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Abstract
We prove |z|~? decay of the critical two-point function for the continuous-time
weakly self-avoiding walk on Z*. The walk two-point function is identified as the
two-point function of a supersymmetric field theory with quartic self-interaction,
and the field theory is then analysed using renormalisation group methods.
This is joint work with David Brydges.
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Self-avoiding walk

Discrete-time model: Let S, () be the set of w : {0,1,...,n} — Z% with:
w(0) =0, w(n) =z, |w(t+1) —w()| =1, and w(i) # w(y) for all i # j.
Let S,, = UxEZdSn(w).

Let ¢, () = |Sp(x)]. Let ¢, = 3. cn(x) = |S,|. Easy: /™ — p.
Declare all walks in &,, to be equally likely: each has probability cgl.

Two-point function: G.(z) = >.°% cn(x)2", radius of convergence z. = pu~".
Predicted asymptotic behaviour:

Cn~ Ap"n" Eylw(n)|]? ~ D, Gl (x) ~ c|a:|_(d_2+77),

Y

with universal critical exponents ~y, v, 1) obeying v = (2 — n)v.



A random SAW on Z? with 10° steps

(Figure by T. Kennedy)



Dimensions d > 4

Theorem. (Brydges, Spencer (1985); Hara, Slade (1992); Hara (2008)...)
For d > 5,

1

e A, Eufo(m)f* ~ D, Guw) ~ elal Y, =
mn

w(|nt]) = By.

Prediction is that upper critical dimension is 4, and asymptotic behaviour for Z* has log
corrections (Brézin, Le Guillou, Zinn-Justin 1973):

cn ~ Au'"(log n)1/4, E,|w(n)|* ~ Dn(log n)1/4, G..(z) ~ c|z| .
Also, for susceptibility and correlation length, as z 7 z.,

A'|log(1 — 2/z)[/* _ D'llog(1 — 2/z)|/*

X ~ I g(e) et
where
() =3 e, lim ~ log G (ne)
X Z) = CnZ, = — 111m — Og ~\ne .
2. () Atk !



Continuous-time weakly self-avoiding walk

This is a modification of the SAW model. We are interested in dimensions d > 4. Let Ej
denote the expectation for continuous-time nearest-neighbour simple random walk X (%)
on Z< started from 0 (with Exp(1) holding times), and let

T
Lu,T — / 5u,X(s)dS7 I(O7T) — Z Li,T'
0

uEZd

Then rort
I1(0,T) = / / 5X(s),X(t)dS dt.
0 0

Let g € (0, c0). The two-point function is defined to be
Gg’,/(ZU) — / E, (e—gl(O,T) 5X(T),a:) e—deT
0

(role of z now played by e ). A subadditivity argument shows that the susceptibility
Xg(V) = > Lezd Ggo(x) is finite if v > v.(g) and is infinite if v < v.(g).



Main result

Theorem (Brydges—Slade 2010). Let d > 4. There exists gg such that for 0 < g < gy,

C 1
Ggue(x) = P + o0 2iz)

Outlook: The method of proof (RG) has the potential to (but has not yet fully achieved):

e prove logarithmic corrections for susceptibility and correlation length for d = 4
e prove same result also with small nearest-neighbour attraction (Bauerschmidt)

e prove same result for a particular spread-out model of discrete-time strictly self-avoiding
walk with exponentially decaying step weights
(explicitly the weight of a step is (1 — a *A) *(z, y) with 0 < a < 1)

Related results:

e weakly SAW on 4-dimensional hierarchical lattice: Brydges, Evans, Imbrie (1992);
Brydges, Imbrie (2003); and with different RG approach Ohno, Hara (2010+). The
hierarchical lattice is a replacement of Z* by a recursive structure which is well-suited
to the RG.

e weakly self-avoiding Lévy walk on Z°® (o = 2t€, d. = 3+¢€): Mitter, Scoppola (2008).




Finite-volume approximation

Now we fix g > 0 and usually drop it from the notation.

Standard methods (Simon-Lieb inequality) show that

Gu.(x) = lim lim Gu . (x),
vlve ATZd

where A = Zd/RZ is a torus approximating Z¢ and
GA,V(CU) :/ E(j)x <€_gIA[O’T]5X(T)’x) G_VTdT,
0

with Eé\ the expectation for the continuous-time simple random walk on A,
2
and IA[0,T] =3 ca Ly 7.

Thus we can work in finite volume, and slightly subcritical, as long as we maintain sufficient
uniformity to take the limits.



Functional integral representation

Let o : A — C. Let ¢, = u, — v, denote the complex conjugate of ¢, = u, + tv,.
Let A denote the discrete Laplacian on A, ie., Ay =3\ _1(y — o). Let

1 — 1
dQOma "px — —d@ma
271 V2

_ 1
Te = PuBr + Ve ANy = u’ + v + —duyAdvy,
T

Yy =

1 _ _

where A is the standard anti-commutative wedge product. Then

2
Gau(z) = /A6_ZuEA(TAau+gTu+VT“)80080x.
C

RHS is the two-point function of a supersymmetric field theory with boson field (¢, @)
and fermion field (¢, v).

(Parisi, Sourlas 1980; McKane 1980; Luttinger 1983; Le Jan 1987;
Brydges, Evans, Imbrie 1992; Brydges, Imbrie 2003; Brydges, Imbrie, Slade 2009).



Meaning of the integral

The definition of an integral such as
2
Gap(z) = /AeZUEA(TA’U+QTU+VTU)S509%
C

is as follows:
e expand entire integrand in power series about degree-zero part (finite sum), e.g.,

eV — e@x@a:-i-@bxi;x — 690:1385:6 (1 4 waﬂ;x) :
e keep only terms with one factor dy, and one dg, for each x € A,
® write v, = U, + 1vV,, Pr = U, — 1V, and similarly for differentials,

e then use anti-commutativity to rearrange the differentials to || _, du.dv,,
e and finally perform Lebesgue integral over R2IAL

Such integrals have nice properties. Let S(A) = > _,\(7a. + m?*7,). Then:

/ e_S(A)F(T) = F'(0), / e "W Gop, = (—A +m*) (0, z).

Now we study the integral and forget about the walks.



Change of variables

The change of variable ¢, — /1 4+ zgp,, with zg > —1, gives

2_2
GA,I/('CU) — (1 + ZO) /A e_zu ((1+Z0)7—A7u+g(1+zm Tu+V(1+ZO)Tu) ()50()0513
C

Introducing an external field o € C, let

S(A) = Z (Tau + m27u>7

UEA

VO(A) — Z (907_5 + VoTu + ZOTA,u) +O-950 + 6-901137

ucA

Then

go = (1 + z0)2g, vo = (1 4+ z0)ve, m? = (14 z0)(v — ve).
o 0
Gav(z,y) = (1 + 20) 7=%=

/ o~ S(M)=Vo(A)
0o 07 |

Want to show that Jzg such that first part of V) is a small perturbation and use

... 00
lim lim ———
m210 A1zd 00 OF

/ e " WemrP00vr — (_A)T1(0, 2) ~ const|z| Y.
0



Gaussian “expectation”

For a positive definite A X A matrix C, and A = C~1 et

Sa(8) = 3 (eny@e + PeAuyd,)

r,yeA

and, for a form F,

EoF = e SAM) p
CA

Then Ecl = 1. With C = (—A 4+ m?) ™!, our goal is to compute

o — V(A
lim lim G ,(x, = lim lim (1 4+ z9) ——| Ece 0(A).
m2]0 A1Z4 A, Y) m210 ATZ4( 0) 0o 07 | “

These integrals have much in common with standard Gaussian integrals. However, this is
not ordinary probability theory and and in general Ec will be a Grassmann integral that
take values in a space of differential forms.



Convolution integrals

Write ¢ = (¢, @), d = (dp, dp).

Recall that X ~ N (0, 07 + 03) has the same distribution as X; + X5 where
X; ~ N(0,0?) and Xo ~ N(0,03) are independent.

This finds expression for [E¢- via the following fact:
E02_|_01F = ]EC2 O EcleF,

where

(OF)(¢,&,¢,m) = F(o+ &9 +n)

and E¢, integrates out £ and n = ﬁdﬁ, leaving ¢ and ¢ = \/%dgb fixed. Then Ec,
integrates out ¢ and .



Finite-range decomposition of covariance

Theorem (Brydges, Guadagni, Mitter 2004). Let d > 2. Fix a large L and suppose
IA| = LY Let C = (—A 4+ m?) ™. Itis possible to write:

c=Y ¢

N
—1

J

with C; positive definite,

1 .
Cj(z,y) =0 if Iw—ylziL"

and, for j = 1,..., N — 1 and with [¢] = 3(d — 2) (so [¢] = 1 for d = 4),
Cj(w, 2)| < O(LTHVTY),

’vgvgcj(m, z)| < O(L_(2[¢]+|a|1+|5|1)(j_1)).



The RG map

The covariance decomposition induces a field decomposition and allows the expectation to
be done iteratively:

N N
gbzzgj, dgb:Zdﬁj, EO:ECNO"'OECQO]ECl-
Jj=1 J=1

Write ¢p; = >°. 1 &, with ¢o = ¢, ¢y = 0. Then ¢; = ¢j11 + &j41. Let
Zo = Zo(, dgp) = e 00,

and
Zj(¢j7 d¢j) — ECj T ]EC’le-
In particular, our goal is to compute

Zn = EcZy = Ege™ 0W
and we are led to study the RG map:

Zj =Ec,, Z;.



Relevant, marginal, irrelevant directions

Let d = 4. The covariance estimates suggest that ;11 , = L7l = 79 and that this
field is approximately constant over distance L’. Thus, for a block B of side L7,

Z [FINLEN |B|L_jp _ Lj(4—P),
xeB

which is relevant for p < 4, marginal for p = 4, irrelevant for p > 4.

Taking symmetries and derivatives into account, the relevant and marginal monomials are:

2
T, TA T .

The role of d = 4: 72 is relevant for d < 4 and irrelevant for d > 4:

> l& ' & Bl = L1070,
reB



The map E¢, : Zy — 24

This map takes a function of ¢ = ¢1 + &1 to a function of ¢ by integrating out &;.

Write Zo(x) = Ip(x) = e~ Vo) and, for X C A, write

Io(X) = [] Io(z) = e "0,
reX

This is a function of ¢.

Let V1 be a version of V) with modified coupling constants (g1, 11, 21) and regarded as a
function of ¢ (and d¢1). Let I1(z) = e ¥1(®) this will be an approximation to Z;. Let

011 ,x(¢1,&1) = Too(p1 + &1) — T12(1).

Then

Z1(A) = Ec Io(A) = B¢, || (11 + 611.2)

reA

=Ec, > IV =Y IMYEe, 65t
XCA XCA



The I o K representation
We write this as

Zi(A) =Y IV Ee 6 = Y 1N K(U),
XCA vePq

where
Ki(U)= Y I/YEq6I
XePy(U)
with factorisation property.




The I o K representation

The formula

Zi(0) = Y L'V Eq 8L = Y LNUEW(U),
XCA Uerq

is an instance of the following “circle product.”

Let BB; represent the blocks in a paving of A by blocks of side L7, and let ‘P; denote the
set of finite unions of such blocks. Given even forms F', G defined on P;, let

(FoG)(A) =) F(A\U)G).
UEP;

This defines an associative and commutative product. For X € Py, let Ko(X) = dx 5.

Let K be defined as above and let I1(U) =[] .y 11,2 for U € P1. Then

ZO(A) = Io(A) = (IO O Ko)(A), Zl(A) = (I1 O Kl)(A)



Flow of coupling constants

Theorem. Let d = 4 (d > 4 is simpler). There is a choice of

1
‘/},u — ngj + ViTy + ZiTA u + >\j(6u,00§50 + 5u,a:5'90x) + Qj§(5u,0 + 5u,a:)0-5-

which determines I;, and of K, such that
Zj(A) = (Ij o K;)(A),  Zjp(A) = Ec;  Z;(A) = (L1 0 Kjp1)(A),
and moreover
git1 = g5 — ¢;9; + Ty
vit1 = vj + 29;C511(0,0) + 7y
Zj+1 = 25+ Tz
Kj+1 =Tk,

with additional equations for A; and q;, such that the r's are error terms within an
appropriately defined Banach space, and Lipschitz in (g, v;, zj, K;). K enters only in
the error terms and these are independent of A;, g;.



Fixed point theorem

We prove that there is a choice of initial conditions zy (which occurs in ¢ of ¢|z| ™) and
vy (which puts us at the critical point) such that the solution (g;, v, zj, Kj)o<j<n, in
the limits N — oo and m? — 0, has limit

(9,v5, 25, K;) — (0,0,0,0) “infrared asymptotic freedom.”

From this, estimates on K, and the specific form ¢; ~ 3:1 Ci(0,x) — C,4(0, )
we obtain

0 0O
lim (1 li ———| Zn(A
Hml+20) Jim 5 55 . ~(A)

| K
— Tln12r?0(1 + z()) ]\lfl_f)réo (9—0'8—5‘ ) (IN(A> + KN(A)>

o o _
_ . . o —qNO'O'
B 7}5?0(1 T20) M 5565 0 (e +0)

GVC(:’U)

= U o) Ji o

= (=A,1) (0, z) ~ c|z| >



