CRITICAL SLOWDOWN FOR THE ISING MODEL ON THE 2D LATTICE

Allan Sly Microsoft Research

Joint work w. Eyal Lubetzky

Ising model

- Underlying geometry: finite graph G=(V,E).
- Set of possible configurations: $\Omega = \{\pm 1\}^V$
- Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*

$$\mu(\sigma) = \frac{1}{Z(\beta)} \exp \beta \sum_{xy \in E} \sigma(x) \sigma(y)$$

Phase Transition

Glauber dynamics for Ising

- One of the most commonly used MC samplers for the Gibbs distribution:
 - Update sites via iid Poisson(1) clocks
 - Each update replaces a spin at $u \in V$ by a new one $\sim \mu$ conditioned on $V \setminus \{u\}$ (heat-bath version).
- \blacksquare Ergodic reversible MC with stationary measure μ .

■ How fast does it converge to equilibrium?

Rate of convergence to equilibrium

- Spectral gap in the spectrum of the generator: gap = smallest positive eigenvalue the of heat-kernel H.
 - Governs convergence in $L^2(\mu)$.
- Mixing time : standard measure of convergence:
 - The L^1 (total-variation) mixing time within ε is

$$t_{\text{mix}}(\varepsilon) = \inf_{\sigma} t : \max_{\sigma} \| H_t \sigma, -\mu \|_{\text{TV}} \le \varepsilon$$

where H is the heat-kernel.

General (believed) picture for Glauber dynamics

- Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature: $(\beta > \beta_c)$ gap⁻¹ and $t_{\rm mix}$ are *exponential* in the surface area.
- Critical temperature: $(\beta = \beta_c)$ gap⁻¹ and t_{mix} are *polynomial* in the surface area.
- High temperature: $(\beta < \beta_c)$
 - 1. Rapid mixing: gap⁻¹ = O(1) and $t_{\text{mix}} \approx \log n$
 - 2. Mixing occurs abruptly (*cutoff* phenomenon).

Mixing time for Ising on 2D lattices

Fast mixing for high temperatures:

- [Aizenman, Holley '84]
- [Dobrushin, Shlosman '87]
- [Holley, Stroock '87, '89]
- [Holley '91]
- [Stroock, Zegarlinski '92a, '92b, '92c]
- [Zegarlinski '90, '92]
- [Lu, Yau '93]
- [Martinelli, Olivieri '94a, '94b]
- [Martinelli, Olivieri, Schonmann '94]

Slow Mixing for low temperatures:

- [Schonmann '87],
- [Chayes, Chayes, Schonmann'87],
- [Martinelli '94],
- Cesi, Guadagni, Martinelli, Schonmann'96].

Mixing on the square lattice

- \blacksquare High temperature: gap⁻¹ is uniformly bounded, O(log n) mixing for all $\beta < \beta_c = \frac{1}{2} \log(1 + \sqrt{2})$.

 Proposition of the propositi
 - - Recently confirmed [Lubetzky, S.]: $t_{\text{mix}} = \frac{1+o(1)}{\lambda} \log n$
 - Low temperature: for $\beta > \beta$ both gap⁻¹ and the mixing time are $\exp[(c(\beta)+o(1))n]$.
 - \blacksquare Remains to verify power-law at critical $\beta = \beta$...

Glauber dynamics at criticality

- Polynomial lower bound on gap⁻¹ via the polynomial decay of spin-spin correlation whose asymptotics were established by [Onsager '44] ([cf. Holley '91]).
- Numerical experiments: \exists universal exponent of \sim 2.17
 - [Ito '93], [Wang, Hatano, Suzuki '95], [Grassberger '95],
 [Nightingale, Blöte '96], [Wang, Hu '97],...
- lacktriangle Compared to conjectured power-law behavior of gap^{-1} :
- ? No known *sub-exponential* upper bounds ...
- Only geometries with proved power-law for critical Ising:
 - Mean-field [Ding, Lubetzky, Peres '09] (Curie-Weiss model)
 - Regular tree [Ding, Lubetzky, Peres '10] (Bethe lattice).

Scaling limit of critical Ising

- Understanding of the limit developed emerged with the advent of Schramm-Loewner evolution.
- Recent breakthrough results due to Smirnov describe full scaling limit of cluster interfaces as CLE₃.

- We use Russo-Seymour-Welsh type estimates for FK-Ising with arbitrary b.c.
 - [Chelkak, Smirnov '09]
 - [Camia, Newman '09]
 - Duminil-Copin, Hongler, Nolin '09]

Main result: power-law at criticality

• THEOREM [Lubetzky, S.]: Critical slowdown verified in \mathbb{Z}^2 :

Consider the critical Ising model on a finite box $\Lambda \subset \mathbb{Z}^2$ of side-length n. There exists an absolute constant C such that the spectral-gap of the Glauber dynamics under an arbitrary fixed boundary condition τ is bounded by $(\operatorname{gap}^{\tau}_{\Lambda})^{-1} \leq n^{C}$.

COROLLARY:

Polynomial L^1 (total-variation) mixing time under any fixed boundary condition.

Further bounds on critical gap

- First polynomial upper bound for perfect simulation.
- A new lower bound (previously known lower bound was nearly linear due to [Holley '91]).

THEOREM

The spectral-gap of the Glauber dynamics for critical Ising on a finite box $\Lambda \subset \mathbb{Z}^2$ of side-length n with arbitrary boundary condition τ satisfies $(\operatorname{gap}^{\tau}_{\Lambda})^{-1} \geq c n^{7/4}$

Main techniques

- Multi-scale estimates of the spectral gap.
- Approach for analyzing high temperature dynamics:
 - Control rate of mixing using exponential decay of correlation with distance.
- At criticality there are long range correlations foiling this approach.
- Alternative approach:
 - Use RSW estimates to get a spatial-mixing result, combine it with classical ingredients from MC analysis.
 - Analyze effect of an entire face of the boundary on spins
 (just enough spatial mixing to push this program through...)

Key spatial-mixing result

• THEOREM

Let $\Lambda=1, r\times 1, r'$ for some integers r,r' satisfying $r'/r\geq\alpha>0$ with α fixed and let $\Lambda_{\rm T}=1, r\times\rho r, r'$ for some ρ satisfying $\alpha\leq\rho< r'/r$. Let ξ,η be two BC's on Λ that differ only on the bottom boundary $1, r\times\{0\}$. Then $\left\|\mu_{\Lambda}^{\xi}(\sigma(\Lambda_{\rm T})\in\cdot)-\mu_{\Lambda}^{\eta}(\sigma(\Lambda_{\rm T})\in\cdot)\right\|_{\rm TV}\leq\exp(-\delta\rho),$ Where $\delta>0$ is a constant that depends only on α .

 Proof uses the RSW-estimate for critical crossing probabilities in a wired FK-Ising rectangle.

Single site vs. Block dynamics

- Classical tool in the analysis of Glauber dynamics:
 - Cover the sites using blocks $\mathcal{B} = \{B_i\}$.
 - Each block updates via a rate-1 Poisson clock.
 - Updates are \sim stationary given the rest of the system.
- PROPOSITION (see, e.g. [Martinelli '97]):

$$(\operatorname{gap}_{\Lambda}^{\tau})^{-1} \leq \max N_{x} (\operatorname{gap}_{\mathcal{B}}^{\tau})^{-1} \max_{i,\varphi} (\operatorname{gap}_{B_{i}}^{\varphi})^{-1}$$

where $(\operatorname{gap}_{\mathcal{B}}^{\tau})^{-1}$ is the gap of the block-dynamics and $N_x=\#\{i:B_i\ni x\}$

Upper bound via spatial-mixing

Consider the following choice of blocks:

$$\Lambda_1 = 1, r \times \frac{1}{3}r', r', \Lambda_2 = 1, r \times 1, \frac{2}{3}r'$$

■ The two blocks have a vertical overlap of height r'/3.

■ As a result of the spatial-mixing theorem: For any boundary condition ξ on Λ we have

$$(\operatorname{gap}_{\mathcal{B}}^{\xi})^{-1} = O(1)$$

Upper bound via spatial-mixing (ctd.)

■ The result is completed by induction on the block sizes.

- Each application decreases the volume of the blocks by a factor of $\frac{2}{3}$ at the cost of an absolute multiplicative constant in the gap.
- Iterating $2\log_{3/2}n$ steps completes the proof.

Intuition: spatial mixing proof

- Compare the all plus b.c with b.c with plus on 3 sides, minus on the bottom
 - Ising cluster adjacent to the bottom minus boundary converges to SLE_3 which does not climb past height ρr with positive probability.
 - In that case, the measures can be coupled.
- Actual setting:
 - For induction we need the result for arbitrary boundary conditions.

Solution: reduce to FK Ising

Ising and its FK counterpart are coupled by the Edwards-Sokal coupling:

• Under an arbitrary boundary condition ξ one can go from Ising to FK and back with conditioned on some event A_{ξ} which may have exponentially small probability...

Completing the proof

- $\hfill \Box$ Control crossing probabilities in the FK-Ising model conditioned on the event A_ξ .
- Utilize the recent RSW-type estimates with the FKG for the FK-model to derive the required coupling.
- Return to Ising via the Edwards-Sokal method to complete the proof.

Open problems

- Calculate the precise (universal) critical dynamical exponent.
- Establish power-law behavior on the lattice in 3 dimensions.

THANK YOU.

