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Abstract
We prove |x|−2 decay of the critical two-point function for the continuous-time

weakly self-avoiding walk on Z4. The walk two-point function is identified as the

two-point function of a supersymmetric field theory with quartic self-interaction,

and the field theory is then analysed using renormalisation group methods.
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Self-avoiding walk

Discrete-time model: Let Sn(x) be the set of ω : {0, 1, . . . , n} → Zd with:

ω(0) = 0, ω(n) = x, |ω(i + 1)− ω(i)| = 1, and ω(i) 6= ω(j) for all i 6= j.

Let Sn = ∪x∈ZdSn(x).

Let cn(x) = |Sn(x)|. Let cn =
∑

x cn(x) = |Sn|. Easy: c1/n
n → µ.

Declare all walks in Sn to be equally likely: each has probability c−1
n .

Two-point function: Gz(x) =
∑∞

n=0 cn(x)zn, radius of convergence zc = µ−1.

Predicted asymptotic behaviour:

cn ∼ Aµ
n
n

γ−1
, En|ω(n)|2 ∼ Dn

2ν
, Gzc(x) ∼ c|x|−(d−2+η)

,

with universal critical exponents γ, ν, η obeying γ = (2− η)ν.
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A random SAW on Z2 with 106 steps

(Figure by T. Kennedy)
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Dimensions d ≥ 4

Theorem. (Brydges, Spencer (1985); Hara, Slade (1992); Hara (2008)...)

For d ≥ 5,

cn ∼ Aµ
n
, En|ω(n)|2 ∼ Dn, Gzc(x) ∼ c|x|−(d−2)

,
1√
Dn

ω(bntc) ⇒ Bt.

Prediction is that upper critical dimension is 4, and asymptotic behaviour for Z4 has log

corrections (Brézin, Le Guillou, Zinn-Justin 1973):

cn ∼ Aµ
n
(log n)

1/4
, En|ω(n)|2 ∼ Dn(log n)

1/4
, Gzc(x) ∼ c|x|−2

.

Also, for susceptibility and correlation length, as z ↗ zc,

χ(z) ∼ A′| log(1− z/zc)|1/4

1− z/zc

, ξ(z) ∼ D′| log(1− z/zc)|1/8

(1− z/zc)1/2
,

where

χ(z) =

∞∑
n=0

cnz
n
,

1

ξ(z)
= − lim

n→∞
1

n
log Gz(ne1).

quad3



Continuous-time weakly self-avoiding walk

This is a modification of the SAW model. We are interested in dimensions d ≥ 4. Let E0

denote the expectation for continuous-time nearest-neighbour simple random walk X(t)

on Zd started from 0 (with Exp(1) holding times), and let

Lu,T =

∫ T

0

δu,X(s)ds, I(0, T ) =
∑

u∈Zd

L
2
u,T .

Then
I(0, T ) =

∫ T

0

∫ T

0

δX(s),X(t)ds dt.

Let g ∈ (0,∞). The two-point function is defined to be

Gg,ν(x) =

∫ ∞

0

E0

(
e
−gI(0,T )

δX(T ),x

)
e
−νT

dT

(role of z now played by e−ν). A subadditivity argument shows that the susceptibility

χg(ν) =
∑

x∈Zd Gg,ν(x) is finite if ν > νc(g) and is infinite if ν < νc(g).

quad4



Main result

Theorem (Brydges–Slade 2010). Let d ≥ 4. There exists g0 such that for 0 < g ≤ g0,

Gg,νc(x) =
c

|x|d−2
+ o

(
1

|x|d−2

)
.

Outlook: The method of proof (RG) has the potential to (but has not yet fully achieved):

• prove logarithmic corrections for susceptibility and correlation length for d = 4

• prove same result also with small nearest-neighbour attraction (Bauerschmidt)

• prove same result for a particular spread-out model of discrete-time strictly self-avoiding

walk with exponentially decaying step weights

(explicitly the weight of a step is (1− a−1∆)−1(x, y) with 0 < a ¿ 1)

Related results:

• weakly SAW on 4-dimensional hierarchical lattice: Brydges, Evans, Imbrie (1992);

Brydges, Imbrie (2003); and with different RG approach Ohno, Hara (2010+). The

hierarchical lattice is a replacement of Z4 by a recursive structure which is well-suited

to the RG.

• weakly self-avoiding Lévy walk on Z3 (α = 3+ε
2 , dc = 3+ε): Mitter, Scoppola (2008).

quad5



Finite-volume approximation

Now we fix g > 0 and usually drop it from the notation.

Standard methods (Simon–Lieb inequality) show that

Gνc(x) = lim
ν↓νc

lim
Λ↑Zd

GΛ,ν(x),

where Λ = Zd/RZ is a torus approximating Zd and

GΛ,ν(x) =

∫ ∞

0

E
Λ
0

(
e
−gIΛ[0,T ]

δX(T ),x

)
e
−νT

dT,

with EΛ
0 the expectation for the continuous-time simple random walk on Λ,

and IΛ[0, T ] =
∑

v∈Λ L2
v,T .

Thus we can work in finite volume, and slightly subcritical, as long as we maintain sufficient

uniformity to take the limits.
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Functional integral representation

Let ϕ : Λ → C. Let ϕ̄x = ux − ivx denote the complex conjugate of ϕx = ux + ivx.

Let ∆ denote the discrete Laplacian on Λ, i.e., ∆ϕx =
∑

y:|y−x|=1(ϕy − ϕx). Let

ψx =
1√
2πi

dϕx, ψ̄x =
1√
2πi

dϕ̄x,

τx = ϕxϕ̄x + ψx∧ψ̄x = u
2
x + v

2
x +

1

π
dux∧dvx,

τ∆,x =
1

2

(
ϕx(−∆ϕ̄)x + (−∆ϕ)xϕ̄x + ψx∧(−∆ψ̄)x + (−∆ψ)x∧ψ̄x

)
,

where ∧ is the standard anti-commutative wedge product. Then

GΛ,ν(x) =

∫

CΛ
e
−∑

u∈Λ(τ∆,u+gτ2
u+ντu)

ϕ̄0ϕx.

RHS is the two-point function of a supersymmetric field theory with boson field (ϕ, ϕ̄)

and fermion field (ψ, ψ̄).

(Parisi, Sourlas 1980; McKane 1980; Luttinger 1983; Le Jan 1987;

Brydges, Evans, Imbrie 1992; Brydges, Imbrie 2003; Brydges, Imbrie, Slade 2009).
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Meaning of the integral

The definition of an integral such as

GΛ,ν(x) =

∫

CΛ
e
−∑

u∈Λ(τ∆,u+gτ2
u+ντu)

ϕ̄0ϕx

is as follows:

• expand entire integrand in power series about degree-zero part (finite sum), e.g.,

e
τv = e

ϕxϕ̄x+ψxψ̄x = e
ϕxϕ̄x

(
1 + ψxψ̄x

)
,

• keep only terms with one factor dϕx and one dϕ̄x for each x ∈ Λ,

• write ϕx = ux + ivx, ϕ̄x = ux − ivx and similarly for differentials,

• then use anti-commutativity to rearrange the differentials to
∏

x∈Λ duxdvx,

• and finally perform Lebesgue integral over R2|Λ|.

Such integrals have nice properties. Let S(Λ) =
∑

x∈Λ(τ∆,x + m2τx). Then:

∫
e
−S(Λ)

F (τ) = F (0),

∫
e
−S(Λ)

ϕ̄0ϕx = (−∆ + m
2
)
−1

(0, x).

Now we study the integral and forget about the walks.

quad8



Change of variables

The change of variable ϕx 7→
√

1 + z0ϕx, with z0 > −1, gives

GΛ,ν(x) = (1 + z0)

∫

CΛ
e
−∑

u

(
(1+z0)τ∆,u+g(1+z0)2τ2

u+ν(1+z0)τu

)
ϕ̄0ϕx.

Introducing an external field σ ∈ C, let

S(Λ) =
∑

u∈Λ

(
τ∆,u + m

2
τu

)
,

V0(Λ) =
∑

u∈Λ

(
g0τ

2
u + ν0τu + z0τ∆,u

)
+σϕ̄0 + σ̄ϕx,

g0 = (1 + z0)
2
g, ν0 = (1 + z0)νc, m

2
= (1 + z0)(ν − νc).

Then

GΛ,ν(x, y) = (1 + z0)
∂

∂σ

∂

∂σ̄

∣∣∣∣
0

∫
e
−S(Λ)−V0(Λ)

.

Want to show that ∃z0 such that first part of V0 is a small perturbation and use

lim
m2↓0

lim
Λ↑Zd

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

∫
e
−S(Λ)

e
−σϕ̄0−σ̄ϕx = (−∆)

−1
(0, x) ∼ const|x|−(d−2)

.

quad9



Gaussian “expectation”

For a positive definite Λ× Λ matrix C, and A = C−1, let

SA(Λ) =
∑

x,y∈Λ

(
ϕxAxyϕ̄x + ψxAxyψ̄y

)

and, for a form F ,

ECF =

∫

CΛ
e
−SA(Λ)

F.

Then EC1 = 1. With C = (−∆ + m2)−1, our goal is to compute

lim
m2↓0

lim
Λ↑Z4

GΛ,ν(x, y) = lim
m2↓0

lim
Λ↑Z4

(1 + z0)
∂

∂σ

∂

∂σ̄

∣∣∣∣
0

ECe
−V0(Λ)

.

These integrals have much in common with standard Gaussian integrals. However, this is

not ordinary probability theory and and in general EC will be a Grassmann integral that

take values in a space of differential forms.

quad10



Convolution integrals

Write φ = (ϕ, ϕ̄), dφ = (dϕ, dϕ̄).

Recall that X ∼ N(0, σ2
1 + σ2

2) has the same distribution as X1 + X2 where

X1 ∼ N(0, σ2
1) and X2 ∼ N(0, σ2

2) are independent.

This finds expression for EC via the following fact:

EC2+C1
F = EC2

◦ EC1
θF,

where

(θF )(φ, ξ, ψ, η) = F (φ + ξ, ψ + η)

and EC1
integrates out ξ and η = 1√

2πi
dξ, leaving φ and ψ = 1√

2πi
dφ fixed. Then EC2

integrates out φ and ψ.

quad11



Finite-range decomposition of covariance

Theorem (Brydges, Guadagni, Mitter 2004). Let d > 2. Fix a large L and suppose

|Λ| = LNd. Let C = (−∆ + m2)−1. It is possible to write:

C =

N∑

j=1

Cj

with Cj positive definite,

Cj(x, y) = 0 if |x− y| ≥ 1

2
L

j

and, for j = 1, . . . , N − 1 and with [φ] = 1
2(d− 2) (so [φ] = 1 for d = 4),

|Cj(x, x)| ≤ O(L
−2[φ](j−1)

),

|∇α
x∇β

yCj(x, x)| ≤ O(L
−(2[φ]+|α|1+|β|1)(j−1)

).

quad12



The RG map

The covariance decomposition induces a field decomposition and allows the expectation to

be done iteratively:

φ =

N∑

j=1

ξj, dφ =

N∑

j=1

dξj, EC = ECN
◦ · · · ◦ EC2

◦ EC1
.

Write φj =
∑N

i=j+1 ξi, with φ0 = φ, φN = 0. Then φj = φj+1 + ξj+1. Let

Z0 = Z0(φ, dφ) = e
−V0(Λ)

,

and

Zj(φj, dφj) = ECj
· · ·EC1

Z0.

In particular, our goal is to compute

ZN = ECZ0 = ECe
−V0(Λ)

and we are led to study the RG map:

Zj+1 = ECj+1
Zj.

quad13



Relevant, marginal, irrelevant directions

Let d = 4. The covariance estimates suggest that ξj+1,x ≈ L−j[φ] = L−j and that this

field is approximately constant over distance Lj. Thus, for a block B of side Lj,

∑

x∈B

|ξj+1,x|p ≈ |B|L−jp
= L

j(4−p)
,

which is relevant for p < 4, marginal for p = 4, irrelevant for p > 4.

Taking symmetries and derivatives into account, the relevant and marginal monomials are:

τ, τ∆, τ
2
.

The role of d = 4: τ2 is relevant for d < 4 and irrelevant for d > 4:

∑

x∈B

|ξj+1,x|4 ≈ |B|L−j4[φ]
= L

j(4−d)
.

quad14



The map EC1 : Z0 7→ Z1

This map takes a function of φ = φ1 + ξ1 to a function of φ1 by integrating out ξ1.

Write Z0(x) = I0(x) = e−V0(x), and, for X ⊂ Λ, write

I0(X) =
∏

x∈X

I0(x) = e
−V0(X)

.

This is a function of φ.

Let V1 be a version of V0 with modified coupling constants (g1, ν1, z1) and regarded as a

function of φ1 (and dφ1). Let I1(x) = e−V1(x), this will be an approximation to Z1. Let

δI1,x(φ1, ξ1) = I0,x(φ1 + ξ1)− I1,x(φ1).

Then

Z1(Λ) = EC1
I0(Λ) = EC1

∏

x∈Λ

(
I1,x + δI1,x

)

= EC1

∑

X⊂Λ

I
Λ\X
1 δI

X
1 =

∑

X⊂Λ

I
Λ\X
1 EC1

δI
X
1 .

quad15



The I ◦K representation

We write this as

Z1(Λ) =
∑

X⊂Λ

I
Λ\X
1 EC1

δI
X
1 =

∑

U∈P1

I
Λ\U
1 K1(U),

where

K1(U) =
∑

X∈P0(U)

I
U\X
1 EC1

δI
X
1

with factorisation property.

L

quad16



The I ◦K representation

The formula

Z1(Λ) =
∑

X⊂Λ

I
Λ\X
1 EC1

δI
X
1 =

∑

U∈P1

I
Λ\U
1 K1(U),

is an instance of the following “circle product.”

Let Bj represent the blocks in a paving of Λ by blocks of side Lj, and let Pj denote the

set of finite unions of such blocks. Given even forms F, G defined on Pj, let

(F ◦G)(Λ) =
∑

U∈Pj

F (Λ \ U)G(U).

This defines an associative and commutative product. For X ∈ P0, let K0(X) = δX,∅.

Let K1 be defined as above and let I1(U) =
∏

x∈U I1,x for U ∈ P1. Then

Z0(Λ) = I0(Λ) = (I0 ◦K0)(Λ), Z1(Λ) = (I1 ◦K1)(Λ).

quad17



Flow of coupling constants

Theorem. Let d = 4 (d > 4 is simpler). There is a choice of

Vj,u = gjτ
2
u + νjτu + zjτ∆,u + λj(δu,0σϕ̄0 + δu,xσ̄ϕx) + qj

1

2
(δu,0 + δu,x)σσ̄

which determines Ij, and of Kj, such that

Zj(Λ) = (Ij ◦Kj)(Λ), Zj+1(Λ) = ECj+1
Zj(Λ) = (Ij+1 ◦Kj+1)(Λ),

and moreover

gj+1 = gj − cjg
2
j + rg,j

νj+1 = νj + 2gjCj+1(0, 0) + rµ,j

zj+1 = zj + rz,j

Kj+1 = rK,j,

with additional equations for λj and qj, such that the r’s are error terms within an

appropriately defined Banach space, and Lipschitz in (gj, νj, zj, Kj). Kj enters only in

the error terms and these are independent of λj, qj.

quad18



Fixed point theorem

We prove that there is a choice of initial conditions z0 (which occurs in c of c|x|−2) and

ν0 (which puts us at the critical point) such that the solution (gj, νj, zj, Kj)0≤j≤N , in

the limits N →∞ and m2 → 0, has limit

(gj, νj, zj, Kj) → (0, 0, 0, 0) “infrared asymptotic freedom.”

From this, estimates on KN , and the specific form qj ≈
∑j

i=1 Ci(0, x) → CZ4(0, x)

we obtain

Gνc(x) = lim
ν↓νc

(1 + z0) lim
N→∞

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

ZN(Λ)

= lim
m2↓0

(1 + z0) lim
N→∞

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

(IN(Λ) + KN(Λ))

= lim
m2↓0

(1 + z0) lim
N→∞

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

(e
−qNσσ̄

+ 0)

= lim
m2↓0

(1 + z0) lim
N→∞

qN

= c
′
(−∆Z4)

−1
(0, x) ∼ c|x|−2

.

quad19


