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 Underlying geometry: finite graph G=(V,E ) . 

 Set of possible configurations: 
 

 Probability of a configuration   
given by the Gibbs distribution 
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 One of the most commonly used MC samplers for 
the Gibbs distribution: 

 Update sites via iid Poisson(1) clocks 

 Each update replaces a spin at u V  by  

a new one   conditioned on V u 
(heat-bath version). 

 Ergodic reversible MC with stationary measure . 

 

 How fast does it converge to equilibrium? 
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 Spectral gap in the spectrum of the generator: 
          gap =  smallest positive eigenvalue  
   the of heat-kernel H.  

 Governs convergence in L2() . 

 Mixing time : standard measure of convergence: 
 The L1 (total-variation) mixing time within  is 

 
 
where H is the heat-kernel. 
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 Setting: Ising model on the lattice (/n)d . 
Belief: For some critical inverse-temperature  c  : 

 Low temperature:   (  > c ) 
gap-1 and tmix are exponential in the surface area. 

 Critical temperature:   (  = c ) 
gap-1 and tmix are polynomial in the surface area. 

 High temperature:   (  < c ) 

1.  Rapid mixing: gap–1 = O(1) and tmix  log n 

2. Mixing occurs abruptly (cutoff phenomenon). 
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 Fast mixing for high temperatures: 
 [Aizenman, Holley ’84] 

 [Dobrushin, Shlosman ’87] 

 [Holley, Stroock ’87, ’89] 

 [Holley ’91]  

 [Stroock, Zegarlinski ’92a, ’92b, ’92c] 

 [Zegarlinski ’90, ’92] 

 [Lu, Yau ’93] 

 [Martinelli, Olivieri ’94a, ‘94b] 

 [Martinelli, Olivieri, Schonmann ’94] 

 Slow Mixing for low temperatures: 
 [Schonmann ’87],  

 [Chayes, Chayes, Schonmann’87], 

 [Martinelli ’94],  

 [Cesi, Guadagni, Martinelli, Schonmann’96]. 
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 High temperature: gap–1 is uniformly bounded, 

O(log n) mixing for all   < c = 1

2
 log(1+ 2) . 

 Dynamics conjectured to exhibit cutoff  [Peres’04]. 

 Recently confirmed [Lubetzky, S.]:  
 

 

 Low temperature: for  > c  both gap–1 and the 
mixing time are exp[(c()+o(1))n]. 
 

 

 Remains to verify power-law at critical  = c  … 

8 

1 (1)

mix
logot n



 Polynomial lower bound on gap–1  via the polynomial 

decay of spin-spin correlation whose asymptotics were 
established by [Onsager ’44] ([cf. Holley ’91]). 

 Numerical experiments:  universal exponent of 2.17  

 [Ito ’93], [Wang, Hatano, Suzuki ’95], [Grassberger ’95], 
[Nightingale, Blöte ’96], [Wang, Hu ’97],… 

 Compared to conjectured power-law behavior of gap–1 : 
No known sub-exponential upper bounds … 

 Only geometries with proved power-law for critical Ising: 
 Mean-field [Ding, Lubetzky, Peres ’09] (Curie-Weiss model) 

 Regular tree [Ding, Lubetzky, Peres ’10] (Bethe lattice). 
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 Understanding of the limit developed emerged 
with the advent of Schramm–Loewner evolution. 

 

 Recent breakthrough results due to  
Smirnov describe full scaling limit 
of cluster interfaces as CLE3. 

 

 We use Russo-Seymour-Welsh type estimates for 
FK-Ising with arbitrary b.c. 

 [Chelkak, Smirnov ‘09] 

 [Camia, Newman ’09] 

 [Duminil-Copin, Hongler, Nolin ’09] 
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 THEOREM [Lubetzky, S.]: Critical slowdown verified in 2 : 

 

 

 

 

 

 COROLLARY:  
Polynomial L1 (total-variation) mixing time under 

any fixed boundary condition. 
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Consider the critical Ising model on a finite box   2 of 
side-length n. There exists an absolute constant C such that 

the spectral-gap of the Glauber dynamics under an arbitrary 
fixed boundary condition  is bounded by 

1(gap ) .Cn



 First polynomial upper bound for perfect simulation. 

 

 A new lower bound (previously known lower 
bound was nearly linear due to [Holley ’91]). 

 

THEOREM 
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The spectral-gap of the Glauber dynamics for critical Ising 

on a finite box   2 of side-length n with arbitrary 

boundary condition  satisfies  1 7/4(gap ) cn



 Multi-scale estimates of the spectral gap. 

 Approach for analyzing high temperature dynamics: 
 Control rate of mixing using exponential decay of correlation 

with distance. 

 At criticality there are long range correlations foiling 
this approach. 

 Alternative approach: 
 Use RSW estimates to get a spatial-mixing result, combine it 

with classical ingredients from MC analysis. 

 Analyze effect of an entire face of the boundary on spins  
(just enough spatial mixing to push this program through…)  
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 THEOREM 

 

 

 

 
 

 

 Proof uses the RSW-estimate for critical crossing 
probabilities in a wired FK-Ising rectangle. 
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Let                                   for some integers r,r  satisfying  
r /r   > 0 with  fixed and let                                     for 
some  satisfying    < r /r . Let ,  be two BC’s on  
that differ only on the bottom boundary                   . Then  

 
Where  > 0 is a constant that depends only on  . 
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 Classical tool in the analysis of Glauber dynamics: 
 Cover the sites using blocks  = {Bi}. 

 Each block updates via a rate-1 Poisson clock. 

 Updates are  stationary given the rest of the system. 
 

 PROPOSITION (see, e.g. [Martinelli ’97]):  
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 Consider the following choice of blocks: 
 
 
 

 The two blocks have a vertical  
overlap of height 𝑟′/3. 

 

 As a result of the spatial-mixing theorem:  
For any boundary condition  on  we have  
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 The result is completed by induction on the 
block sizes. 

 

 Each application decreases the volume of the 
blocks by a factor of 2

3
 at the cost of an absolute 

multiplicative constant in the gap. 

 

 Iterating 2log3/2n steps completes the proof. 
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 Compare the all plus b.c with b.c with plus on 
3 sides, minus on the bottom 

 Ising cluster adjacent to the bottom minus  
boundary converges to SLE3  which  
does not climb past height r with  

positive probability. 

 In that case, the measures can be coupled. 

 Actual setting: 

 For induction we need the result for                      
arbitrary boundary conditions. 
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 Ising and its FK counterpart are coupled by the 
Edwards-Sokal coupling: 

 

 

 
 

 
 Under an arbitrary boundary condition  one can go from 

Ising to FK and back with conditioned on some event A 

which may have exponentially small probability… 
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 Control crossing probabilities in the FK-Ising 
model conditioned on the event A  . 

 Utilize the recent  
RSW-type estimates  
with the FKG for the 
FK-model  to derive 
the required coupling. 

 Return to Ising via the 
Edwards-Sokal method 
to complete the proof. 
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 Calculate the precise (universal) critical 
dynamical exponent. 

 Establish power-law behavior on the 
lattice in 3 dimensions. 
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