A renormalisation group analysis of the 4-dimensional continuous-time weakly self-avoiding walk

Gordon Slade
University of British Columbia
Northwest Probability Seminar Microsoft, Redmond: October 16, 2010

Abstract

We prove $|x|^{-2}$ decay of the critical two-point function for the continuous-time weakly self-avoiding walk on \mathbb{Z}^{4}. The walk two-point function is identified as the two-point function of a supersymmetric field theory with quartic self-interaction, and the field theory is then analysed using renormalisation group methods.

This is joint work with David Brydges. Papers at http://www.math.ubc.ca/~slade. Research supported in part by NSERC.

Self-avoiding walk

Discrete-time model: Let $\mathcal{S}_{n}(x)$ be the set of $\omega:\{0,1, \ldots, n\} \rightarrow \mathbb{Z}^{d}$ with: $\omega(0)=0, \omega(n)=x,|\omega(i+1)-\omega(i)|=1$, and $\omega(i) \neq \omega(j)$ for all $i \neq j$. Let $\mathcal{S}_{n}=\cup_{x \in \mathbb{Z}^{d}} \mathcal{S}_{n}(x)$.

Let $c_{n}(x)=\left|\mathcal{S}_{n}(x)\right|$. Let $c_{n}=\sum_{x} c_{n}(x)=\left|\mathcal{S}_{n}\right|$. Easy: $c_{n}^{1 / n} \rightarrow \mu$. Declare all walks in \mathcal{S}_{n} to be equally likely: each has probability c_{n}^{-1}.

Two-point function: $G_{z}(x)=\sum_{n=0}^{\infty} c_{n}(x) z^{n}$, radius of convergence $z_{c}=\mu^{-1}$.
Predicted asymptotic behaviour:

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}, \quad \mathbb{E}_{n}|\omega(n)|^{2} \sim D n^{2 \nu}, \quad G_{z_{c}}(x) \sim c|x|^{-(d-2+\eta)}
$$

with universal critical exponents γ, ν, η obeying $\gamma=(2-\eta) \nu$.

A random SAW on \mathbb{Z}^{2} with 10^{6} steps

(Figure by T. Kennedy)

Dimensions $d \geq 4$

Theorem. (Brydges, Spencer (1985); Hara, Slade (1992); Hara (2008)...)
For $d \geq 5$,

$$
c_{n} \sim A \mu^{n}, \quad \mathbb{E}_{n}|\omega(n)|^{2} \sim D n, \quad G_{z_{c}}(x) \sim c|x|^{-(d-2)}, \quad \frac{1}{\sqrt{D n}} \omega(\lfloor n t\rfloor) \Rightarrow B_{t} .
$$

Prediction is that upper critical dimension is 4 , and asymptotic behaviour for \mathbb{Z}^{4} has log corrections (Brézin, Le Guillou, Zinn-Justin 1973):

$$
c_{n} \sim A \mu^{n}(\log n)^{1 / 4}, \quad \mathbb{E}_{n}|\omega(n)|^{2} \sim D n(\log n)^{1 / 4}, \quad G_{z_{c}}(x) \sim c|x|^{-2} .
$$

Also, for susceptibility and correlation length, as $z \nearrow z_{c}$,

$$
\chi(z) \sim \frac{A^{\prime}\left|\log \left(1-z / z_{c}\right)\right|^{1 / 4}}{1-z / z_{c}}, \quad \xi(z) \sim \frac{D^{\prime}\left|\log \left(1-z / z_{c}\right)\right|^{1 / 8}}{\left(1-z / z_{c}\right)^{1 / 2}}
$$

where

$$
\chi(z)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad \frac{1}{\xi(z)}=-\lim _{n \rightarrow \infty} \frac{1}{n} \log G_{z}\left(n e_{1}\right) .
$$

Continuous-time weakly self-avoiding walk

This is a modification of the SAW model. We are interested in dimensions $d \geq 4$. Let E_{0} denote the expectation for continuous-time nearest-neighbour simple random walk $X(t)$ on \mathbb{Z}^{d} started from 0 (with $\operatorname{Exp}(1)$ holding times), and let

$$
L_{u, T}=\int_{0}^{T} \delta_{u, X(s)} d s, \quad I(0, T)=\sum_{u \in \mathbb{Z}^{d}} L_{u, T}^{2}
$$

Then

$$
I(0, T)=\int_{0}^{T} \int_{0}^{T} \delta_{X(s), X(t)} d s d t
$$

Let $g \in(0, \infty)$. The two-point function is defined to be

$$
G_{g, \nu}(x)=\int_{0}^{\infty} E_{0}\left(e^{-g I(0, T)} \delta_{X(T), x}\right) e^{-\nu T} d T
$$

(role of z now played by $e^{-\nu}$). A subadditivity argument shows that the susceptibility $\chi_{g}(\nu)=\sum_{x \in \mathbb{Z}^{d}} G_{g, \nu}(x)$ is finite if $\nu>\nu_{c}(g)$ and is infinite if $\nu<\nu_{c}(g)$.

Main result

Theorem (Brydges-Slade 2010). Let $d \geq 4$. There exists g_{0} such that for $0<g \leq g_{0}$,

$$
G_{g, \nu_{c}}(x)=\frac{c}{|x|^{d-2}}+o\left(\frac{1}{|x|^{d-2}}\right) .
$$

Outlook: The method of proof (RG) has the potential to (but has not yet fully achieved):

- prove logarithmic corrections for susceptibility and correlation length for $d=4$
- prove same result also with small nearest-neighbour attraction (Bauerschmidt)
- prove same result for a particular spread-out model of discrete-time strictly self-avoiding walk with exponentially decaying step weights (explicitly the weight of a step is $\left(1-a^{-1} \Delta\right)^{-1}(x, y)$ with $0<a \ll 1$)

Related results:

- weakly SAW on 4-dimensional hierarchical lattice: Brydges, Evans, Imbrie (1992); Brydges, Imbrie (2003); and with different RG approach Ohno, Hara (2010+). The hierarchical lattice is a replacement of \mathbb{Z}^{4} by a recursive structure which is well-suited to the RG.
- weakly self-avoiding Lévy walk on $\mathbb{Z}^{3}\left(\alpha=\frac{3+\epsilon}{2}, d_{c}=3+\epsilon\right)$: Mitter, Scoppola (2008).

Finite-volume approximation

Now we fix $g>0$ and usually drop it from the notation.
Standard methods (Simon-Lieb inequality) show that

$$
G_{\nu_{c}}(x)=\lim _{\nu \downarrow \nu_{c}} \lim _{\Lambda \uparrow \mathbb{Z}^{d}} G_{\Lambda, \nu}(x)
$$

where $\Lambda=\mathbb{Z}^{d} / R \mathbb{Z}$ is a torus approximating \mathbb{Z}^{d} and

$$
G_{\Lambda, \nu}(x)=\int_{0}^{\infty} E_{0}^{\Lambda}\left(e^{-g I_{\Lambda}[0, T]} \delta_{X(T), x}\right) e^{-\nu T} d T
$$

with E_{0}^{Λ} the expectation for the continuous-time simple random walk on Λ, and $I_{\Lambda}[0, T]=\sum_{v \in \Lambda} L_{v, T}^{2}$.

Thus we can work in finite volume, and slightly subcritical, as long as we maintain sufficient uniformity to take the limits.

Functional integral representation

Let $\varphi: \Lambda \rightarrow \mathbb{C}$. Let $\bar{\varphi}_{x}=u_{x}-i v_{x}$ denote the complex conjugate of $\varphi_{x}=u_{x}+i v_{x}$. Let Δ denote the discrete Laplacian on Λ, i.e., $\Delta \varphi_{x}=\sum_{y:|y-x|=1}\left(\varphi_{y}-\varphi_{x}\right)$. Let

$$
\begin{gathered}
\psi_{x}=\frac{1}{\sqrt{2 \pi i}} d \varphi_{x}, \quad \bar{\psi}_{x}=\frac{1}{\sqrt{2 \pi i}} d \bar{\varphi}_{x} \\
\tau_{x}=\varphi_{x} \bar{\varphi}_{x}+\psi_{x} \wedge \bar{\psi}_{x}=u_{x}^{2}+v_{x}^{2}+\frac{1}{\pi} d u_{x} \wedge d v_{x} \\
\tau_{\Delta, x}=\frac{1}{2}\left(\varphi_{x}(-\Delta \bar{\varphi})_{x}+(-\Delta \varphi)_{x} \bar{\varphi}_{x}+\psi_{x} \wedge(-\Delta \bar{\psi})_{x}+(-\Delta \psi)_{x} \wedge \bar{\psi}_{x}\right),
\end{gathered}
$$

where \wedge is the standard anti-commutative wedge product. Then

$$
G_{\Lambda, \nu}(x)=\int_{\mathbb{C}^{\Lambda}} e^{-\sum_{u \in \Lambda}\left(\tau_{\Delta, u}+g \tau_{u}^{2}+\nu \tau_{u}\right)} \bar{\varphi}_{0} \varphi_{x} .
$$

RHS is the two-point function of a supersymmetric field theory with boson field ($\varphi, \bar{\varphi}$) and fermion field $(\psi, \bar{\psi})$.
(Parisi, Sourlas 1980; McKane 1980; Luttinger 1983; Le Jan 1987;
Brydges, Evans, Imbrie 1992; Brydges, Imbrie 2003; Brydges, Imbrie, Slade 2009).

Meaning of the integral

The definition of an integral such as

$$
G_{\Lambda, \nu}(x)=\int_{\mathbb{C}^{\Lambda}} e^{-\sum_{u \in \Lambda}\left(\tau_{\Delta, u}+g \tau_{u}^{2}+\nu \tau_{u}\right)} \bar{\varphi}_{0} \varphi_{x}
$$

is as follows:

- expand entire integrand in power series about degree-zero part (finite sum), e.g.,

$$
e^{\tau_{v}}=e^{\varphi_{x} \bar{\varphi}_{x}+\psi_{x} \bar{\psi}_{x}}=e^{\varphi_{x} \bar{\varphi} x}\left(1+\psi_{x} \bar{\psi}_{x}\right),
$$

- keep only terms with one factor $d \varphi_{x}$ and one $d \bar{\varphi}_{x}$ for each $x \in \Lambda$,
- write $\varphi_{x}=u_{x}+i v_{x}, \bar{\varphi}_{x}=u_{x}-i v_{x}$ and similarly for differentials,
- then use anti-commutativity to rearrange the differentials to $\prod_{x \in \Lambda} d u_{x} d v_{x}$,
- and finally perform Lebesgue integral over $\mathbb{R}^{2|\Lambda|}$.

Such integrals have nice properties. Let $S(\Lambda)=\sum_{x \in \Lambda}\left(\tau_{\Delta, x}+m^{2} \tau_{x}\right)$. Then:

$$
\int e^{-S(\Lambda)} F(\tau)=F(0), \quad \int e^{-S(\Lambda)} \bar{\varphi}_{0} \varphi_{x}=\left(-\Delta+m^{2}\right)^{-1}(0, x)
$$

Now we study the integral and forget about the walks.

Change of variables

The change of variable $\varphi_{x} \mapsto \sqrt{1+z_{0}} \varphi_{x}$, with $z_{0}>-1$, gives

$$
G_{\Lambda, \nu}(x)=\left(1+z_{0}\right) \int_{\mathbb{C}^{\Lambda}} e^{-\sum_{u}\left(\left(1+z_{0}\right) \tau_{\Delta, u}+g\left(1+z_{0}\right)^{2} \tau_{u}^{2}+\nu\left(1+z_{0}\right) \tau_{u}\right)} \bar{\varphi}_{0} \varphi_{x} .
$$

Introducing an external field $\sigma \in \mathbb{C}$, let

$$
\begin{aligned}
& S(\Lambda)=\sum_{u \in \Lambda}\left(\tau_{\Delta, u}+m^{2} \tau_{u}\right), \\
& V_{0}(\Lambda)=\sum_{u \in \Lambda}\left(g_{0} \tau_{u}^{2}+\nu_{0} \tau_{u}+z_{0} \tau_{\Delta, u}\right)+\sigma \bar{\varphi}_{0}+\bar{\sigma} \varphi_{x}, \\
& g_{0}=\left(1+z_{0}\right)^{2} g, \quad \nu_{0}=\left(1+z_{0}\right) \nu_{c}, \quad m^{2}=\left(1+z_{0}\right)\left(\nu-\nu_{c}\right) .
\end{aligned}
$$

Then

$$
G_{\Lambda, \nu}(x, y)=\left.\left(1+z_{0}\right) \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \bar{\sigma}}\right|_{0} \int e^{-S(\Lambda)-V_{0}(\Lambda)} .
$$

Want to show that $\exists z_{0}$ such that first part of V_{0} is a small perturbation and use

$$
\left.\lim _{m^{2} \downarrow 0} \lim _{\Lambda \uparrow \mathbb{Z}^{d}} \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \bar{\sigma}}\right|_{0} \int e^{-S(\Lambda)} e^{-\sigma \bar{\varphi}_{0}-\bar{\sigma} \varphi_{x}}=(-\Delta)^{-1}(0, x) \sim \operatorname{const}|x|^{-(d-2)} .
$$

Gaussian "expectation"

For a positive definite $\Lambda \times \Lambda$ matrix C, and $A=C^{-1}$, let

$$
S_{A}(\Lambda)=\sum_{x, y \in \Lambda}\left(\varphi_{x} A_{x y} \bar{\varphi}_{x}+\psi_{x} A_{x y} \bar{\psi}_{y}\right)
$$

and, for a form F,

$$
\mathbb{E}_{C} F=\int_{\mathbb{C}^{\Lambda}} e^{-S_{A}(\Lambda)} F
$$

Then $\mathbb{E}_{C} 1=1$. With $C=\left(-\Delta+m^{2}\right)^{-1}$, our goal is to compute

$$
\lim _{m^{2} \downarrow 0} \lim _{\Lambda \uparrow \mathbb{Z}^{4}} G_{\Lambda, \nu}(x, y)=\left.\lim _{m^{2} \downarrow 0 \Lambda \uparrow \mathbb{Z}^{4}} \lim _{0}\left(1+z_{0}\right) \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \bar{\sigma}}\right|_{0} \mathbb{E}_{C} e^{-V_{0}(\Lambda)} .
$$

These integrals have much in common with standard Gaussian integrals. However, this is not ordinary probability theory and and in general \mathbb{E}_{C} will be a Grassmann integral that take values in a space of differential forms.

Convolution integrals

Write $\phi=(\varphi, \bar{\varphi}), d \phi=(d \varphi, d \bar{\varphi})$.
Recall that $X \sim N\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$ has the same distribution as $X_{1}+X_{2}$ where $X_{1} \sim N\left(0, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(0, \sigma_{2}^{2}\right)$ are independent.

This finds expression for \mathbb{E}_{C} via the following fact:

$$
\mathbb{E}_{C_{2}+C_{1}} F=\mathbb{E}_{C_{2}} \circ \mathbb{E}_{C_{1}} \theta F,
$$

where

$$
(\theta F)(\phi, \xi, \psi, \eta)=F(\phi+\xi, \psi+\eta)
$$

and $\mathbb{E}_{C_{1}}$ integrates out ξ and $\eta=\frac{1}{\sqrt{2 \pi i}} d \xi$, leaving ϕ and $\psi=\frac{1}{\sqrt{2 \pi i}} d \phi$ fixed. Then $\mathbb{E}_{C_{2}}$ integrates out ϕ and ψ.

Finite-range decomposition of covariance

Theorem (Brydges, Guadagni, Mitter 2004). Let $d>2$. Fix a large L and suppose $|\Lambda|=L^{N d}$. Let $C=\left(-\Delta+m^{2}\right)^{-1}$. It is possible to write:

$$
C=\sum_{j=1}^{N} C_{j}
$$

with C_{j} positive definite,

$$
C_{j}(x, y)=0 \quad \text { if } \quad|x-y| \geq \frac{1}{2} L^{j}
$$

and, for $j=1, \ldots, N-1$ and with $[\phi]=\frac{1}{2}(d-2)($ so $[\phi]=1$ for $d=4)$,

$$
\begin{gathered}
\left|C_{j}(x, x)\right| \leq O\left(L^{-2[\phi](j-1)}\right) \\
\left|\nabla_{x}^{\alpha} \nabla_{y}^{\beta} C_{j}(x, x)\right| \leq O\left(L^{-\left(2[\phi]+|\alpha|_{1}+|\beta|_{1}\right)(j-1)}\right)
\end{gathered}
$$

The RG map

The covariance decomposition induces a field decomposition and allows the expectation to be done iteratively:

$$
\phi=\sum_{j=1}^{N} \xi_{j}, \quad d \phi=\sum_{j=1}^{N} d \xi_{j}, \quad \mathbb{E}_{C}=\mathbb{E}_{C_{N}} \circ \cdots \circ \mathbb{E}_{C_{2}} \circ \mathbb{E}_{C_{1}}
$$

Write $\phi_{j}=\sum_{i=j+1}^{N} \xi_{i}$, with $\phi_{0}=\phi, \phi_{N}=0$. Then $\phi_{j}=\phi_{j+1}+\xi_{j+1}$. Let

$$
Z_{0}=Z_{0}(\phi, d \phi)=e^{-V_{0}(\Lambda)}
$$

and

$$
Z_{j}\left(\phi_{j}, d \phi_{j}\right)=\mathbb{E}_{C_{j}} \cdots \mathbb{E}_{C_{1}} Z_{0}
$$

In particular, our goal is to compute

$$
Z_{N}=\mathbb{E}_{C} Z_{0}=\mathbb{E}_{C} e^{-V_{0}(\Lambda)}
$$

and we are led to study the RG map:

$$
Z_{j+1}=\mathbb{E}_{C_{j+1}} Z_{j}
$$

Relevant, marginal, irrelevant directions

Let $d=4$. The covariance estimates suggest that $\xi_{j+1, x} \approx L^{-j[\phi]}=L^{-j}$ and that this field is approximately constant over distance L^{j}. Thus, for a block B of side L^{j},

$$
\sum_{x \in B}\left|\xi_{j+1, x}\right|^{p} \approx|B| L^{-j p}=L^{j(4-p)},
$$

which is relevant for $p<4$, marginal for $p=4$, irrelevant for $p>4$.
Taking symmetries and derivatives into account, the relevant and marginal monomials are:

$$
\tau, \quad \tau_{\Delta}, \quad \tau^{2}
$$

The role of $d=4: \tau^{2}$ is relevant for $d<4$ and irrelevant for $d>4$:

$$
\sum_{x \in B}\left|\xi_{j+1, x}\right|^{4} \approx|B| L^{-j 4[\phi]}=L^{j(4-d)}
$$

The map $\mathbb{E}_{C_{1}}: Z_{0} \mapsto Z_{1}$

This map takes a function of $\phi=\phi_{1}+\xi_{1}$ to a function of ϕ_{1} by integrating out ξ_{1}.
Write $Z_{0}(x)=I_{0}(x)=e^{-V_{0}(x)}$, and, for $X \subset \Lambda$, write

$$
I_{0}(X)=\prod_{x \in X} I_{0}(x)=e^{-V_{0}(X)}
$$

This is a function of ϕ.
Let V_{1} be a version of V_{0} with modified coupling constants (g_{1}, ν_{1}, z_{1}) and regarded as a function of ϕ_{1} (and $d \phi_{1}$). Let $I_{1}(x)=e^{-V_{1}(x)}$, this will be an approximation to Z_{1}. Let

$$
\delta I_{1, x}\left(\phi_{1}, \xi_{1}\right)=I_{0, x}\left(\phi_{1}+\xi_{1}\right)-I_{1, x}\left(\phi_{1}\right)
$$

Then

$$
\begin{aligned}
Z_{1}(\Lambda) & =\mathbb{E}_{C_{1}} I_{0}(\Lambda)=\mathbb{E}_{C_{1}} \prod_{x \in \Lambda}\left(I_{1, x}+\delta I_{1, x}\right) \\
& =\mathbb{E}_{C_{1}} \sum_{X \subset \Lambda} I_{1}^{\Lambda \backslash X} \delta I_{1}^{X}=\sum_{X \subset \Lambda} I_{1}^{\Lambda \backslash X} \mathbb{E}_{C_{1}} \delta I_{1}^{X}
\end{aligned}
$$

The $I \circ K$ representation

We write this as

$$
Z_{1}(\Lambda)=\sum_{X \subset \Lambda} I_{1}^{\Lambda \backslash X} \mathbb{E}_{C_{1}} \delta I_{1}^{X}=\sum_{U \in \mathcal{P}_{1}} I_{1}^{\Lambda \backslash U} K_{1}(U),
$$

where

$$
K_{1}(U)=\sum_{X \in \overline{\mathcal{P}}_{0}(U)} I_{1}^{U \backslash X} \mathbb{E}_{C_{1}} \delta I_{1}^{X}
$$

with factorisation property.

The $I \circ K$ representation

The formula

$$
Z_{1}(\Lambda)=\sum_{X \subset \Lambda} I_{1}^{\Lambda \backslash X} \mathbb{E}_{C_{1}} \delta I_{1}^{X}=\sum_{U \in \mathcal{P}_{1}} I_{1}^{\Lambda \backslash U} K_{1}(U)
$$

is an instance of the following "circle product."
Let \mathcal{B}_{j} represent the blocks in a paving of Λ by blocks of side L^{j}, and let \mathcal{P}_{j} denote the set of finite unions of such blocks. Given even forms F, G defined on \mathcal{P}_{j}, let

$$
(F \circ G)(\Lambda)=\sum_{U \in \mathcal{P}_{j}} F(\Lambda \backslash U) G(U)
$$

This defines an associative and commutative product. For $X \in \mathcal{P}_{0}$, let $K_{0}(X)=\delta_{X, \varnothing}$. Let K_{1} be defined as above and let $I_{1}(U)=\prod_{x \in U} I_{1, x}$ for $U \in \mathcal{P}_{1}$. Then

$$
Z_{0}(\Lambda)=I_{0}(\Lambda)=\left(I_{0} \circ K_{0}\right)(\Lambda), \quad Z_{1}(\Lambda)=\left(I_{1} \circ K_{1}\right)(\Lambda)
$$

Flow of coupling constants

Theorem. Let $d=4$ ($d>4$ is simpler). There is a choice of

$$
V_{j, u}=g_{j} \tau_{u}^{2}+\nu_{j} \tau_{u}+z_{j} \tau_{\Delta, u}+\lambda_{j}\left(\delta_{u, 0} \sigma \bar{\varphi}_{0}+\delta_{u, x} \bar{\sigma} \varphi_{x}\right)+q_{j} \frac{1}{2}\left(\delta_{u, 0}+\delta_{u, x}\right) \sigma \bar{\sigma}
$$

which determines I_{j}, and of K_{j}, such that

$$
Z_{j}(\Lambda)=\left(I_{j} \circ K_{j}\right)(\Lambda), \quad Z_{j+1}(\Lambda)=\mathbb{E}_{C_{j+1}} Z_{j}(\Lambda)=\left(I_{j+1} \circ K_{j+1}\right)(\Lambda)
$$

and moreover

$$
\begin{aligned}
g_{j+1} & =g_{j}-c_{j} g_{j}^{2}+r_{g, j} \\
\nu_{j+1} & =\nu_{j}+2 g_{j} C_{j+1}(0,0)+r_{\mu, j} \\
z_{j+1} & =z_{j}+r_{z, j} \\
K_{j+1} & =r_{K, j},
\end{aligned}
$$

with additional equations for λ_{j} and q_{j}, such that the r 's are error terms within an appropriately defined Banach space, and Lipschitz in ($g_{j}, \nu_{j}, z_{j}, K_{j}$). K_{j} enters only in the error terms and these are independent of λ_{j}, q_{j}.

Fixed point theorem

We prove that there is a choice of initial conditions z_{0} (which occurs in c of $c|x|^{-2}$) and ν_{0} (which puts us at the critical point) such that the solution $\left(g_{j}, \nu_{j}, z_{j}, K_{j}\right)_{0 \leq j \leq N}$, in the limits $N \rightarrow \infty$ and $m^{2} \rightarrow 0$, has limit

$$
\left(g_{j}, \nu_{j}, z_{j}, K_{j}\right) \rightarrow(0,0,0,0) \quad \text { "infrared asymptotic freedom." }
$$

From this, estimates on K_{N}, and the specific form $q_{j} \approx \sum_{i=1}^{j} C_{i}(0, x) \rightarrow C_{\mathbb{Z}^{4}}(0, x)$ we obtain

$$
\begin{aligned}
G_{\nu_{c}}(x) & =\left.\lim _{\nu \downarrow \nu_{c}}\left(1+z_{0}\right) \lim _{N \rightarrow \infty} \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \bar{\sigma}}\right|_{0} Z_{N}(\Lambda) \\
& =\left.\lim _{m^{2} \downarrow 0}\left(1+z_{0}\right) \lim _{N \rightarrow \infty} \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \bar{\sigma}}\right|_{0}\left(I_{N}(\Lambda)+K_{N}(\Lambda)\right) \\
& =\left.\lim _{m^{2} \downarrow 0}\left(1+z_{0}\right) \lim _{N \rightarrow \infty} \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \bar{\sigma}}\right|_{0}\left(e^{-q_{N} \sigma \bar{\sigma}}+0\right) \\
& =\lim _{m^{2} \downarrow 0}\left(1+z_{0}\right) \lim _{N \rightarrow \infty} q_{N} \\
& =c^{\prime}\left(-\Delta_{\mathbb{Z}^{4}}\right)^{-1}(0, x) \sim c|x|^{-2}
\end{aligned}
$$

