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Example |: Dispersion in Heterogeneous Media
Bl =

DT x >0
D(x):{ D~  z<O.

c = concentration of injected dye

Fickean Dispersion Model:

oc 1 oc




Experimentally Observed Asymmetry

Figure 2. Experiments showing differences in
100 ~ breakthrough behavior for coarse to fine (C-F)

90 04 mignin 0.3 ml/min and fine-to-coarse (F-C) directions of flow at
60 ] 0 mlimin ﬂow rates of-0.3, 0.4, and 1 mL/min. The tracer
] ' input pulse times are 5, 3.75, and 1.5 min, and
70 & the sample collection intervals are 5, 3.75, and
> 60 ﬁ 1.5 min, respectively. Solid symbols represent
E 5 § 'é C-F direction, and open symbols represent F-C
0 40 S 3 v % direction. Two experiments in each direction
] g Q % were measured for the 0.3 and 0.4 mL/min flow
307 3 3, rates. Each point represents an average of three
20 - 3 1 o measurements. The vertical axis shows
0] .4 TR electrical conductivity (EC), which is directly
. I‘-‘.I.- . I“ - proportional to concentration.
50 100 150 200 250 300 350 400 450 500 550 600 650 B. Berkowitz, A. Cortis, | Dror and
me (m H Scher - 2009., B.Wood -2010.

PROBLEM: Explain the asymmetry from the Fickian Dispersion Model ?
| |
- D™ / D* |
Q:Assume that D- < D+. Which is more likely removed
first,a particle injected at -l and removed at |, or a
particle injected at | and removed at -| ?




Example 2: Physical
Oceanography -
Upwelling of the Malvinas
Current off the coast of

Argentina

Highlighted region points to

flotilla of “fishing factories’

Concentration of ships on
the continental break where

upwelling occurs.

Acknowledgment: Ricardo Matano - COAS - Oregon State University




Arrested Topographic Wave Model

Quasi geostrophic balance - Hydrostatic Approximation.
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n(x,y) = free surface, h(x) = ocean depth

Eliminate velocity in terms of free surface
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Arrested Topographic Wave Model

Transport = velocity times height of water column
Height of water column = h(x) 4+ n(x,y)

st = slope of continental shelf (-)and slope (+)
2r - 2r
Dt = st D™ = s (Shelf Break Interface)

Arrested Topographic Wave Model:
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Example 3: FENDERS BLUE BUTTERFLY

Fender’s Blue

Ecology, 82(7), 2001, pp. 1879-1892
© 2001 by the Ecological Society of America

EDGE-MEDIATED DISPERSAL BEHAVIOR IN A PRAIRIE BUTTERFLY

CHERYL B. ScHuLTZ! AND ELIZABETH E. CRONE?

""Given past research on the Fender’s blue and the
potential to investigate response to patch boundaries
in this system, we ask two central questions. First, how
do organisms respond to habitat edges? Second, what
are the implications of this behavior for residence time ?”




INTERFACES AND PROBABILITY

O Stochastic Versions of Interface Conditions ?

Example |:
Interface conditions: Continuity of ¢ and of flux
dc _oc
CI__:CI_ DT —— — D —
OX |+ Ox |-
Example 2:
Interface conditions: Continuity of ¢ and of derivative
__ o on
U [ U [~ Ox |+  Ox|,-

Example 3: ?




INTERFACES AND PROBABILITY

O Stochastic Versions of Interface Conditions ?

Example |:

C
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Interface conditions: Continuity of ¢ and of derivative
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Interface conditions: Continuity of ¢ and of flux
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Example 3: ?
General Interface Conditions:

Aff(07) = (1 =X)f(07)=0 0<A<1
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FELLER’S CLASSIFICATION : Given msble coefficients
o’(z) >0,  p(x)

there is a unique diffusion process X with generator

d? I d? d
A= gam =27 @Wgm tulE) g
where d2f
Ds = :
a={feC): ——— €C(J)}




STROOCK-VARADHAN MARTINGALE: Given
measurable coefficients

o*(z) >0,  pu(z)

there is a unique continuous process X such that

Mif) = 1(X0) = [ AF(X)ds. 120

is a martingale for all f € C°°.




STROOCK-VARADHAN MARTINGALE: Given measurable
o?(z) >0,  p(x)

there is a unique martingale X such that

Mif) = 1(X0) = [ AF(X)ds. 120
is a martingale for all f € C°°.

@ let c(x,t) = Fyco(Xy)
oc dc

cDy=—(0",t)=—(0",t), t>0.
co €Da = o (0F,8) = (07, 1)

. \— -
I.€. 9

WHERPE’S THE WIGGLE ROOM FOR INTERFACES?




Analytic Remedy

A if x>0
e - 2

Write cg € Ly, f

co € C(R), Acy(07) — (1= N)ep(07) =0
Then cgo A € I% (Space Change)
Adjust Coefficients (Time Change)

Ax; ey _ [ (1=X)2D" if x <o,
() =9 XD+ it z>0

Get Adjusted S-V Process: X ~ Ay
Then & — Ep-1(5c0(A(X1(f))) € Z) (Ouknine 1987)




On Brownian Motion Observations

“"The trajectories are confused and complicated so often and so rapidly that
it is impossible to follow them; the trajectory actually measured is very much
simpler and shorter than the real one. Similarly, the apparent mean speed of a
grain during a given time varies in a wildest way in magnitude and direction,
and does not tend to a limit as the time taken for an observation decreases,
as may be easily shown by noting, in the camera lucida, the positions occupied
by a grain from minute to minute, and then every five seconds, or, better still,
by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the
movement. It is impossible to fix a tangent, even approximately, at
any point on a trajectory, and we are thus reminded of the
continuous underived functions of the mathematicians."

- Jean Baptiste Perrin, Atoms 1913




On Brownian Motion Observations

“"The trajectories are confused and complicated so often and so rapidly that
it is impossible to follow them; the trajectory actually measured is very much
simpler and shorter than the real one. Similarly, the apparent mean speed of a
grain during a given time varies in a wildest way in magnitude and direction,
and does not tend to a limit as the time taken for an observation decreases,
as may be easily shown by noting, in the camera lucida, the positions occupied
by a grain from minute to minute, and then every five seconds, or, better still,
by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the
movement. It is impossible to fix a tangent, even approximately, at
any point on a trajectory, and we are thus reminded of the
continuous underived functions of the mathematicians."

- Jean Baptiste Perrin, Atoms 1913

Q: So what would Perrin see when there is an interface ?




SKEW BROWNIAN MOTION 5%(t) 0 < a <1

lto-McKean (1963): Construct diff2usion defined by:
1 d

Infinitesimal Generator A = — ——

2 dx?
Dt rec(R)NCX(R\{0}) af'(0F) = (1 — a)f'(07)




SKEW BROWNIAN MOTION 59(t) 0 < o < 1

lto-McKean (1963): Construct diffusion defined by:

1 d?

Infinitesimal Generator A = — ——

2 dx?

D4 feC(R)NCHR\{0}) af(0%) = (1—a)f'(07)
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GENERAL MARTINGALE FORMULATION

, oc DT 9%c
ConS|der E — 7@

with the interface condition

c(0M)=¢c(07), A (0")=(1—-X\)(07)

Re-scaled Skew Brownian Motion:

s(B%(t)) = VD*TB%(t)1(B"(t)) + VD~ B%(t)1(B"(t))
Martingale Problem Given D* and 0 < )\ < 1, determine « so that

F((B(1) 5 | DIs(B))F (B ()

is a martingale for all f € D) where

Dy = {g € C*(R\{0}) NC(R) : Ag'(0T) = (1 — \)g'(07)}




SOLUTION

20 — 1
dB® = dB + (2a — 1)dl = dB + - dA " (Le Gall 1982)
!
Aj); (t) = lim 10 < B(O‘)(S) < €|ds local time from the right

elO 0
1t6-Tanaka applied to Y(t) = s(B“(t)) gives

dY = /D(Y)dB + = ( \/ﬁ \/\C&>dA¢

For f € Dy, and Z(t) = f(Y(t)) one has

dZ Y)\/D(Y)dB + = D (Y)F" (Y)dt+2f,(1 s (g \/DDT_a + 1;A> dAY,
Proposition:
martingale \WD—
__/D Ys)ds <= o= (1 WD




Back To Examples = Aﬁi\(/EA)\/F

Example | - Continuity of Flux

DT+ D~ - VD¥ + VD~

Example 2 - Continuity of Derivative

VD~
VDt +vD~

A=1/2, «




Back To Examples = Aﬁigx)m

Example | - Continuity of Flux

R . VD"
~Dt+D- T TPt VD
Example 2 - Continuity of Derivative
A=1/2, «a= =i
VDT +vVD~

Walsh 1978: Discontinuity of Local Time for SBM




Back To Examples a = Aﬁigx)m

Example | - Continuity of Flux

DT ) VDt

)\ — — —
Dt+D- T T D+ VDo
Example 2 - Continuity of Derivative
A=1/2, «a= =i
VDT +vVD~

Walsh 1978: Discontinuity of Local Time for SBM

Proposition: For )\ in Example |, the modified local time
Aj); is (spatially) continuous if and only if & = o




Back To Examples = Aﬁigx)m

Example | - Continuity of Flux

DT ) v/ D+

)\ — — —
Dt+D- T T D+ VDo
Example 2 - Continuity of Derivative
A=1/2, «a= =i
VDT +vVD~

Walsh 1978: Discontinuity of Local Time for SBM

Proposition: For )\ in Example |, the modified local time
Aj); is (spatially) continuous if and only if & = o

" "MODIFICATION” -- Integrate w.r.to Lebesgue in place of QV




APPLICATION TO EXAMPLE |

D™ < DT
1 D- / D+ '1

Q: Assume that D- < D+. Which is more likely removed first, a
particle injected at — | and removed at | or a particle injected
at | and removed at — | ?




APPLICATION TO EXAMPLE |
| D~ < DT
1 D / D+ |

Q: Assume that D- < D+. Which is more likely removed first, a

particle injected at —1 and removed at1 or a particle injected
at 1 and removed at —1 ?

A: The experiments show that in this configuration, a particle

injected at —1 arrives faster at 1 than when the particle is
injected at 1 and removed at —1 .

i.,e. FINETO COARSE IS FASTER THAN COARSE TO FINE




APPLICATION TO EXAMPLE |
| D™ < DTt
1 D~ / D+ '1

Impact on asymmetry of break-through curves. Fine to Coarse corresponds
to /)~ < D7 andthus @ > 1/2. Coarse to Fine corresponds to ¢ < |/2.

Proposition: Assume vD~ < vDT o =vDT/(VDT + D7)
Let Y = s(BY), T; =inf{t >0:Y; =y} Then for each

t >0,y >0,
P, (T, >t)<P,(T:, >t)




SKEW BROWNIAN MOTION

Proposition: Let T = inf{t > 0: B%(t) = a}. If @ > 1/2, then
forany t >0,a>0, P_,(TS >1t) < Py(T?, > t).

Pf: Note Ty = Tl/2 and T g To under P,, a # 0. so
P.(Tg>t)=P (To >t)=P_,(To >t)=P_a(Tg5 > t).

t

P (T > 1)) = / Po(T® > t — s)P_.(Tp € ds)
tO Strong Markov

P(T%, > t)) = / Po(TE % >t — s)P_,(Ty € ds) Property of Skew BM
0

Natural Coupling'
B(t) = Z 15, (6)[210.0)(Um) — 1]|B(t)]  Um are iid unif dist on [0, 1].

Note if 1 > a > 1/2, [T ><t]cC[T*<H

1l — «

Py(T* >t —5) < Py(TI >t —5) < Py(Ti “>t—s)

8%




Proof of Ordering

Scaling properties BS, = \/_BO‘

1 1

T(>)I< :Pl—dist FTO TC>)I< :P_l—dist FTO
1 1 .
—di. * Po—di 11—«
T]_ — st D_I_ T]_ T—]. p— 0 st FTf )
P_1(Ty = tP Lo Po(—T; € d
_1( 1>t)— O(F 1 >t—5) O(F 1 € S)
S S
< <

1 o
Pl(le > t) :/ Po( T1 >t — S)Po(—T(l ") - dS)
0




Alternative;: Resident Concentration Curve

KEY:
(1— )l
27(t — 7)3/271/2

exp

oc

(Uc(b, t) + D(b) 5

Cl>

Po(B!™) > b, L%(B™) € dI,T%(t) € d7) =

(_((1 —a)l)2  (b+ a/)2> e

2(t — 1)

)= a0 -

Average Flux

2T

Delta initial injection at —20 for 5 time units and observe at 20

V= 0447 2 —*—fine to corse
e \ i H ——— corse to fine
3 ] v=0179 i{ % F L
: H v=0.134
! ! k
i ! ; 4 /
b ks
L :
! 4 2 k)
! W b
+ ¥ 3
Iy y 1
R )
‘ H
* 1% ;.
! 1 i
3 3




PROBLEM: First passage time distribution for skew
Brownian motion

SOLUTION:

@ Appuhamillage, T., D. Sheldon (2010): ArXiv1008.2989

@ Skew Brownian Motion with Drift - OPEN
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