Martingales from pairs of randomized Poisson, Gamma, negative binomial and hyperbolic secant processes

Włodek Bryc ${ }^{1}$

Cincinnati
October 16, 2010

[^0]

- $E\left(X_{t}\right)=0$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$
- $E\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=X_{s}$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$
- $E\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=X_{s}$
- $\operatorname{Var}\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=(t-s)\left(1+X_{s}\right)$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$
- $E\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=X_{s}$
- $\operatorname{Var}\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=(t-s)\left(1+X_{s}\right)$
- Natural two-sided filtration: $\mathcal{F}_{s, t}=\sigma\left(X_{u}: u \leq s\right.$ or $\left.u \geq t\right)$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$
- $E\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=X_{s}$
- $\operatorname{Var}\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=(t-s)\left(1+X_{s}\right)$
- Natural two-sided filtration: $\mathcal{F}_{s, t}=\sigma\left(X_{u}: u \leq s\right.$ or $\left.u \geq t\right)$
- $E\left(X_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} X_{s}+\frac{t-s}{u-s} X_{u}$ for $s<t<u$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$
- $E\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=X_{s}$
- $\operatorname{Var}\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=(t-s)\left(1+X_{s}\right)$
- Natural two-sided filtration: $\mathcal{F}_{s, t}=\sigma\left(X_{u}: u \leq s\right.$ or $\left.u \geq t\right)$
- $E\left(X_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} X_{s}+\frac{t-s}{u-s} X_{u}$ for $s<t<u$
- $\operatorname{Var}\left[X_{t} \mid \mathcal{F}_{s, u}\right]=\frac{(u-t)(t-s)}{u-s}\left(1+\frac{u X_{s}-s X_{u}}{u-s}+\frac{X_{u}-X_{s}}{u-s}\right)$

- $E\left(X_{t}\right)=0$
- $E\left(X_{s} X_{t}\right)=\min \{s, t\}$
- $\left(X_{t}\right) \sim t\left(X_{1 / t}\right)$
- $E\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=X_{s}$
- $\operatorname{Var}\left(X_{t} \mid \mathcal{F}_{\leq s}\right)=(t-s)\left(1+X_{s}\right)$
- Natural two-sided filtration: $\mathcal{F}_{s, t}=\sigma\left(X_{u}: u \leq s\right.$ or $\left.u \geq t\right)$
- $E\left(X_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} X_{s}+\frac{t-s}{u-s} X_{u}$ for $s<t<u$
- $\operatorname{Var}\left[X_{t} \mid \mathcal{F}_{s, u}\right]=\frac{(u-t)(t-s)}{u-s}\left(1+\frac{u X_{s}-s X_{u}}{u-s}+\frac{X_{u}-X_{s}}{u-s}\right)$
- $t=1$ should be hidden in these formulas!

Conditionally on X_{a} and X_{b}

- $E\left(X_{t} \mid X_{1}, X_{b}\right)=\alpha+\beta t$ for $t \in(a, b)$

Conditionally on X_{a} and X_{b}

- $E\left(X_{t} \mid X_{1}, X_{b}\right)=\alpha+\beta t$ for $t \in(a, b)$
- for $s<t$ in (a, b), $\operatorname{cov}\left(X_{s} X_{t} \mid X_{a}, X_{b}\right)=$ $M(s-a)(b-t)$,

Conditionally on X_{a} and X_{b}

- $E\left(X_{t} \mid X_{1}, X_{b}\right)=\alpha+\beta t$ for $t \in(a, b)$
- for $s<t$ in (a, b), $\operatorname{cov}\left(X_{s} X_{t} \mid X_{a}, X_{b}\right)=$ $M(s-a)(b-t)$,
- time reversibility is usually lost

Conditionally on X_{a} and X_{b}

- $E\left(X_{t} \mid X_{1}, X_{b}\right)=\alpha+\beta t$ for $t \in(a, b)$
- for $s<t$ in (a, b), $\operatorname{cov}\left(X_{s} X_{t} \mid X_{a}, X_{b}\right)=$ $M(s-a)(b-t)$,
- time reversibility is usually lost
- $E\left(X_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} X_{s}+\frac{t-s}{u-s} X_{u}$ for $s<t<u$ in (a, b)

Conditionally on X_{a} and X_{b}

- $E\left(X_{t} \mid X_{1}, X_{b}\right)=\alpha+\beta t$ for $t \in(a, b)$
- for $s<t$ in (a, b), $\operatorname{cov}\left(X_{s} X_{t} \mid X_{a}, X_{b}\right)=$ $M(s-a)(b-t)$,
- time reversibility is usually lost
- $E\left(X_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} X_{s}+\frac{t-s}{u-s} X_{u}$ for $s<t<u$ in (a, b)
- $\operatorname{Var}\left[X_{t} \mid \mathcal{F}_{s, u}\right]$ is the same quadratic polynomial in X_{s}, X_{u}

Conditionally on X_{a} and X_{b}

- $E\left(X_{t} \mid X_{1}, X_{b}\right)=\alpha+\beta t$ for $t \in(a, b)$
- for $s<t$ in (a, b),

$$
\begin{aligned}
& \operatorname{cov}\left(X_{s} X_{t} \mid X_{a}, X_{b}\right)= \\
& M(s-a)(b-t)
\end{aligned}
$$

- time reversibility is usually lost
- $E\left(X_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} X_{s}+\frac{t-s}{u-s} X_{u}$ for $s<t<u$ in (a, b)
- $\operatorname{Var}\left[X_{t} \mid \mathcal{F}_{s, u}\right]$ is the same quadratic polynomial in X_{s}, X_{u}
- But after conversion to "standard form", two-sided conditional variances of bridges based on X_{a}, X_{1} or on X_{1}, X_{b} are simpler than for bridges based on X_{a}, X_{b}.

Definition

A square-integrable stochastic process $Z=\left(Z_{t}\right)_{t \in(a, b)}$ is a quadratic harness on (a, b) (in standard form) if:

Definition

A square-integrable stochastic process $Z=\left(Z_{t}\right)_{t \in(a, b)}$ is a quadratic harness on (a, b) (in standard form) if:
(1) the first two moments are $E\left(Z_{t}\right)=0$ and $E\left(Z_{t} Z_{s}\right)=\min \{t, s\}$

Definition

A square-integrable stochastic process $Z=\left(Z_{t}\right)_{t \in(a, b)}$ is a quadratic harness on (a, b) (in standard form) if:
(1) the first two moments are $E\left(Z_{t}\right)=0$ and $E\left(Z_{t} Z_{s}\right)=\min \{t, s\}$
(2) Z is a harness: $E\left(Z_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} Z_{s}+\frac{t-s}{u-s} Z_{u}$ for $s<t<u$

Definition

A square-integrable stochastic process $Z=\left(Z_{t}\right)_{t \in(a, b)}$ is a quadratic harness on (a, b) (in standard form) if:
(1) the first two moments are $E\left(Z_{t}\right)=0$ and $E\left(Z_{t} Z_{s}\right)=\min \{t, s\}$
(2) Z is a harness: $E\left(Z_{t} \mid \mathcal{F}_{s, u}\right)=\frac{u-t}{u-s} Z_{s}+\frac{t-s}{u-s} Z_{u}$ for $s<t<u$
(3) there exist numerical constants $\eta, \theta \in \mathbb{R}, \sigma, \tau \geq 0$ and $\rho \in[-2,2 \sqrt{\sigma \tau}]$ such that for all $s<t<u$,

$$
\begin{aligned}
& \operatorname{Var}\left[Z_{t} \mid \mathcal{F}_{s, u}\right]=F_{t, s, u}\left(1+\eta \frac{u Z_{s}-s Z_{u}}{u-s}+\theta \frac{Z_{u}-Z_{s}}{u-s}\right. \\
& \left.\quad+\sigma \frac{\left(u Z_{s}-s Z_{u}\right)^{2}}{(u-s)^{2}}+\tau \frac{\left(Z_{u}-Z_{s}\right)^{2}}{(u-s)^{2}}+\rho \frac{\left(Z_{u}-Z_{s}\right)\left(u Z_{s}-s Z_{u}\right)}{(u-s)^{2}}\right),
\end{aligned}
$$

where $F_{t, s, u}$ is an explicit non-random constant.

Example

Brownian bridge on $(0,1)$:

Example

Brownian bridge on $(0,1)$:

- moments: $E\left(X_{t}\right)=0, E\left(X_{s} X_{t}\right)=s(1-t)$ for $0 \leq s \leq t \leq 1$.

Example

Brownian bridge on $(0,1)$:

- moments: $E\left(X_{t}\right)=0, E\left(X_{s} X_{t}\right)=s(1-t)$ for $0 \leq s \leq t \leq 1$.
- harness: $E\left(X_{t} \mid X_{s}, X_{u}\right)$ is a linear function of X_{s}, X_{u}

Example

Brownian bridge on $(0,1)$:

- moments: $E\left(X_{t}\right)=0, E\left(X_{s} X_{t}\right)=s(1-t)$ for $0 \leq s \leq t \leq 1$.
- harness: $E\left(X_{t} \mid X_{s}, X_{u}\right)$ is a linear function of X_{s}, X_{u}
- conditional variance $\operatorname{Var}\left(X_{t} \mid X_{s}, X_{u}\right)$ is constant (so quadratic)

Example

Brownian bridge on $(0,1)$:

- moments: $E\left(X_{t}\right)=0, E\left(X_{s} X_{t}\right)=s(1-t)$ for $0 \leq s \leq t \leq 1$.
- harness: $E\left(X_{t} \mid X_{s}, X_{u}\right)$ is a linear function of X_{s}, X_{u}
- conditional variance $\operatorname{Var}\left(X_{t} \mid X_{s}, X_{u}\right)$ is constant (so quadratic)
- Transformation [Billingsley (1968), pg 68]:

$$
Y_{t}=(1+t) X_{t /(1+t)}
$$

converts Brownian bridge into a quadratic harness in standard form (Wiener process) on ($0, \infty$): the covariance becomes $E\left(Y_{s} Y_{t}\right)=\min \{s, t\}$.

Example

Brownian bridge on $(0,1)$:

- moments: $E\left(X_{t}\right)=0, E\left(X_{s} X_{t}\right)=s(1-t)$ for $0 \leq s \leq t \leq 1$.
- harness: $E\left(X_{t} \mid X_{s}, X_{u}\right)$ is a linear function of X_{s}, X_{u}
- conditional variance $\operatorname{Var}\left(X_{t} \mid X_{s}, X_{u}\right)$ is constant (so quadratic)
- Transformation [Billingsley (1968), pg 68]:

$$
Y_{t}=(1+t) X_{t /(1+t)}
$$

converts Brownian bridge into a quadratic harness in standard form (Wiener process) on ($0, \infty$): the covariance becomes $E\left(Y_{s} Y_{t}\right)=\min \{s, t\}$.

- The inverse transformation

$$
X_{t}=(1-t) W_{t /(1-t)}
$$

represents the Brownian bridge in terms of the Wiener process.
(1) $\left(X_{t}\right)_{t<1}$ conditionally on X_{1} is

$$
(1-t) N_{t /(1-t)}
$$

(1) $\left(X_{t}\right)_{t<1}$ conditionally on X_{1} is

$$
(1-t) N_{t /(1-t)}
$$

(2) N_{t} is a (centered) Poisson process with parameter \wedge

(1) $\left(X_{t}\right)_{t<1}$ conditionally on X_{1} is

$$
(1-t) N_{t /(1-t)}
$$

(2) N_{t} is a (centered) Poisson process with parameter \wedge
(0) $\wedge=1+X_{1}$ is exponential

(1) $\left(X_{t}\right)_{t<1}$ conditionally on X_{1} is

$$
(1-t) N_{t /(1-t)}
$$

(2) N_{t} is a (centered) Poisson process with parameter Λ
(3) $\Lambda=1+X_{1}$ is exponential
(4) $\left(X_{t}\right)_{t>1}$ conditionally on X_{1} is

$$
(t-1) \widetilde{N}_{1 /(t-1)}
$$

(1) $\left(X_{t}\right)_{t<1}$ conditionally on X_{1} is

$$
(1-t) N_{t /(1-t)}
$$

(2) N_{t} is a (centered) Poisson process with parameter Λ
(3) $\Lambda=1+X_{1}$ is exponential
(4) $\left(X_{t}\right)_{t>1}$ conditionally on X_{1} is

$$
(t-1) \widetilde{N}_{1 /(t-1)}
$$

Question

Which other Lévy processes could be "put together" into a quadratic harness? Into a martingale?

$$
\begin{aligned}
\operatorname{Var}\left[Z_{t} \mid \mathcal{F}_{s, u}\right] & \sim 1+\eta \frac{u Z_{s}-s Z_{u}}{u-s}+\theta \frac{Z_{u}-Z_{s}}{u-s} \\
& +\sigma \frac{\left(u Z_{s}-s Z_{u}\right)^{2}}{(u-s)^{2}}+\tau \frac{\left(Z_{u}-Z_{s}\right)^{2}}{(u-s)^{2}}+\rho \frac{\left(Z_{u}-Z_{s}\right)\left(u Z_{s}-s Z_{u}\right)}{(u-s)^{2}}
\end{aligned}
$$

Proposition (B..-Wesolowski arxiv 2009)

Suppose $\exists T>0$ such that $\left\{Z_{t}: t<T\right\}$ conditioned on Z_{T}, leads to $Q H$ Y with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right) \sim 1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}+\rho_{Y} \ldots
$$

Then one of the following cases must happen:

$$
\begin{aligned}
\operatorname{Var}\left[Z_{t} \mid \mathcal{F}_{s, u}\right] & \sim 1+\eta \frac{u Z_{s}-s Z_{u}}{u-s}+\theta \frac{Z_{u}-Z_{s}}{u-s} \\
& +\sigma \frac{\left(u Z_{s}-s Z_{u}\right)^{2}}{(u-s)^{2}}+\tau \frac{\left(Z_{u}-Z_{s}\right)^{2}}{(u-s)^{2}}+\rho \frac{\left(Z_{u}-Z_{s}\right)\left(u Z_{s}-s Z_{u}\right)}{(u-s)^{2}}
\end{aligned}
$$

Proposition (B..-Wesolowski arxiv 2009)

Suppose $\exists T>0$ such that $\left\{Z_{t}: t<T\right\}$ conditioned on Z_{T}, leads to $Q H$ Y with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right) \sim 1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}+\rho_{Y} \ldots
$$

Then one of the following cases must happen:
(i) $\rho=0, \sigma=\tau=0$ and $\eta=\theta=0$. (Then $\left(Z_{t}\right)=\left(W_{t}\right)$.)

$$
\begin{aligned}
\operatorname{Var}\left[Z_{t} \mid \mathcal{F}_{s, u}\right] & \sim 1+\eta \frac{u Z_{s}-s Z_{u}}{u-s}+\theta \frac{Z_{u}-Z_{s}}{u-s} \\
& +\sigma \frac{\left(u Z_{s}-s Z_{u}\right)^{2}}{(u-s)^{2}}+\tau \frac{\left(Z_{u}-Z_{s}\right)^{2}}{(u-s)^{2}}+\rho \frac{\left(Z_{u}-Z_{s}\right)\left(u Z_{s}-s Z_{u}\right)}{(u-s)^{2}}
\end{aligned}
$$

Proposition (B..-Wesolowski arxiv 2009)

Suppose $\exists T>0$ such that $\left\{Z_{t}: t<T\right\}$ conditioned on Z_{T}, leads to $Q H$ Y with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right) \sim 1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}+\rho_{Y} \ldots
$$

Then one of the following cases must happen:
(i) $\rho=0, \sigma=\tau=0$ and $\eta=\theta=0$. (Then $\left(Z_{t}\right)=\left(W_{t}\right)$.)
(ii) $\rho=0, \sigma=\tau=0$ and $\eta \theta>0$. (Our example - bi-Poisson process)

$$
\begin{aligned}
\operatorname{Var}\left[Z_{t} \mid \mathcal{F}_{s, u}\right] & \sim 1+\eta \frac{u Z_{s}-s Z_{u}}{u-s}+\theta \frac{Z_{u}-Z_{s}}{u-s} \\
& +\sigma \frac{\left(u Z_{s}-s Z_{u}\right)^{2}}{(u-s)^{2}}+\tau \frac{\left(Z_{u}-Z_{s}\right)^{2}}{(u-s)^{2}}+\rho \frac{\left(Z_{u}-Z_{s}\right)\left(u Z_{s}-s Z_{u}\right)}{(u-s)^{2}}
\end{aligned}
$$

Proposition (B..-Wesolowski arxiv 2009)

Suppose $\exists T>0$ such that $\left\{Z_{t}: t<T\right\}$ conditioned on Z_{T}, leads to $Q H$ Y with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right) \sim 1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}+\rho_{Y} \ldots
$$

Then one of the following cases must happen:
(i) $\rho=0, \sigma=\tau=0$ and $\eta=\theta=0$. (Then $\left(Z_{t}\right)=\left(W_{t}\right)$.)
(ii) $\rho=0, \sigma=\tau=0$ and $\eta \theta>0$. (Our example - bi-Poisson process)
(iii) $\eta \sqrt{\tau}=\theta \sqrt{\sigma}$, and $\rho=2 \sqrt{\sigma \tau}$. (Then $T=\sqrt{\tau / \sigma}, \rho_{Y}=0$, and \ldots)

Theorem (Wesolowski(1993))

If $\left(Y_{t}\right)_{t>0}$ is a quadratic harness with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s+\tau}\left(1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}\right)
$$

then one of the following holds:

Theorem (Wesolowski(1993))

If $\left(Y_{t}\right)_{t>0}$ is a quadratic harness with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s+\tau}\left(1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}\right)
$$

then one of the following holds:
(1) $\tau=0, \theta=0$, and $\left(Y_{t}\right)$ is the Wiener processes,

Theorem (Wesolowski(1993))

If $\left(Y_{t}\right)_{t>0}$ is a quadratic harness with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s+\tau}\left(1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}\right)
$$

then one of the following holds:
(1) $\tau=0, \theta=0$, and $\left(Y_{t}\right)$ is the Wiener processes,
(2) $\tau=0, \theta \neq 0$, and $\left(Y_{t}\right)$ is a Poisson type processes

Theorem (Wesolowski(1993))

If $\left(Y_{t}\right)_{t>0}$ is a quadratic harness with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s+\tau}\left(1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}\right)
$$

then one of the following holds:
(1) $\tau=0, \theta=0$, and $\left(Y_{t}\right)$ is the Wiener processes,
(2) $\tau=0, \theta \neq 0$, and $\left(Y_{t}\right)$ is a Poisson type processes
(3) $\tau>0$ and $\theta^{2}>4 \tau$, and $\left(Y_{t}\right)$ is a Pascal (negative-binomial) type process,

Theorem (Wesolowski(1993))

If $\left(Y_{t}\right)_{t>0}$ is a quadratic harness with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s+\tau}\left(1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}\right)
$$

then one of the following holds:
(1) $\tau=0, \theta=0$, and $\left(Y_{t}\right)$ is the Wiener processes,
(2) $\tau=0, \theta \neq 0$, and $\left(Y_{t}\right)$ is a Poisson type processes
(3) $\tau>0$ and $\theta^{2}>4 \tau$, and $\left(Y_{t}\right)$ is a Pascal (negative-binomial) type process,
(4) $\tau>0$ and $\theta^{2}=4 \tau$, and $\left(Y_{t}\right)$ is a gamma type process

Theorem (Wesolowski(1993))

If $\left(Y_{t}\right)_{t>0}$ is a quadratic harness with

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s+\tau}\left(1+\theta_{Y} \frac{Y_{u}-Y_{s}}{u-s}+\tau_{Y} \frac{\left(Y_{u}-Y_{s}\right)^{2}}{(u-s)^{2}}\right)
$$

then one of the following holds:
(1) $\tau=0, \theta=0$, and $\left(Y_{t}\right)$ is the Wiener processes,
(2) $\tau=0, \theta \neq 0$, and $\left(Y_{t}\right)$ is a Poisson type processes
(3) $\tau>0$ and $\theta^{2}>4 \tau$, and $\left(Y_{t}\right)$ is a Pascal (negative-binomial) type process,
(4) $\tau>0$ and $\theta^{2}=4 \tau$, and $\left(Y_{t}\right)$ is a gamma type process
(6) $\theta^{2}<4 \tau$, and $\left(Y_{t}\right)$ is a Meixner (hyperbolic-secant) type process

Question (narrowed down)

Under what randomization, a pair of the processes from the following list can be "put together" into a martingale?

Question (narrowed down)

Under what randomization, a pair of the processes from the following list can be "put together" into a martingale?

- Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ with the same random parameter Λ

Question (narrowed down)

Under what randomization, a pair of the processes from the following list can be "put together" into a martingale?

- Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ with the same random parameter Λ
- Π-conditionally independent negative binomial processes $\left(Y_{t}\right),\left(\tilde{Y}_{t}\right)$ with the same random parameter Π

$$
\operatorname{Pr}\left(Y_{t}=k \mid \Pi=p\right)=\frac{\Gamma(t+k)}{\Gamma(t) k!} p^{t}(1-p)^{k}, k=0,1, \ldots
$$

Question (narrowed down)

Under what randomization, a pair of the processes from the following list can be "put together" into a martingale?

- Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ with the same random parameter Λ
- Π-conditionally independent negative binomial processes $\left(Y_{t}\right),\left(\tilde{Y}_{t}\right)$ with the same random parameter Π

$$
\operatorname{Pr}\left(Y_{t}=k \mid \Pi=p\right)=\frac{\Gamma(t+k)}{\Gamma(t) k!} p^{t}(1-p)^{k}, k=0,1, \ldots
$$

- W-conditionally independent gamma processes with the same random scale parameter W, i.e. $\left(W X_{t}\right)_{t>0}$ and $\left(W \tilde{X}_{t}\right)_{t>0}$

Question (narrowed down)

Under what randomization, a pair of the processes from the following list can be "put together" into a martingale?

- Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ with the same random parameter Λ
- Π-conditionally independent negative binomial processes $\left(Y_{t}\right),\left(\tilde{Y}_{t}\right)$ with the same random parameter Π

$$
\operatorname{Pr}\left(Y_{t}=k \mid \Pi=p\right)=\frac{\Gamma(t+k)}{\Gamma(t) k!} p^{t}(1-p)^{k}, k=0,1, \ldots
$$

- W-conditionally independent gamma processes with the same random scale parameter W, i.e. $\left(W X_{t}\right)_{t>0}$ and $\left(W \tilde{X}_{t}\right)_{t>0}$
- conditionally independent hyperbolic secant processes with random parameter $\alpha \in(-\pi, \pi)$, where X_{t} has density

$$
f(x ; t, \alpha)=\frac{\left(2 \cos \frac{\alpha}{2}\right)^{2 t}}{2 \pi \Gamma(2 t)}|\Gamma(t+i x)|^{2} e^{\alpha x}, t>0
$$

Proposition (B..-Wesolowski - in prep)

For random $\Pi \in(0,1)$, define Y_{t} as Π-conditionally negative binomial process $\operatorname{Pr}\left(Y_{t}=k \mid \Pi=p\right)=\frac{\Gamma(t+k)}{\Gamma(t) k!} p^{t}(1-p)^{k}, k=0,1, \ldots$

Proposition (B..-Wesolowski - in prep)

For random $\Pi \in(0,1)$, define Y_{t} as Π-conditionally negative binomial process $\operatorname{Pr}\left(Y_{t}=k \mid \Pi=p\right)=\frac{\Gamma(t+k)}{\Gamma(t) k!} p^{t}(1-p)^{k}, k=0,1, \ldots$.
(1) Then $Y=\left(Y_{t}\right)_{t \geq 0}$ is Markov.

Proposition (B..-Wesolowski - in prep)

For random $\Pi \in(0,1)$, define Y_{t} as Π-conditionally negative binomial process $\operatorname{Pr}\left(Y_{t}=k \mid \Pi=p\right)=\frac{\Gamma(t+k)}{\Gamma(t) k!} p^{t}(1-p)^{k}, k=0,1, \ldots$
(1) Then $Y=\left(Y_{t}\right)_{t \geq 0}$ is Markov.
(2) Assume $\beta=\mathbf{E}(1 / \Pi)-1$ and $v^{2}=\operatorname{Var}(1 / \Pi)>0$. Then

$$
Z_{t}=c(1-t) Y_{\frac{t}{c v(1-t)}}-t \frac{\beta}{v}
$$

is a quadratic harness on $(0,1)$ with parameters

$$
\eta=\theta=\frac{(2 \beta+1) v}{(\beta+1) \beta}, \sigma=\tau=\frac{v^{2}}{\beta(\beta+1)}, \rho=2 \sqrt{\sigma \tau} .
$$

Here $c=\frac{v}{v^{2}+\beta^{2}+\beta}$.

Proposition (folklore? Poisson case: Nekrutkin(2007))

Let $\Pi \in(0,1)$ be a random variable such that $\mathbf{E}(1 / \Pi)<\infty$. Suppose Y is a Π-conditionally negative binomial process and $Z_{t}=c(1-t) Y_{\frac{t}{c v(1-t)}}-t \frac{\beta}{v}$ with some coefficients $\beta, v>0$. Then the following are equivalent:

Proposition (folklore? Poisson case: Nekrutkin(2007))

Let $\Pi \in(0,1)$ be a random variable such that $\mathbf{E}(1 / \Pi)<\infty$. Suppose Y is a Π-conditionally negative binomial process and $Z_{t}=c(1-t) Y_{\frac{t}{c v(1-t)}}-t \frac{\beta}{v}$ with some coefficients $\beta, v>0$. Then the following are equivalent:
(1) $\left(Z_{t}\right)_{t \in[0,1)}$ is a martingale with respect to its natural filtration $\left(\mathcal{F}_{\leq t}\right)$.

Proposition (folklore? Poisson case: Nekrutkin(2007))

Let $\Pi \in(0,1)$ be a random variable such that $\mathbf{E}(1 / \Pi)<\infty$. Suppose Y is a Π-conditionally negative binomial process and $Z_{t}=c(1-t) Y_{\frac{t}{c v(1-t)}}-t \frac{\beta}{v}$ with some coefficients $\beta, v>0$. Then the following are equivalent:
(1) $\left(Z_{t}\right)_{t \in[0,1)}$ is a martingale with respect to its natural filtration $\left(\mathcal{F}_{\leq t}\right)$.
(2) Π has the beta $B_{l}(a, b)$ density

$$
\begin{equation*}
h(p)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p^{a-1}(1-p)^{b-1} 1_{(0,1)}(p) \tag{1}
\end{equation*}
$$

with $a=2+\beta(\beta+1) / v^{2}$ and $b=\beta+\beta^{2}(\beta+1) / v^{2}$.

Proposition (folklore? Poisson case: Nekrutkin(2007))

Let $\Pi \in(0,1)$ be a random variable such that $\mathbf{E}(1 / \Pi)<\infty$. Suppose Y is a Π-conditionally negative binomial process and $Z_{t}=c(1-t) Y_{\frac{t}{c v(1-t)}}-t \frac{\beta}{v}$ with some coefficients $\beta, v>0$. Then the following are equivalent:
(1) $\left(Z_{t}\right)_{t \in[0,1)}$ is a martingale with respect to its natural filtration $\left(\mathcal{F}_{\leq t}\right)$.
(2) Π has the beta $B_{l}(a, b)$ density

$$
\begin{equation*}
h(p)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p^{a-1}(1-p)^{b-1} 1_{(0,1)}(p) \tag{1}
\end{equation*}
$$

with $a=2+\beta(\beta+1) / v^{2}$ and $b=\beta+\beta^{2}(\beta+1) / v^{2}$.
Proof: Special case of Diaconis-Ylvisaker, Conjugate priors for exponential families, Ann. Statist., 1979.

Let Y and Y^{\prime} be Π-conditionally independent negative binomial processes. With $\beta=\mathbf{E}(1 / \Pi)-1, v^{2}=\operatorname{Var}(1 / \Pi)$, define

$$
Z_{t}= \begin{cases}c(1-t) Y_{\frac{t}{c v(1-t)}-t \frac{\beta}{v}} & \text { if } 0 \leq t<1 \\ \left(\frac{1-\Pi}{\Pi}-\beta\right) / v & \text { if } t=1 \tag{2}\\ c(t-1) Y_{\frac{1}{c v(t-1)}}^{\prime}-\frac{\beta}{v} & \text { if } t>1\end{cases}
$$

$c=\frac{v}{v^{2}+\beta^{2}+\beta}$.
Time-inversion: $\left(Z_{t}\right) \sim\left(t Z_{1 / t}\right)$.

Theorem

Then the following conditions are equivalent:

Theorem

Then the following conditions are equivalent:
(1) $\left(Z_{t}\right)$ is a quadratic harness on $(0, \infty)$,

Theorem

Then the following conditions are equivalent:
(1) $\left(Z_{t}\right)$ is a quadratic harness on $(0, \infty)$,
(2) $\left(Z_{t}\right)$ is a harness on $(0, \infty)$,

Theorem

Then the following conditions are equivalent:
(1) $\left(Z_{t}\right)$ is a quadratic harness on $(0, \infty)$,
(2) $\left(Z_{t}\right)$ is a harness on $(0, \infty)$,
(3) $\left(Z_{t}\right)$ is a martingale,

Theorem

Then the following conditions are equivalent:
(1) $\left(Z_{t}\right)$ is a quadratic harness on $(0, \infty)$,
(2) $\left(Z_{t}\right)$ is a harness on $(0, \infty)$,
(3) $\left(Z_{t}\right)$ is a martingale,
(4) Π has Beta, distribution (1).

The same results hold for pairs of Poisson, negative binomial, gamma, hyperbolic secant processes:

- martingale condition on $(0,1)$ determines the law of randomization

The same results hold for pairs of Poisson, negative binomial, gamma, hyperbolic secant processes:

- martingale condition on $(0,1)$ determines the law of randomization
- the "correct law" allows to continue the process to $t \geq 1$

The same results hold for pairs of Poisson, negative binomial, gamma, hyperbolic secant processes:

- martingale condition on $(0,1)$ determines the law of randomization
- the "correct law" allows to continue the process to $t \geq 1$
- the "correct law" gives us a quadratic harness.

The same results hold for pairs of Poisson, negative binomial, gamma, hyperbolic secant processes:

- martingale condition on $(0,1)$ determines the law of randomization
- the "correct law" allows to continue the process to $t \geq 1$
- the "correct law" gives us a quadratic harness.
- laws for randomization (except Poisson) can be deduced from results in [Diaconis-Ylvisaker (1979)]
- A pair of Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ makes a martingale on $(0, \infty)$ iff Λ has gamma density $h(d \lambda)=C \lambda^{p-1} e^{-r \lambda} 1_{(0, \infty)}(\lambda) d \lambda$

These laws define Z_{1} for the "decomposition" of a quadratic harness into Lévy bridges.

- A pair of Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ makes a martingale on $(0, \infty)$ iff Λ has gamma density $h(d \lambda)=C \lambda^{p-1} e^{-r \lambda} 1_{(0, \infty)}(\lambda) d \lambda$
- A pair of Π-conditionally independent negative binomial processes makes a martingale on $(0, \infty)$ iff Π has beta density $h(p)=C p^{a-1}(1-p)^{b-1} 1_{(0,1)}(p)$

These laws define Z_{1} for the "decomposition" of a quadratic harness into Lévy bridges.

- A pair of Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ makes a martingale on $(0, \infty)$ iff Λ has gamma density $h(d \lambda)=C \lambda^{p-1} e^{-r \lambda} 1_{(0, \infty)}(\lambda) d \lambda$
- A pair of Π-conditionally independent negative binomial processes makes a martingale on $(0, \infty)$ iff Π has beta density $h(p)=C p^{a-1}(1-p)^{b-1} 1_{(0,1)}(p)$
- A pair of W-independent gamma processes $\left(W X_{t}\right),\left(W \tilde{X}_{t}\right)$ makes a martingale on $(0, \infty)$ iff W has inverse-gamma density $h(d w)=C \frac{\exp (-r / w)}{w^{p+1}} 1_{(0, \infty)}(w) d w$

These laws define Z_{1} for the "decomposition" of a quadratic harness into Lévy bridges.

- A pair of Λ-conditionally independent Poisson processes $\left(N_{t}\right),\left(\tilde{N}_{t}\right)$ makes a martingale on $(0, \infty)$ iff Λ has gamma density $h(d \lambda)=C \lambda^{p-1} e^{-r \lambda} 1_{(0, \infty)}(\lambda) d \lambda$
- A pair of Π-conditionally independent negative binomial processes makes a martingale on $(0, \infty)$ iff Π has beta density $h(p)=C p^{a-1}(1-p)^{b-1} 1_{(0,1)}(p)$
- A pair of W-independent gamma processes $\left(W X_{t}\right),\left(W \tilde{X}_{t}\right)$ makes a martingale on $(0, \infty)$ iff W has inverse-gamma density $h(d w)=C \frac{\exp (-r / w)}{w^{p+1}} 1_{(0, \infty)}(w) d w$
- A pair of W-conditionally independent hyperbolic secant processes makes a martingale on $(0, \infty)$ iff $h(d \alpha)=C(1+\cos \alpha)^{p} \exp (r \alpha) 1_{(-\pi, \pi)}(\alpha) d \alpha$

These laws define Z_{1} for the "decomposition" of a quadratic harness into Lévy bridges.

Conclusions

(1) For a process $\left(X_{t}\right)_{t \in(0, \infty)}$ with linear two-sided regressions, non-constant quadratic conditional variances, and product covariance $\operatorname{cov}\left(X_{s}, X_{t}\right)=(a s+b)(c t+d)$ for $s<t$, the existence of a "special time" T can be recognized by a calculation.

Conclusions

(1) For a process $\left(X_{t}\right)_{t \in(0, \infty)}$ with linear two-sided regressions, non-constant quadratic conditional variances, and product covariance $\operatorname{cov}\left(X_{s}, X_{t}\right)=(a s+b)(c t+d)$ for $s<t$, the existence of a "special time" T can be recognized by a calculation.
(2) Then $\left(X_{t}\right)$ is put together from one of the "randomized pairs" of Poisson, negative binomial, gamma, or hyperbolic secant processes.

Abstract

Consider a pair of independent Poisson processes, or a pair of Negative Binomial processes, or Gamma, or hyperbolic secant processes with a shared randomly selected parameter. Under appropriate randomization, one can deterministically re-parametrize the time and scale for both processes so that the first process runs on time interval $(0,1)$, the second process runs on time interval $(1, \infty)$, and the two processes seamlessly join into one Markov martingale on ($0, \infty$). In fact, a property stronger than martingale holds: we stitch together two processes into a single quadratic harness on $(0, \infty)$

[^0]: ${ }^{1}$ Based on joint work in progress with Jacek Wesołowski

