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 Underlying geometry: finite graph G=(V,E ) . 

 Set of possible configurations: 
 

 Probability of a configuration   
given by the Gibbs distribution 
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High Critical Low 



 One of the most commonly used MC samplers for 
the Gibbs distribution: 

 Update sites via iid Poisson(1) clocks 

 Each update replaces a spin at u V  by  

a new one   conditioned on V u 
(heat-bath version). 

 Ergodic reversible MC with stationary measure . 

 

 How fast does it converge to equilibrium? 
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 Spectral gap in the spectrum of the generator: 
          gap =  smallest positive eigenvalue  
   the of heat-kernel H.  

 Governs convergence in L2() . 

 Mixing time : standard measure of convergence: 
 The L1 (total-variation) mixing time within  is 

 
 
where H is the heat-kernel. 
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 Setting: Ising model on the lattice (/n)d . 
Belief: For some critical inverse-temperature  c  : 

 Low temperature:   (  > c ) 
gap-1 and tmix are exponential in the surface area. 

 Critical temperature:   (  = c ) 
gap-1 and tmix are polynomial in the surface area. 

 High temperature:   (  < c ) 

1.  Rapid mixing: gap–1 = O(1) and tmix  log n 

2. Mixing occurs abruptly (cutoff phenomenon). 
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 Fast mixing for high temperatures: 
 [Aizenman, Holley ’84] 

 [Dobrushin, Shlosman ’87] 

 [Holley, Stroock ’87, ’89] 

 [Holley ’91]  

 [Stroock, Zegarlinski ’92a, ’92b, ’92c] 

 [Zegarlinski ’90, ’92] 

 [Lu, Yau ’93] 

 [Martinelli, Olivieri ’94a, ‘94b] 

 [Martinelli, Olivieri, Schonmann ’94] 

 Slow Mixing for low temperatures: 
 [Schonmann ’87],  

 [Chayes, Chayes, Schonmann’87], 

 [Martinelli ’94],  

 [Cesi, Guadagni, Martinelli, Schonmann’96]. 
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 High temperature: gap–1 is uniformly bounded, 

O(log n) mixing for all   < c = 1

2
 log(1+ 2) . 

 Dynamics conjectured to exhibit cutoff  [Peres’04]. 

 Recently confirmed [Lubetzky, S.]:  
 

 

 Low temperature: for  > c  both gap–1 and the 
mixing time are exp[(c()+o(1))n]. 
 

 

 Remains to verify power-law at critical  = c  … 
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 Polynomial lower bound on gap–1  via the polynomial 

decay of spin-spin correlation whose asymptotics were 
established by [Onsager ’44] ([cf. Holley ’91]). 

 Numerical experiments:  universal exponent of 2.17  

 [Ito ’93], [Wang, Hatano, Suzuki ’95], [Grassberger ’95], 
[Nightingale, Blöte ’96], [Wang, Hu ’97],… 

 Compared to conjectured power-law behavior of gap–1 : 
No known sub-exponential upper bounds … 

 Only geometries with proved power-law for critical Ising: 
 Mean-field [Ding, Lubetzky, Peres ’09] (Curie-Weiss model) 

 Regular tree [Ding, Lubetzky, Peres ’10] (Bethe lattice). 
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 Understanding of the limit developed emerged 
with the advent of Schramm–Loewner evolution. 

 

 Recent breakthrough results due to  
Smirnov describe full scaling limit 
of cluster interfaces as CLE3. 

 

 We use Russo-Seymour-Welsh type estimates for 
FK-Ising with arbitrary b.c. 

 [Chelkak, Smirnov ‘09] 

 [Camia, Newman ’09] 

 [Duminil-Copin, Hongler, Nolin ’09] 
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 THEOREM [Lubetzky, S.]: Critical slowdown verified in 2 : 

 

 

 

 

 

 COROLLARY:  
Polynomial L1 (total-variation) mixing time under 

any fixed boundary condition. 
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Consider the critical Ising model on a finite box   2 of 
side-length n. There exists an absolute constant C such that 

the spectral-gap of the Glauber dynamics under an arbitrary 
fixed boundary condition  is bounded by 

1(gap ) .Cn



 First polynomial upper bound for perfect simulation. 

 

 A new lower bound (previously known lower 
bound was nearly linear due to [Holley ’91]). 

 

THEOREM 
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The spectral-gap of the Glauber dynamics for critical Ising 

on a finite box   2 of side-length n with arbitrary 

boundary condition  satisfies  1 7/4(gap ) cn



 Multi-scale estimates of the spectral gap. 

 Approach for analyzing high temperature dynamics: 
 Control rate of mixing using exponential decay of correlation 

with distance. 

 At criticality there are long range correlations foiling 
this approach. 

 Alternative approach: 
 Use RSW estimates to get a spatial-mixing result, combine it 

with classical ingredients from MC analysis. 

 Analyze effect of an entire face of the boundary on spins  
(just enough spatial mixing to push this program through…)  

 
13 



 THEOREM 

 

 

 

 
 

 

 Proof uses the RSW-estimate for critical crossing 
probabilities in a wired FK-Ising rectangle. 
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Let                                   for some integers r,r  satisfying  
r /r   > 0 with  fixed and let                                     for 
some  satisfying    < r /r . Let ,  be two BC’s on  
that differ only on the bottom boundary                   . Then  

 
Where  > 0 is a constant that depends only on  . 
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 Classical tool in the analysis of Glauber dynamics: 
 Cover the sites using blocks  = {Bi}. 

 Each block updates via a rate-1 Poisson clock. 

 Updates are  stationary given the rest of the system. 
 

 PROPOSITION (see, e.g. [Martinelli ’97]):  
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 Consider the following choice of blocks: 
 
 
 

 The two blocks have a vertical  
overlap of height 𝑟′/3. 

 

 As a result of the spatial-mixing theorem:  
For any boundary condition  on  we have  

16 

1

2

1
3
2
3

,1,

1, 1,

,r

r

r r

r

1(gap ) (1)O

1 

2 



 The result is completed by induction on the 
block sizes. 

 

 Each application decreases the volume of the 
blocks by a factor of 2

3
 at the cost of an absolute 

multiplicative constant in the gap. 

 

 Iterating 2log3/2n steps completes the proof. 
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 Compare the all plus b.c with b.c with plus on 
3 sides, minus on the bottom 

 Ising cluster adjacent to the bottom minus  
boundary converges to SLE3  which  
does not climb past height r with  

positive probability. 

 In that case, the measures can be coupled. 

 Actual setting: 

 For induction we need the result for                      
arbitrary boundary conditions. 
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 Ising and its FK counterpart are coupled by the 
Edwards-Sokal coupling: 

 

 

 
 

 
 Under an arbitrary boundary condition  one can go from 

Ising to FK and back with conditioned on some event A 

which may have exponentially small probability… 
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 Control crossing probabilities in the FK-Ising 
model conditioned on the event A  . 

 Utilize the recent  
RSW-type estimates  
with the FKG for the 
FK-model  to derive 
the required coupling. 

 Return to Ising via the 
Edwards-Sokal method 
to complete the proof. 
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 Calculate the precise (universal) critical 
dynamical exponent. 

 Establish power-law behavior on the 
lattice in 3 dimensions. 
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