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Abstract

In this paper, we show that the proportional response dynamics, a util-
ity based distributed dynamics, converges to the market equilibrium in the
Fisher market with constant elasticity of substitution (CES) utility func-
tions. By the proportional response dynamics, each buyer allocates his bud-
get proportional to the utility he receives from each good in the previous
time period. Unlike the tâtonnement process and its variants, the propor-
tional response dynamics is a large step discrete dynamics, and the buyers
do not solve any optimization problem at each step. In addition, the goods
are always cleared and assigned to the buyers proportional to their bids at
each step. Despite its simplicity, the dynamics converges fast for strictly
concave CES utility functions, matching the best upperbound of computing
the market equilibrium via solving a global convex optimization problem.

1. Introduction

The market equilibrium characterizes the efficient outcome in a com-
petitive market and is a central notion in Economics. While much recent
studies have been devoted to computing the market equilibrium, it is desir-
able, from both economic and computational perspective, to know how such
equilibrium emerges when the agents dynamically respond to the market
condition in a distributed fashion. In this paper, we show that for certain
widely studied markets, namely, the Fisher market with constant elasticity
of substitution (CES) utility functions, there is a utility based proportional
response dynamics that converges to the market equilibrium, and it may
converges fast, matching the bound by solving a global convex program via
the ellipsoid or interior point method.
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We consider the Fisher market in which there are distinct sellers and buy-
ers. Further, each seller has one unit of divisible good for sale (so we do not
distinguish seller and good), and each buyer i has a budget bi and a utility
function with the form ui(x1, · · · , xn) =

∑

j(wijxj)
ρi for some 0 < ρi ≤ 1.

Such utility functions are the standard constant elasticity of substitution
(CES) utility functions. 1 It includes the well studied linear Fisher market
by setting ρi = 1 for each i. We consider the market rule that after the buy-
ers place bids to the goods, each good is allocated to a buyer proportional
to the buyer’s bid, or equivalently, the price of a good is the sum of the bids
placed to that good. By the proportional response dynamics, the buyer sub-
mits bids in discrete time steps and adjusts his bids according to the utility
he receives from each good in the previous time step. Formally, if we denote

by bij(t) the bid of buyer i to good j at time t, then bij(t + 1) = bi
uij(t)
ui(t)

where uij(t) = (wij
bij(t)
pj(t)

)ρi is the utility received by the buyer i from the

good j, pj(t) =
∑

i bij(t) is the total bids submitted to the good j, and
ui(t) =

∑

j uij(t) is the total utility of the buyer i.
From the above description, we can see that the proportional response

dynamics is characteristically different from the standard tâtonnement mar-
ket dynamics. In the tâtonnement process, the price of each good is gradu-
ally adjusted according to the excess of demand in the previous time step.
The proportional response dynamics does not explicitly involve a price mech-
anism as it is based on the user’s utility. Consequently, it requires much less
information and no need to solve an optimization problem at each step. It
is naturally distributed and guarantees the market clearance at each step.
In addition, it is a large step discrete dynamics in the sense that the buyer
does not gradually change his bid, and therefore there is no need to choose
a sufficiently small step size as typically done in tâtonnement process. Yet,
for CES utility functions, we show that the proportional response dynamics
converges to the market equilibrium, and in the case when each ρi < 1, the
proportional response dynamics converges much faster than the discretized
tâtonnement process.

In the tâtonnement process, at each time step, the buyer computes the
optimum bundle. Such strategy bears similarity to the best response dy-
namics in multi-player games. In contrast, in the proportional response
dynamics, each buyer adapts his bid according to the utility received in the

1The standard form is actually ui(xi1, · · · , xin) = (
∑

j(wijxij)
ρi)1/ρi , to make it ho-

mogeneous with degree one.
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previous time step. This is similar to the family of dynamics based on the
payoff reinforcement learning. Examples include the replicator dynamics in
evolutionary games [13] and the multiplicative update algorithm in zero-sum
games [12]. In these dynamics, the probability of playing each strategy is
adjusted by a multiplicative factor determined by the payoff correspond-
ing to that strategy. As we shall see later in the convergence proof, the
proportional response can be reformulated as a multiplicative process. As
one contribution of our work, we demonstrate that there exists utility based
dynamics that converges to the market equilibrium, a general equilibrium.

Related work. The Fisher market is a special case of the general exchange
market. According to [5], it was first defined by American economist Irving
Fisher. The linear Fisher market is equivalent to the pari-mutuel method
studied in [11]. In [11], Eisenberg and Gale established that the market
equilibrium, which they call equilibrium probabilities, is the solution to a
convex program, now commonly referred to as the Eisenberg-Gale program,
and laid the foundation for many subsequent works. In Computer Science
community, [9] first presented a polynomial time algorithm to approximate
the market equilibrium in the linear market with bounded number of goods.
[10] proposed a polynomial time combinatorial algorithm for computing the
market equilibrium for the linear Fisher market. In [14, 19], polynomial time
algorithms are presented for computing the market equilibrium by solving
the Eisenberg-Gale program.

There has also been a long history in studying the dynamics for converg-
ing to the market equilibrium. One particularly well studied dynamics is the
tâtonnement process in which the price changes gradually according to the
excess of demand. Tâtonnement dynamics was first described by Walras in
his monumental work published in 1874 and later formulated and extensively
studied in Economics. It was shown in [1, 2, 3] that tâtonnement converges
locally for economies satisfying weak gross substitutability (WGS). In [17],
Norvig showed that a greedy bidding strategy, which can be regarded as a
variant of tâtonnement process, converges to the market equilibrium in the
set up considered by Eisenberg and Gale in [11]. More recently, in [7, 6], it is
shown that the discretized tâtonnement process converges for WGS utility
functions, and [8] showed that an asynchronized variant also converges. In
[4], a dynamics is presented for a perturbed keyword auction mechanism
and shown to converge to the market equilibrium. That dynamics can also
be regarded as a variant of tâtonnement process.

The proportional response dynamics has been studied in [18] for a mar-
ket that models the bandwidth allocation in the peer to peer file sharing
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system. One important property in that model is that each good, the up-
load bandwidth, brings the same utility to the interested users. This is
not the case in a Fisher market. Consequently, we can no longer apply the
techniques in [18]. In particular, the proportional response is not equivalent
to a matrix scaling process, an important tool used in that paper. In this
paper, we show that the Kullback-Leibler divergence between the allocation
defined by the dynamics and the market equilibrium approaches 0. Our
proof is facilitated by the connection between the Eisenberg-Gale program
and the market equilibrium. This also renders the proof simpler and the
technique more general than that in [18].

Admittedly, compared to the tâtonnement process, the proportional re-
sponse dynamics applies to more specific markets. It remains an interesting
direction to discover similar dynamics that converge to the market equilib-
rium in more general economies.

2. Preliminaries

Fisher market. A Fisher market is a bipartite market which distinguishes
the role of buyer and seller. Each buyer i has a budget bi, and each seller
has a unit of divisible good for sale (and therefore we do not distinguish
the sellers and the goods). Suppose that there are m buyers and n goods.
Each buyer’s utility is defined as a function of the amount of each good he
receives. In this paper, we consider the family of markets where a buyer’s
utility function has the form:

ui(xi1, · · · , xin) =

n
∑

j=1

(wijxij)
ρi ,

where 0 < ρi ≤ 1, wij ≥ 0, and xij represents the amount of good j allocated
to the user i. Such utility functions have constant elasticity of substitution
(CES) property and are standard in Economics. One special case is the linear
Fisher market when setting ρi = 1 for all i. Without loss of generality, we
assume that for each i, there exists j such that wij > 0, and for each j, there
exists i, such that wij > 0. We denote by ρM = maxi ρi ≤ 1.

Market equilibrium. In a Fisher market, for any price vector p = (p1, · · · , pn)
where pj is the price of the good j, each buyer i can maximize his utility
under his budget constraint. The optimum bidding is the solution to the
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following optimization problem.

maxui(xi1, · · · , xin) , s.t. (1)

∀j xij = bij/pj ,
∑

j

bij ≤ bi ,

∀j bij ≥ 0 .

If it happens that there exists a solution b = {bij} to the optimiza-
tion problem for each buyer i and such that ∀j

∑

i bij = pj , we call the
price vector together with the corresponding bidding and allocation a market
equilibrium.

It is known that

Lemma 1. The Fisher market with CES utility functions always has an
equilibrium. At the equilibrium, each good’s price and each buyer’s utility is
unique.

Approximate market equilibrium. The notion of approximate market equi-
libria is useful for measuring the closeness of an allocation to an equilib-
rium. Suppose that p∗ is the market equilibrium price. Following [9, 15],
the bidding vector b = {bij}i,j , with price vector p = {pj =

∑

i bij}j is an
ε-approximate market equilibrium if

1. For each j, (1 − ε)p∗j ≤ pj ≤ (1 + ε)p∗j .

2. For each i, ui ≥ (1 − ε)ũi where ũi is the maximum utility of buyer i
given the price vector p.

We also define a stronger notion of the approximate market equilib-
rium. A bidding vector b = {bij} is called a strong ε-approximate market
equilibrium if there exists a market equilibrium b∗ such that for all i, j,
(1− ε)b∗ij ≤ bij ≤ (1 + ε)b∗ij . It is easily seen that in the Fisher market with
concave utility functions, a strong ε-approximate market equilibrium is an
O(ε)-approximate market equilibrium. The reverse might not be true.

Proportional response dynamics. As standard in the study of market dy-
namics, we consider the setup where at each time step the buyers face the
same market parameters, i.e. the same set of goods, budget constraint, and
utility function while the buyers make their bidding decisions according to
the previous market actions.

Denote by bij(t) the bid of buyer i on the good j at time t. The propor-
tional response dynamics considered in this paper is defined as bij(t + 1) =
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bi
uij(t)
ui(t)

, where pj(t) =
∑

i bij(t), uij(t) = (wijbij(t)/pj(t))
ρi , and ui(t) =

∑

j uij(t). Therefore, at each step, each buyer allocates the bid propor-
tional to the utility he receives from each good in the previous time period.
In addition, we require that bij(0) > 0 whenever wij > 0. We have that,

Lemma 2. A market equilibrium is a fixed point of the proportional re-
sponse dynamics.

Proof. Consider a market equilibrium with the price vector p and the
bidding vector b. By the definition, the market equilibrium is the solution
of the optimization problem (1).

Using Lagrangian multiplier, we have that for each i, there exists λi such

that if bij > 0, then ρi

(

wij

pj

)ρi

bρi−1
ij = λi. Thus, uij =

(

wijbij

pj

)ρi

= bijλi/ρi.

That is, for any j, k with bij , bik > 0, uij/uik = bij/bik. Hence, b is a fixed
point of the proportional response dynamics. �

Main results. The main result of the paper is

Theorem 3. The proportional response dynamics converges to a market
equilibrium in the Fisher market with CES utility functions.

As for the convergence rate, we distinguish two cases, when ρM < 1 and
when ρM = 1. Without loss of generality, let

∑

i bi = 1 and
∑

j wij = 1 for

every i. Let W1 = 1
minwij >0 wij

, W2 = 1
mini bi

, W = nW1W2, and L = log W .

Throughout this paper, log denoted the logarithm with base 2. We assume

that initially bij(0) = Ω
(

bi

nO(1)

)

. This includes the case where each buyer

splits his bid evenly among all the goods. About the convergence rate, we
have that

Theorem 4. When ρM < 1, it takes O
(

L+log(1/ε)
(1−ρM )2

)

steps to reach a strong

ε-approximate market equilibrium. When ρM = 1, it takes O(W 3/ε2) steps
to reach an ε-approximate market equilibrium.

Since each step takes O(mn) arithmetic computation, when ρM < 1,
the overall running time is bounded by O(mn(L+log(1/ε))/(1−ρM )2). We
remark that this bound is comparable to the bound of O((mnL)O(1) log(1/ε))
obtained by solving a convex program via the ellipsoid or interior point
methods, and it is much faster than the discretized tâtonnement process [6,
8].

6



3. The convergence proof

Our proof relies on a characterization of market equilibrium by Eisenberg
and Gale. In [11], it is shown that the market equilibrium in the linear Fisher
market is the solution to a convex program. Their result easily extends to
CES utility functions. Consider the Eisenberg-Gale program defined as

max
∑

i

bi

ρi
log ui , s.t. (2)

∀i ui =
∑

j

(wijxij)
ρi ,

∀j
∑

i

xij = 1 ,

∀i, j xij ≥ 0 .

The following statement is a straight forward extension of [11].

Lemma 5. For the Fisher market with CES utility functions, an allocation
x = {xij} is an equilibrium if and only if it is a solution to (2). Further,
the value of each ui is unique at a solution of (2).

Now we proceed to prove the convergence of the proportional response
dynamics.

Proof (Theorem 3). The convergence proof consists of two steps. Con-
sider the sequence of bids b(t) = {bij(t)} for t = 0, 1, · · · . We first show
that any limiting point of this sequence is a market equilibrium. This is
done by showing that the Kullback-Leibler(KL) divergence between bij(t)
and the market equilibrium converges. This is sufficient to guarantee the
convergence when there is a unique market equilibrium, such as in the case
where ρM < 1. When ρM = 1, an additional argument is needed to show
that there can be at most one limiting point starting from any given initial
condition.

1. Any limiting point of the dynamics is a market equilibrium.

For any two vectors x = {x1, · · · , xn} and y = {y1, · · · , yn} with non-
negative entries, let KL(x‖y) denote the KL-divergence

KL(x‖y) =
∑

i

xi log(xi/yi) .

It is well known that when
∑

i xi =
∑

i yi, then KL(x‖y) ≥ 0 and the
equality holds only when x = y. Given any bidding vector b, we denote
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by bi = {bi1, · · · , bin} the bidding by the i-th buyer. Take any market
equilibrium b∗ = {b∗ij}. We define the potential function

Φ(t) =
∑

i

1

ρi
Φi(t) ,

where Φi(t) = KL(b∗
i ‖bi(t)).

To gain intuition on the definition of the potential function, we have the
following dependence of bij(t + 1) on bij(t).

bij(t + 1) = bi
uij(t)

ui(t)
=

(

wij

pj(t)

)ρi bi

ui(t)
bij(t)

ρi .

Hence, the dynamics can be regarded as a multiplicative process which mo-
tivates the use of the KL divergence in the potential function.

We will now show that Φ(t) converges which in turn implies that any
limiting point of the dynamics is a market equilibrium.

Let u∗
i represent the utility of the buyer i and p∗j the price of good j at

the equilibrium. When b∗ij > 0, by Lemma 2, we have that b∗ij/bi = u∗
ij/u

∗
i .

Therefore

b∗ij log
b∗ij

bij(t + 1)

= b∗ij log
b∗ijui(t)

biuij(t)
(by that bij(t + 1) =

uij(t)
ui(t)

bi)

= b∗ij log
u∗

ijui(t)

u∗
i uij(t)

(by Lemma 2 b∗ij/bi = u∗
ij/u

∗
i )

= b∗ij log
u∗

ij

uij(t)
− b∗ij log

u∗
i

ui(t)
. (3)

Since u∗
ij = (wijb

∗
ij/p

∗
j)

ρi and uij(t) = (wijbij(t)/pj(t))
ρi , we have that

u∗

ij

uij(t)
=
(

b∗ij/bij(t)

p∗j/pj(t)

)ρi

. Plugging it in (3), we have that

b∗ij log
b∗ij

bij(t + 1)

= ρib
∗
ij log

b∗ij
bij(t)

− ρib
∗
ij log

p∗j
pj(t)

− b∗ij log
u∗

i

ui(t)
. (4)
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Hence, we have that

Φ(t + 1)

=
∑

i

1

ρi
Φi(t + 1)

=
∑

i

1

ρi

∑

j

b∗ij log
b∗ij

bij(t + 1)

=
∑

i

1

ρi

∑

j

(

ρib
∗
ij log

b∗ij
bij(t)

− ρib
∗
ij log

p∗j
pj(t)

− b∗ij log
u∗

i

ui(t)

)

=
∑

i

Φi(t) −
∑

j

∑

i

b∗ij log
p∗j

pj(t)
−
∑

i

1

ρi

∑

j

b∗ij log
u∗

i

ui(t)

(by that
∑

i b
∗
ij = p∗j and

∑

j b∗ij = bi)

=
∑

i

Φi(t) −
∑

j

p∗j log
p∗j

pj(t)
−
∑

i

bi

ρi
log

u∗
i

ui(t)

=
∑

i

Φi(t) − KL(p∗‖p(t)) −
∑

i

bi

ρi
log

u∗
i

ui(t)
.

Write Ψ(t) = KL(p∗‖p(t)) +
∑

i
bi
ρi

log
u∗

i
ui(t)

. Then Φ(t + 1) =
∑

i Φi(t)−
Ψ(t). We have that

Lemma 6. 1. For each i, Φi(t) ≥ 0, and Φi(t) ≤ Φ(t).

2. Ψ(t) ≥ 0, and Ψ(t) = 0 if and only if ui(t) = u∗
i for each i and

pj(t) = p∗j for each j.

3. Φ(t + 1) ≤ ρMΦ(t) − Ψ(t) ≤ Φ(t) − Ψ(t).

Proof. 1. Follows from that for each i,
∑

j b∗ij =
∑

j bij(t) = bi.

2. By that
∑

j p∗j =
∑

j pj(t) =
∑

i bi, we have that KL(p∗‖p(t)) ≥ 0.

By Lemma 5,
∑

i
bi
ρi

log ui(t) ≤ ∑

i
bi
ρi

log u∗
i . That is,

∑

i
bi
ρi

log
u∗

i
ui(t)

≥ 0.

Therefore Ψ(t) ≥ 0. The second half of the statement follows from the
equality condition in the above two inequalities and Lemma 5.

3. By that Φi(t) ≥ 0 and ρM = maxi ρi, we have that

Φ(t + 1) =
∑

i

Φi(t) − Ψ(t) ≤
∑

i

ρM

ρi
Φi(t) − Ψ(t) = ρMΦ(t) − Ψ(t) .

Since ρM ≤ 1 and Φ(t) ≥ 0, Φ(t + 1) ≤ Φ(t) − Ψ(t). �
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By the above lemma, we now show that Ψ(t) → 0 when t → ∞. By
repeatedly applying Lemma 6.3, we have that Φ(t+1) ≤ Φ(0)−∑t

τ=0 Ψ(τ).
That is

t
∑

τ=0

Ψ(τ) ≤ Φ(0) − Φ(t + 1) ≤ Φ(0) . (5)

Since bij(0) > 0 if wij > 0, Φ(0) is upper bounded. Together with the fact
that Ψ(t) ≥ 0, (5) implies that Ψ(t) → 0 when t → ∞. By Lemma 6.2,
this in turn implies that ui(t) → u∗

i for any i and pj(t) → p∗j for any j. By
Lemma 5, any limiting point of the dynamics is a market equilibrium.

2. The dynamics always converges to a single market equilibrium.

When ρM < 1, the market equilibrium is unique. The proportional
dynamics converges to that unique market equilibrium from any initial con-
dition. However, when some ρi = 1, there may exist multiple market equi-
libria. We shall show that it is impossible that the sequence bij(t) has two
distinctive limiting points. Suppose that b′ = {b′ij} is a limiting point of
the sequence b(t0), b(t1), · · · . By 1, we know that b′ is a market equilibrium.
Since we can choose any market equilibrium in the definition of Φ, we now
choose b∗ = b′. Since b(tk) → b′, we have that Φi(tk) → 0 and there-
fore Φ(tk) → 0 when k → ∞. By that Φ(t) is monotonically decreasing, and
that Φ(t) ≥ 0, we have for any infinite strictly increasing sequence s0, s1, · · · ,
Φ(sk) → 0 when k → ∞. Therefore, b(sk) → b′. That is, the dynamics
always converges to a single market equilibrium. �

4. The rate of convergence

We now bound the convergence rate of the proportional response dy-
namics. We consider two cases, when ρM < 1 and when ρM = 1. In the
former case, we are able to show a fast convergence of the dynamics; and in
the latter case, we show that the dynamics converges in pseudo-polynomial
time.

Without loss of generality, we may scale bi and wij such that
∑

i bi = 1
and for each i,

∑

j wij = 1. Recall that W1 = 1
minwij >0 wij

and W2 = 1
mini bi

,

W = nW1W2, and L = log W . We have that

Lemma 7. At the equilibrium, p∗j ≥ 1
W for any j. When ρM < 1, b∗ij =

Ω
(

(

1
W 2

)1/(1−ρM )
)

whenever wij > 0.
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Proof. For any j, consider a buyer i with wij > 0. If for every other k,
wik = 0, then p∗j ≥ bi ≥ 1/W2. Otherwise, suppose that wij , wik > 0. As in
the proof of Lemma 2,

(

wij

p∗j

)ρi

b∗ij
ρi−1 =

(

wik

p∗k

)ρi

b∗ik
ρi−1 . (6)

By that b∗ij ≤ p∗j , b∗ik ≤ p∗k, and ρi ≤ 1, we have
(

wij

p∗j

)ρi

p∗j
ρi−1 ≤

(

wik

b∗ik

)ρi

b∗ik
ρi−1 .

Rearranging the terms, we have that p∗j ≥
(

wij

wik

)ρi

b∗ik ≥ 1
W1

b∗ik. Since there

exists k such that b∗ik ≥ bi/n, p∗j ≥ bi
nW1

≥ 1
W .

When ρM < 1, by applying (6) again, we have that

b∗ij = b∗ik

(

wijp
∗
k

wikp
∗
j

)ρi/(1−ρi)

≥ b∗ik

(

1

W1
· 1

nW1W2

)ρi/(1−ρi)

≥ b∗ik

(

1

nW 2
1 W2

)ρM /(1−ρM )

= Ω

(

(

1

W 2

)1/(1−ρM )
)

.

�

We will need the following technical lemma that bounds the difference
between two vectors from their KL divergence.

Lemma 8. For two positive sequences xj and yj for j = 1, · · · , n that satisfy
∑

j xj =
∑

j yj, let η = maxj
|xj−yj |

xj
. Then

KL(x‖y) ≥ 1

16
min(1, η)η min

j
xj .

Proof. We use the well known inequality
∑

j

xj log(xj/yj) ≥
1

2

∑

j

(
√

xj −
√

yj)
2 .

Suppose that k = arg maxj
|xj−yj |

xj
. Then

KL(x‖y) ≥ 1

2
(
√

xk −√
yk)

2 =
1

2

(

xk − yk√
xk +

√
yk

)2

=
1

2
η2 x2

k

(
√

xk +
√

yk)2
.
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When yk ≤ 2xk, x2
k/(

√
xk +

√
yk)

2 ≥ x2
k/(

√
xk +

√
2xk)

2 ≥ 1
8xk.

When yk > 2xk, i.e. when y = (η + 1)xk and η > 1,

x2
k

(
√

xk +
√

yk)2
=

x2
k

(
√

xk +
√

(1 + η)xk)2
=

1

(1 +
√

1 + η)2
xk ≥ 1

8η
xk .

The last inequality follows from that η > 1. Hence, we have that

KL(x‖y) ≥ 1

16
min(1, η)ηxk ≥ 1

16
min(1, η)η min

j
xj .

�

According to Lemma 8, in order to show maxj
|xj−yj |

xj
≤ ε < 1, it suf-

fices to show that KL(x‖y) = O(ε2)minj xj . Now, we are ready to prove
Theorem 4.

Proof (Theorem 4). (1) When ρM < 1, we show that the dynamics
reaches a strong ε-approximate market equilibrium. By Lemma 6.2 and
3, Φ(t + 1) ≤ ρMΦ(t)−Ψ(t) ≤ ρMΦ(t). Applying the inequality iteratively,
we have that Φ(t) ≤ ρt

MΦ(0), and Φi(t) ≤ Φ(t) ≤ ρt
MΦ(0).

As observed earlier, Φi(t) =
∑

j b∗ij log
b∗ij

bij(t)
is the KL divergence between

b∗ij and bij(t). By Lemma 8, bij(t) is a strong ε-approximate equilibrium as

long as Φi(t) ≤ 1
16ε2 minj:b∗ij>0 b∗ij for ε < 1. Of course, how fast the process

converges also depends on the initial choice of bij(0). By the assumption that

bij(0) = bi

nO(1) , Φi(0) =
∑

j b∗ij log
b∗ij

bij(0)
=
∑

j b∗ij log bi

bi/nO(1) = O(bi log n).

Hence Φ(0) = O(log n) by that
∑

i bi = 1.

By choosing t = cL+log(1/ε)
(1−ρM )2

for sufficiently large c, we have that Φ(t) ≤
ρt

MΦ(0) = O(( 1
W 2 )1/(1−ρM )ε2). By Lemma 7 and 8, we have that

|b∗ij−bij(t)|

b∗ij
≤

ε for any i, j, that is b(t) = {bij(t)} is a strong ε-approximation to b∗.

(2) When ρM = 1, the convergence could be slower. Indeed, it may never
converge to a strong ε-approximate equilibrium as at the market equilibrium,
some b∗ij may be 0 even when wij > 0. We will show that it converges to the

standard notion of ε-approximate equilibrium in O(W 3/ε2) steps. We will
establish the bound in the worst case of ρi = 1 for all i.

By Lemma 6.3, we have that Φ(t + 1) ≤ Φ(t) − Ψ(t). We claim that
if Ψ(t) ≤ δ for δ = 1

256WW 2
2
ε2, then b(t) is an ε-approximate equilibrium.

Recall that Ψ(t) = KL(p∗‖p(t))+
∑

i bi log
u∗

i
ui(t)

. In what follows, we omit (t)
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for the simplicity of the notations. Since KL(p∗‖p) ≥ 0 and
∑

i bi log
u∗

i
ui

≥ 0.
By that Ψ ≤ δ, we have that

KL(p∗‖p) ≤ δ , (7)
∑

i

bi log
u∗

i

ui
≤ δ . (8)

By (7), Lemma 7 and 8, we have that for every j, (1 − ε′)p∗j ≤ pj ≤
(1 + ε′)p∗j where ε′ = ε/(4W2). Let ũi denote the maximum utility of the
buyer i under the price vector p. It remains to show that for each i, ui ≥
(1 − ε)ũi. Since ũi = bi maxj wij/pj and u∗

i = bi maxj wij/p
∗
j , we have that

u∗
i ≥ (1 − ε′)ũi ≥ (1 − ε′)ui. With ε′ < 1/2, for any i,

bi log
u∗

i

ui
=

∑

j

bj log
u∗

j

uj
−
∑

j 6=i

bj log
u∗

j

uj

≤ δ −
∑

j 6=i

bj log(1 − ε′)

≤ δ − log(1 − ε′) ≤ δ + 2ε′ .

Therefore,
u∗

i
ui

≤ 2(δ+2ε′)/bi ≤ 1+W2(δ+2ε′) as δ, ε′ are sufficiently small.
Hence ui ≥ (1−W2(δ + 2ε′))u∗

i ≥ (1−W2(δ + 2ε′))(1− ε′)ũi. By the choice
of δ, we have that δ, ε′ ≤ ε/(4W2) and consequently ui ≥ (1 − ε)ũi. Hence,
b is an ε-approximate market equilibrium.

By (5),
∑t

τ=0 Ψ(τ) ≤ Φ(0) = O(log n). Hence, when t ≥ c log n/δ for
some constant c > 0, there exists τ ≤ t such that Ψ(τ) ≤ δ. We thus
have that the dynamics converges to an ε-approximate market equilibrium
in O(WW 2

2 log n/ε2) = O(W 3/ε2) steps. �

While we do not know if the above convergence rate for the linear Fisher
market is tight, the following example shows that it requires Ω(1/ε) steps to
converge to an ε-approximate equilibrium. Consider the market with three
buyers and two goods. The budgets of the buyers are b1 = 2, b2 = 1, and
b3 = 1, respectively. The weights are w11 = w21 = w22 = w32 = 1 and 0
otherwise. At the equilibrium, the prices of both goods are 2, and b∗21 = 0,
b∗22 = 1. However, it is easy to see that when b21 = 2ε, it takes Θ(1/ε) steps
to reduce it to ε.

5. Conclusion

One crucial property used in the convergence proof is the equivalence
between the market equilibrium and the solution to the Eisenberg-Gale pro-
gram. It would be interesting to know if the technique can extend to other

13



Eisenberg-Gale markets as defined in [16]. We note that the proportional
response dynamics most naturally applies to separable utility functions, i.e.
the utility of each buyer is the sum of the utility obtained from different
goods. It would be interesting to know if similar dynamics can be defined
for more general families of such utility functions. It is also interesting to
know if the dynamics converges under certain asynchronous model.
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