7=0andn=0=0. (Then (Z;) = (W).)
(i) p=0,0=71=0andnd > 0. (Our example - bi-Poisson process)

(iii) n/T =6\/o, and p =2\/or. (Then T = \/7/0o, py =0, and ...)
Martingales from pairs of processes




Meixner Lévy processes

Theorem (Wesolowski(1993))

If (Yt)t>o0 is a quadratic harness with

—t)(t — Y, — Ys Y, — Ys)?
Var(Ye|Fs,u) = —(u (t=s) <1+9Y +TY( ) ) ;
u—s—+r7 u—s u

—~
|
1%}
~—
N

then one of the following holds:
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Meixner Lévy processes

Theorem (Wesolowski(1993))

If (Yt)t>o0 is a quadratic harness with

—t)(t — Y, — Y, Y, — Y:)?
Var(yt|fs’u):(”)(5)<1+gy o +7-y( . ) )7

u—s—+r7

—~
|
1%}
~—

N

then one of the following holds:
Q 7=0,0=0, and (Y:) is the Wiener processes,
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Meixner Lévy processes

Theorem (Wesolowski(1993))

If (Yt)t>o0 is a quadratic harness with

—t)(t — Y, — Y, Y, — Y:)?
Var(yt|fs’u):(”)(5)<1+gy o +7-y( . ) )7

u—s—+r7

—~
|
1%}
~—

N

then one of the following holds:
Q 7=0,0=0, and (Y:) is the Wiener processes,
Q@ 7=0,0+#0, and (Y:) is a Poisson type processes
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Meixner Lévy processes

Theorem (Wesolowski(1993))

If (Yt)t>o0 is a quadratic harness with

—t)(t — Y, — Y, Y, — Y:)?
Var(yt|fs’u):(”)(5)<1+gy o +7-y( . ) )7

u—s—+r7

—~
|
1%}
~—

N

then one of the following holds:
Q 7=0,0=0, and (Y:) is the Wiener processes,
Q@ 7=0,0+#0, and (Y:) is a Poisson type processes

Q 7 >0 and 6% > 41, and (Y;) is a Pascal (negative-binomial) type
process,
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Meixner Lévy processes

Theorem (Wesolowski(1993))

If (Yt)t>o0 is a quadratic harness with

—t)(t — Y, — Y, Y, — Y:)?
Var(yt|fs’u):(”)(5)<1+gy o +7-y( . ) )7

u—s—+r7

—~
|
1%}
~—

N

then one of the following holds:
Q 7=0,0=0, and (Y:) is the Wiener processes,
Q@ 7=0,0+#0, and (Y:) is a Poisson type processes

Q 7 >0 and 6% > 41, and (Y;) is a Pascal (negative-binomial) type
process,

Q 7 >0 and 6% = 47, and (Y;) is a gamma type process
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Meixner Lévy processes

Theorem (Wesolowski(1993))

If (Yt)t>o0 is a quadratic harness with

—t)(t — Y, — Y, Y, — Y:)?
Var(yt|fs’u):(”)(5)<1+gy o +7-y( . ) )7

u—s—+r7

—~
|
1%}
~—

N

then one of the following holds:
Q 7=0,0=0, and (Y:) is the Wiener processes,
Q@ 7=0,0+#0, and (Y:) is a Poisson type processes

Q 7 >0 and 6% > 41, and (Y;) is a Pascal (negative-binomial) type
process,

Q 7 >0 and 6% = 47, and (Y;) is a gamma type process

Q 0% < 47, and (Y;) is a Meixner (hyperbolic-secant) type process
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Martingales from pairs of processes

Question (narrowed down)

Under what randomization, a pair of the processes from the following list
can be "put together” into a martingale?
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Martingales from pairs of processes

Question (narrowed down)

Under what randomization, a pair of the processes from the following list
can be "put together” into a martingale?

o A-conditionally independent Poisson processes (N;), (N;) with the
same random parameter A
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Martingales from pairs of processes

Question (narrowed down)

Under what randomization, a pair of the processes from the following list
can be "put together” into a martingale?

o A-conditionally independent Poisson processes (N;), (N;) with the
same random parameter A
@ [l-conditionally independent negative binomial processes (Y:), (Y:)
with the same random parameter [1
r(e+4)

Pr(Yt:k‘n:p):WP (]_—p)k7 k:0717"‘
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Martingales from pairs of processes

Question (narrowed down)

Under what randomization, a pair of the processes from the following list
can be "put together” into a martingale?

o A-conditionally independent Poisson processes (N;), (N;) with the
same random parameter A

o MM-conditionally independent negative binomial processes (Y;), (Y¢)
with the same random parameter [1

r(t+ k)

Pr(Ye=klN=p)= =——2pi(1-p)k k=0,1,...

r( t ‘ p) r(t)kl p( p) ) 07 )

@ W-conditionally independent gamma processes with the same random
scale parameter W, i.e. (WX;)e>0 and (W X:)t>0

Wiodek Bryc ( Cincinnati ) Martingales from pairs of processes October 16, 2010 17 /27



Martingales from pairs of processes

Question (narrowed down)

Under what randomization, a pair of the processes from the following list
can be "put together” into a martingale?

o A-conditionally independent Poisson processes (N;), (N;) with the
same random parameter A

o MM-conditionally independent negative binomial processes (Y;), (Y¢)
with the same random parameter [1

F(t+ k)

Pr(Y; = klN=p) = ~——p'(1—p)k, k=0,1,...

r( t ‘ p) r(t)kl p( p) ’ )

@ W-conditionally independent gamma processes with the same random
scale parameter W, i.e. (WX;)e>0 and (W X:)t>0

@ conditionally independent hyperbolic secant processes with random

parameter o € (—m, ), where X; has density
(2cos §)*t

M(t+ ix)[?e™, t > 0.
ot (2r) (T I, >

f(x;t,a) =
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Martingales from pairs of processes

Proposition (B..-Wesolowski - in prep)

For random I € (0, 1), define Y: as MN-conditionally negative binomial

process Pr(Y: = k|l = p) = rr((t;)r:!)pt(l —p), k=0,1,....

Wiodek Bryc ( Cincinnati ) Martingales from pairs of processes October 16, 2010 18 / 27



Martingales from pairs of processes

Proposition (B..-Wesolowski - in prep)

For random I € (0, 1), define Y: as MN-conditionally negative binomial

process Pr(Y: = k|l = p) = rr((t;)r:!)pt(l —p), k=0,1,....

Q Then Y = (Yi)e>0 is Markov.
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Martingales from pairs of processes

Proposition (B..-Wesolowski - in prep)

For random I € (0, 1), define Y: as MN-conditionally negative binomial

process Pr(Y: = k|l = p) = rr((t;)r:!)pt(l —p), k=0,1,....

Q Then Y = (Yi)e>0 is Markov.
Q Assume 3 =E(1/M) — 1 and v? = Var(1/MN) > 0. Then

Zi=c(l—t)Y_. —t5.

cv(l—t) \74
is a quadratic harness on (0,1) with parameters

_(2ﬁ+1)v - v2 »
A e

_ \4
Here ¢ = P B

Wiodek Bryc ( Cincinnati ) Martingales from pairs of processes

October 16, 2010 18 / 27



Martingales from pairs of processes

Proposition (folklore? Poisson case: Nekrutkin(2007) )

Let 1N € (0,1) be a random variable such that E(1/1) < co. Suppose Y is

a lM-conditionally negative binomial process and Z; = c(1 —t)Y . té
with some coefficients 3,v > 0. Then the following are equivalent:
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Martingales from pairs of processes

Proposition (folklore? Poisson case: Nekrutkin(2007) )

Let M € (0,1) be a random variable such that E(1/1) < co. Suppose Y is
a lM-conditionally negative binomial process and Z; = c(1 —t)Y r— t%
with some coefficients 3,v > 0. Then the following are equivalent:

Q (Zt)tepo,1) is @ martingale with respect to its natural filtration (F<t).
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Martingales from pairs of processes

Proposition (folklore? Poisson case: Nekrutkin(2007) )
Let M € (0,1) be a random variable such that E(1/1) < co. Suppose Y is

a lM-conditionally negative binomial process and Z; = c(1 —t)Y r— t%
with some coefficients 3,v > 0. Then the following are equivalent:

Q (Zt)tepo,1) is @ martingale with respect to its natural filtration (F<t).

Q I has the beta By(a, b) density

hp) = mpa—l(l )P o). (1)

with a =2+ B(8+1)/v? and b=+ §2(8 +1)/v2.
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Martingales from pairs of processes

Proposition (folklore? Poisson case: Nekrutkin(2007) )

Let N € (0,1) be a random variable such that E(1/T1) < co. Suppose Y is

a MN-conditionally negative binomial process and Z; = c(1 —t)Y e t%
cv(l—t

with some coefficients 3,v > 0. Then the following are equivalent:

Q (Zt)teqo,1) is @ martingale with respect to its natural filtration (F<¢).
Q T has the beta By(a, b) density
Ma+b) , 4

h(p) = ONOL (1= p)" " 10,1)(p), (1)

witha =2+ B(8+1)/v? and b= 3+ B?(B +1)/v>.

Proof: Special case of Diaconis-Ylvisaker, Conjugate priors for exponential
families, Ann. Statist., 1979.
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Martingales from pairs of processes

Let Y and Y’ be MN-conditionally independent negative binomial processes.
With 8 = E(1/M) — 1, v? = Var(1/MN), define

(c(1-t)Y_ —t2 ifo<t<l,

cv(l—t)

<@

Z=S (3 -8) /v if t =1, (2)

c(t—1)Y , -8 ife>1

_ v
€= Vs

Time-inversion: (Z;) ~ (tZy¢).
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Martingales from pairs of processes

Then the following conditions are equivalent:
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Martingales from pairs of processes

Then the following conditions are equivalent:

Q (Z:) is a quadratic harness on (0, 00),
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Martingales from pairs of processes

Then the following conditions are equivalent:

Q (Z:) is a quadratic harness on (0, 00),

Q (Z:) is a harness on (0, c0),
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Martingales from pairs of processes

Then the following conditions are equivalent:

Q (Z:) is a quadratic harness on (0, 00),
Q (Z:) is a harness on (0, c0),
O (Z:) is a martingale,
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Martingales from pairs of processes

Then the following conditions are equivalent:

Q (Z:) is a quadratic harness on (0, 00),
Q (Z:) is a harness on (0, c0),

O (Z:) is a martingale,

Q T has Betay distribution (1).
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Martingales from pairs of processes

The same results hold for pairs of Poisson, negative binomial, gamma,
hyperbolic secant processes:

@ martingale condition on (0, 1) determines the law of randomization
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Martingales from pairs of processes

The same results hold for pairs of Poisson, negative binomial, gamma,
hyperbolic secant processes:

@ martingale condition on (0, 1) determines the law of randomization

@ the "correct law” allows to continue the process to t > 1
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Martingales from pairs of processes

The same results hold for pairs of Poisson, negative binomial, gamma,
hyperbolic secant processes:

@ martingale condition on (0, 1) determines the law of randomization
@ the "correct law” allows to continue the process to t > 1

@ the "correct law" gives us a quadratic harness.
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Martingales from pairs of processes

The same results hold for pairs of Poisson, negative binomial, gamma,

hyperbolic secant processes:
@ martingale condition on (0, 1) determines the law of randomization

@ the "correct law” allows to continue the process to t > 1

@ the "correct law" gives us a quadratic harness.
@ laws for randomization (except Poisson) Can be deduced from results in
[Diaconis-Ylvisaker (1979)]
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Martingales from pairs of processes

@ A pair of A-conditionally independent Poisson processes (N;), (N;)
makes a martingale on (0, c0) iff A has gamma density
h(dA) = CAP~Te=1 5 o) (A)dA

These laws define Z; for the "decomposition” of a quadratic harness into
Lévy bridges.
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Martingales from pairs of processes

@ A pair of A-conditionally independent Poisson processes (N;), (N;)
makes a martingale on (0, c0) iff A has gamma density
h(d\) = C)\P_le_”\l(oyoo)()\)d)\

@ A pair of lN-conditionally independent negative binomial processes
makes a martingale on (0, o) iff I has beta density

h(p) = Cp~ (1 — p)>~1(0,1)(P)

These laws define Z; for the "decomposition” of a quadratic harness into
Lévy bridges.
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Martingales from pairs of processes

@ A pair of A-conditionally independent Poisson processes (N;), (N;)
makes a martingale on (0, c0) iff A has gamma density
h(d\) = C)\P_le_”\l(oyoo)()\)d)\

@ A pair of lN-conditionally independent negative binomial processes
makes a martingale on (0, o) iff I has beta density

h(p) = Cp* (1 = p)**101(p)

@ A pair of W-independent gamma processes (WX;), (WX;) makes a
martingale on (0, c0) iff W has inverse-gamma density
h(dw) = CZ2CM 1 oy (w)dw

whTT

These laws define Z; for the "decomposition” of a quadratic harness into
Lévy bridges.
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Martingales from pairs of processes

@ A pair of A-conditionally independent Poisson processes (N;), (N;)
makes a martingale on (0, c0) iff A has gamma density
h(dX) = CAPLe (g o) (A)dA

@ A pair of lN-conditionally independent negative binomial processes
makes a martingale on (0, co) iff 1 has beta density

h(p) = Cp* (1 = p)**101(p)

@ A pair of W-independent gamma processes (WX;), (WX;) makes a
martingale on (0, c0) iff W has inverse-gamma density
h(dw) = CZ2CM 1 oy (w)dw

whTT
@ A pair of W-conditionally independent hyperbolic secant processes
makes a martingale on (0, o) iff
h(da) = C (1 + cos )’ exp(ra)l(_x - (a)da

These laws define Z; for the "decomposition” of a quadratic harness into
Lévy bridges.
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Martingales from pairs of processes

Conclusions

© For a process (Xt):e(0,00) With linear two-sided regressions,
non-constant quadratic conditional variances, and product covariance
cov(Xs, Xt) = (as + b)(ct + d) for s < t, the existence of a "special
time” T can be recognized by a calculation.
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Martingales from pairs of processes

Conclusions

© For a process (Xt):e(0,00) With linear two-sided regressions,
non-constant quadratic conditional variances, and product covariance
cov(Xs, X¢) = (as + b)(ct + d) for s < t, the existence of a "special
time” T can be recognized by a calculation.

@ Then (X;) is put together from one of the "randomized pairs” of
Poisson, negative binomial, gamma, or hyperbolic secant processes.
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Thank you
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Abstract

Consider a pair of independent Poisson processes, or a pair of Negative
Binomial processes, or Gamma, or hyperbolic secant processes with a
shared randomly selected parameter. Under appropriate randomization,
one can deterministically re-parametrize the time and scale for both
processes so that the first process runs on time interval (0, 1), the
second process runs on time interval (1,00), and the two processes
seamlessly join into one Markov martingale on (0, c0). In fact, a
property stronger than martingale holds: we stitch together two
processes into a single quadratic harness on (0, o)
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