
Affine Pairings on ARM

Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{tolga, klauter, mnaehrig, danshu}@microsoft.com

Abstract. Pairings on elliptic curves are being used in an increasing
number of cryptographic applications on many different devices and plat-
forms, but few performance numbers for cryptographic pairings have
been reported on embedded and mobile devices.

In this paper we give performance numbers for affine and projective
pairings on a dual-core Cortex A9 ARM processor and compare perfor-
mance of the same implementation across three platforms: x86, x86-64
and ARM. Using a fast inversion in the base field and doing inversion in
extension fields by using the norm map to reduce to inversions in smaller
fields, we find a very low ratio of inversion-to-multiplication costs. In our
implementation, this favors using affine coordinates on all three plat-
forms, even for the current 128-bit minimum security level specified by
NIST. We use Barreto-Naehrig (BN) curves and report on the perfor-
mance of an optimal ate pairing for curves covering security levels roughly
between 128 and 192 bits. We compare with other reported performance
numbers for pairing computation on ARM processors.

Keywords: Pairing computation, affine coordinates, optimal ate pairing,
pairing cost, ARM architecture.

1 Introduction

Cryptographic protocols based on bilinear pairings are proliferating, as more
and more interesting and useful applications of bilinear maps are discovered, for
example non-interactive proof systems [14,8], homomorphic encryption [10], and
attribute-based encryption [27]. These developments have led to an increasing
need for efficient implementations of pairing-based protocols on a wide range
of platforms and devices. The only currently known way to implement bilinear
pairings in cryptography which is both efficient and secure is on elliptic curves
(or higher dimensional analogues) over finite fields with optimal versions of the
Weil or Tate pairings [20,21,5,6,12,18,30]. Security is based on the hardness of
the discrete logarithm problem, pairing inversion, and related assumptions [4,29].

In implementations of pairing-based protocols, message values are hashed
into points on elliptic curves, and elliptic curve scalar multiplications and pairing
operations are computed. The performance of the underlying finite field opera-
tions such as addition, multiplication, and inversion, determine the best choices
for how to do the elliptic curve and pairing operations. When the inversion-to-
multiplication ratio for field arithmetic is low, it favors using affine instead of



projective coordinates for representing elliptic curve points and doing elliptic
curve and pairing operations, as was recently investigated in [17].

For Elliptic Curve Cryptography (ECC) applications on NIST P-curves where
prime fields are chosen with Generalized Mersenne primes for fast modular reduc-
tion and multiplication, the base field inversion-to-multiplication ratio is often
reported to be 80 : 1 or higher. However, for pairing applications which re-
quire fixed embedding degrees to control efficiency and security, special primes
like Mersenne primes cannot be used because there is no known way to gen-
erate pairing-friendly curves over those particular fields. Instead, more general
prime fields arise, and much of the arithmetic in pairing computation is done
in extension fields, whose degree is 12 when using Barreto-Naehrig (BN) curves
[7,26]. Computing in general prime fields using fast inversion techniques, a typ-
ical inversion-to-multiplication ratio can be much lower than 80 : 1, for example
13 : 1 (resp. 25 : 1) in our x86 (resp. x86-64) implementation of arithmetic over
256-bit prime fields reported in Section 4.

In [17], inversion-to-multiplication ratios in extension fields were given which
reflect faster inversion in extension fields by taking the norm down to smaller
fields and doing inversion there. For example, in an extension field of degree 12,
the inversion-to-multiplication ratio was reported as 1.7 : 1 for a 256-bit prime
base field. Even for implementations with much faster field multiplies, using that
technique, the ratio decreases dramatically as the field extension degree increases,
which leads to the argument made in [17] that for any implementation, as the
security requirements and thus the field extension degrees grow, there exists a
cross-over point after which it becomes more efficient to use affine coordinates in
the pairing algorithm rather than projective coordinates. For our implementation
of field arithmetic in 256-bit prime fields on the x86 and x86-64 platforms, we
find this cross-over point already when considering extension degree k = 2. Our
implementation targets a minimum 128-bit security level. It thus works with BN
curves with embedding degree 12, and involves curve arithmetic in a degree-2
extension field by taking advantage of sextic twists as usual.

This led us to wonder what the cross-over point might be on other platforms,
and how it would vary with different intrinsics or instruction sets. In this paper,
we give performance numbers for affine and projective pairings on a dual-core
Cortex A9 ARM processor and compare performance of the same implementation
across three platforms: x86, x86-64, and ARM. On all three platforms, we use
intrinsics and assembly for the Montgomery multiplication implementation.

We find that, in our implementation, affine coordinates are the better choice
for pairing computation also on the ARM processor, and examine the variation in
performance of pairings on ARM with different base field multiplications. Other
implementations presented in the literature recently have faster field multiplies
that are hand-optimized for specific processor architectures to obtain pairing
speed records [24,9,3]. We do not aim at comparable optimizations of ARM
pairing implementations; instead we aim to keep more generality in the base
field size and base field multiplication implementation, with the goal of produc-
ing product-quality code. Thus our implementation can be further optimized



for specific architectures, but already we find that our implementation of affine
pairings compares favorably with all other reported ARM pairing timings we
have found in the literature (see Section 5).

In Section 2, we give background on BN curves and the optimal ate pairing.
Section 3 explains our improvements to the multiply on ARM using intrinsics
and assembly code. Section 4 gives a description of our implementation and per-
formance numbers including a subsection which summarizes trends we observe
across platforms and security levels. Finally, in Section 5 we compare our results
with related work in the literature.

2 BN curves and the optimal ate pairing

In this section, we give a brief overview of the background on Barreto-Naehrig
(BN) curves [7] and optimal ate pairings [30] as used in our implementation.
Let u ∈ Z be an integer such that p = 36u4 + 36u3 + 24u2 + 6u + 1 and n =
36u4 + 36u3 + 18u2 + 6u+ 1 are prime numbers. The pair (p, n) is called a BN
prime pair. A BN curve is an elliptic curve E over Fp such that n = #E(Fp) and
(p, n) is a BN prime pair. In that case, the curve has an equation E : y2 = x3 +b,
b ∈ Fp and embedding degree k = 12.

To compute a pairing on a BN curve, we identify two groups G1 and G2 that
are determined by the eigenspaces of the Frobenius endomorphism φp on the n-
torsion E[n]. The first one is the 1-eigenspace, i.e. it is simply G1 = E(Fp)[n] =
E(Fp). The second one, G2, is the p-eigenspace which is contained in E(Fp12)[n]
(see [15]). For efficiency reasons, we represent G2 by another group G′

2 of points
on a different curve. This other curve is a particular twist E′ of E which is
defined over Fp2 . Furthermore, we require that n | #E′(Fp2). We take the group
G′

2 to be the n-torsion on E′ over Fp2 , i.e. G′

2 = E′(Fp2)[n]. There is a twisting
isomorphism ψ : E′ → E, (x, y) 7→ (ω2x, ω3y) for some ω ∈ Fp12 that gives us
an easy-to-compute group isomorphism G′

2 → G2. The twist has an equation
E′ : y2 = x3 + b/ξ, where ξ = ω6 ∈ Fp2 (for more details see [23, Chapter 2]).
Having fixed the groups for pairing computation, we now give an algorithm to
compute pairings on BN curves.

The most efficient pairing algorithms on BN curves occur when computing
optimal ate pairings [30]. An optimal ate pairing is given by

aopt : G′

2 ×G1 → F
∗

p12 , (Q′, P ) 7→ (f6u+2,Q(P ) · h6u+2,Q(P ))(p
12

−1)/n,

where Q = ψ(Q′) and fm,Q(P ) is a Miller function with respect to m and
Q, evaluated at P . Furthermore, the function h is given by h6u+2,Q(P ) =
l[6u+2]Q,Q1

(P ) · l[6u+2]Q+Q1,−Q2
(P ) with Q1 = φp(Q), Q2 = φp(Q1) and lR,S

is the function given by the line through points R and S.
Miller’s algorithm [20,21] gives us a way to evaluate such functions. To com-

pute the above optimal ate pairing, we use Algorithm 1. We give a version of
the algorithm that exploits the scalar 6u + 2 in non-adjacent form (NAF). For
certain curves in the particular implementation-friendly subfamily of BN curves



that has been introduced recently in [26], the best performance is obtained when
using the NAF version of Miller’s algorithm.

Algorithm 1 Optimal ate pairing for BN curves.

Input: P ∈ G1 = E(Fp), Q
′ ∈ G′

2, Q = ψ(Q′), m = 6u+ 2 = (1,ms−1, . . . ,m0)NAF.
Output: aopt(Q

′, P ).
1: R′

← Q′, f ← 1
2: for (i← s− 1; i ≥ 0; i−−) do

3: f ← f2
· lψ(R′),ψ(R′)(P ), R′

← [2]R′

4: if (mi = ±1) then

5: f ← f · lψ(R′),±Q(P ), R′ ← R′ ±Q′

6: end if

7: end for

8: if u < 0 then

9: f ← fp
6

, R′
← −R′

10: end if

11: Q1 = φp(Q), Q2 = φp2(Q)
12: f ← f · lψ(R′),Q1

(P ), R′
← R′ + ψ−1(Q1)

13: f ← f · lψ(R′),−Q2
(P )

14: f ← fp
6
−1

15: f ← fp
2+1

16: f ← f (p4−p2+1)/n

17: return f

3 Platform-specific improvements on ARM

We used the same C source code on all three platforms. The implementations dif-
fer only in a few places where performance matters the most in implementation:
unsigned integer multiplication. Regardless of the higher level algorithms, we
chose three approaches to implementing the inner-most multiplication routines
utilizing multiply, multiply-accumulate, and Montgomery multiplication [22].
Our choice of compiler is Microsoft Visual C++ on x86 (32-bit Intel), x86-64
(64-bit Intel), and ARM (Thumb-2).

We used a Tegra 2 development platform from NVidia to obtain the bench-
mark figures on Table 1. This system features a dual-core Cortex A9 ARM CPU
running at 1GHz with 32KB/32KB (I/D) L1 cache per core, 1MB L2 cache,
and 1GB DDR2-667 main memory. The entire benchmark program fits in the
1MB L2 cache, and the core routines executed in tight loops fit in the 32KB
instruction cache.

The Montgomery multiplication function implements the CIOS method in [16],
and its performance numbers are tabulated in Table 1 for a set of moduli length in
bits. The C implementation relies on the compiler’s support for double-length un-
signed integers (unsigned __int64). The intrinsics method uses a few compiler-



supported ARM assembly instructions: umull, umaal, umlal while other oper-
ations are implemented in C. The umull is an unsigned 32-bit integer multiplica-
tion instruction that generates an unsigned 64-bit product. The umlal is a 32-bit
multiply and 64-bit accumulate, and the umaal is a 32-bit multiply and double
32-bit accumulate instruction. The assembly row reports the benchmark figures
where the CIOS method is implemented in ARM Thumb-2 assembly language.

The difference between the assembly and the C-with-intrinsics implemen-
tation is in the Montgomery multiplication routine. Both implementations use
the above instrinsics in other primitive functions (e.g., multiply and multiply-
accumulate) for other purposes, such as inversion.

Modulus length in bits
Implementation 160 224 288 480 640 3168

Intrinsics 2.07 2.55 3.17 5.66 9.26 147

Assembly 1.97 2.41 2.93 5.15 9.04 128

Table 1. Montgomery multiplication implementation choices and benchmark figures
in micro seconds.

While the use of intrinsics provides an improvement over the C version, the as-
sembly implementation provides an incremental improvement over intrinsics. We
experimented with several implementation approaches such as loop unrolling, dif-
ferent instruction ordering, conditional instructions, and multi-word load/stores.
None of these approaches provided a measurable performance improvement on
our reference platform. Thus, we did not use any of these techniques to generate
the numbers on the table. Instead, we carefully crafted a straightforward assem-
bly implementation of the Montgomery multiplication CIOS algorithm in [16] to
form base reference benchmark numbers.

Our intention was to generate product quality software, and we adhered to
sound software engineering guidelines including maintainability, robustness, and
defensive programming. While our interest is clearly to create good benchmark
results, this goal does not disregard qualities we expect from a product-quality
code. As a result, we think it is possible to further optimize our code for speed
(i.e. hand-optimize the code).

The assembly implementation and intrinsics only leverage the core ARM
instruction set, but do not utilize SIMD and NEON instructions. In the future,
we intend to experiment with the ARM SIMD and NEON technologies for better
performance.

4 Implementation and performance

In this section, we present the timing results of our pairing implementation on
BN curves for the ARM, x86, and x86-64 instruction sets, aiming at security
levels of at least 128 bits or higher.



We use BN curves since they not only suit the 128-bit security level extremely
well, but are also promising candidates for being the most efficient choice of
pairing-friendly curves with security of up to 192 bits. Our pairing code can
be used to compute pairings on all 16 curves recently introduced in [26]. In
particular, the code is not tailored for one specific curve. These curves are easy
to generate, have a very compact representation and were chosen to provide very
efficient implementation. The loop order 6u+2 for all curves is very sparse when
represented in non-adjacent form. Furthermore, the curve of size 254 bits has
recently been used to obtain the current software speed record for pairings as
outlined in [3].

Due to space constraints, we present performance results for only three of
the curves in [26], namely the curves bn254, bn446, and bn638 over prime fields
of respective bit sizes 254, 446, and 638 bits. We further give results for the
same 256 bit curve bn256 that has been used in [17]. The curve bn254 roughly
provides 128 bits of security and bn638 yields about 192 bits.

Our implementation uses Algorithm 1 to compute the optimal ate pairing on
BN curves. For the projective version we used the explicit formulas in [11], but we
obtained better results for the affine version. It uses the tower of field extensions
Fp12/Fp6/Fp2/Fp to realize field arithmetic in Fp12 . The final exponentiation is
done as usual using the Frobenius action and the addition chain from [28] as
well as the special squaring functions from [13].

Our implementation results are shown in Tables 2 to 5 for the above men-
tioned curves. We give timings for the finite field additions (add), subtrac-
tions (sub), multiplications (M), squarings (S) and inversions (I) as well as
the inversion-to-multiplication ratio (R = I/M) for all fields in the tower of
extensions.

We give timings for several pairing functions that use different optimizations
for different computing scenarios. The line entitled “20 at once (per pairing)”
gives the average timing for one pairing out of 20 that have been computed
at the same time. This function uses Montgomery’s inversion-sharing trick as
described in [17, Section 4.3]. The function corresponding to the line “product of
20” computes the product of 20 pairings. The lines with the attribute “1st arg.
fixed” mean functions that compute multiple pairings or a product of pairings,
where the first input point is fixed for all pairings, and only the second point
varies. In this case, the operations depending only on the first argument are done
only once. We list separately the final exponentiation timings. They are included
in the pairing timings of the other lines.

We do not give cycle counts for the ARM implementation in the tables since
high-frequency counters are currently not supported in our development envi-
ronment on the ARM. However, estimates for cycle counts can be easily read
off from the values given in µs and s by multiplying them by 103 and 106,
respectively (note the clock frequency of 1GHz for the ARM processor).



ARM, dual-core Cortex A9 @ 1GHz, Windows

254-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 0.67 0.61 1.72 1.68 18.35 10.67
Fp2 1.42 1.24 8.18 5.20 26.61 3.25
Fp6 4.43 3.96 69.83 48.24 136.68 1.96
Fp12 9.00 8.32 228.27 161.43 379.09 1.66

optimal ate pairings ARM
bn254 ms

projective 55.19

single pairing 51.01
20 at once (per pairing) 50.71

affine 20 at once, 1st argument fixed (per pairing) 46.06
product of 20 (per pairing) 17.44
product of 20, 1st argument fixed (per pairing) 12.72

single final exponentiation 24.69

x86, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

254-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 291 0.12 268 0.11 967 0.40 965 0.40 13224 5.44 13.60
Fp2 548 0.23 526 0.22 4297 1.78 2709 1.12 17658 7.30 4.10
Fp6 1604 0.66 1488 0.63 35476 14.78 24460 10.24 74338 31.13 2.11
Fp12 3106 1.30 2933 1.24 116109 49.13 82600 33.84 201266 84.37 1.72

optimal ate pairings x86
bn254 cyc ms

projective 28,371,661 11.78

single pairing 26,570,757 10.96
20 at once (per pairing) 26,195,898 10.84

affine 20 at once, 1st argument fixed (per pairing) 23,811,273 9.81
product of 20 (per pairing) 8,959,470 3.74
product of 20, 1st argument fixed (per pairing) 6,556,946 2.74

single final exponentiation 12,876,582 5.24

x86-64, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

254-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 191 0.08 163 0.07 405 0.18 403 0.17 10803 4.50 25.00
Fp2 336 0.14 299 0.13 2131 0.88 1318 0.55 12774 5.33 6.06
Fp6 942 0.39 825 0.35 19103 7.91 13053 5.43 41710 17.48 2.21
Fp12 1807 0.76 1624 0.68 61927 25.97 43646 18.47 107857 45.46 1.75

optimal ate pairings x86-64
bn254 cyc ms

projective 14,989,039 6.31

single pairing 14,125,439 5.92
20 at once (per pairing) 13,697,623 5.73

affine 20 at once, 1st argument fixed (per pairing) 12,491,536 5.20
product of 20 (per pairing) 4,688,080 1.97
product of 20, 1st argument fixed (per pairing) 3,466,350 1.45

single final exponentiation 6,633,846 2.77

Table 2. Field arithmetic timings in a 254-bit prime field and optimal ate pairing
timings on a 254-bit BN curve. Field timings average over 1000 operations, pairing
timings average over 20 pairings. Timings given in cpucycles (cyc) and milliseconds
(ms).



ARM, dual-core Cortex A9 @ 1GHz, Windows

256-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 0.68 0.62 1.71 1.67 18.44 10.78
Fp2 1.36 1.23 8.13 6.27 26.73 3.29
Fp6 4.46 3.88 69.60 48.21 137.12 1.97
Fp12 8.91 8.34 227.86 159.89 379.15 1.66

optimal ate pairings ARM
bn256 ms

projective 58.10

single pairing 54.19
20 at once (per pairing) 53.88

affine 20 at once, 1st argument fixed (per pairing) 49.07
product of 20 (per pairing) 17.95
product of 20, 1st argument fixed (per pairing) 13.16

single final exponentiation 27.44

x86, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

256-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 288 0.12 266 0.12 969 0.41 965 0.40 13067 5.42 13.22
Fp2 544 0.23 523 0.22 4266 1.78 2707 1.15 17722 7.32 4.11
Fp6 1580 0.66 1491 0.62 35365 14.89 24460 10.30 75722 31.48 2.11
Fp12 3097 1.29 2627 1.24 116630 49.20 81316 33.97 201589 84.65 1.72

optimal ate pairings x86
bn256 cyc ms

projective 30,042,916 12.31

single pairing 28,404,966 11.73
20 at once (per pairing) 27,985,410 11.47

affine 20 at once, 1st argument fixed (per pairing) 25,508,592 10.42
product of 20 (per pairing) 9,271,505 3.87
product of 20, 1st argument fixed (per pairing) 6,811,275 2.84

single final exponentiation 14,368,538 5.81

x86-64, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

256-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 187 0.08 162 0.07 407 0.18 408 0.17 10929 4.53 25.17
Fp2 328 0.13 299 0.12 2121 0.89 1319 0.55 12878 5.39 6.06
Fp6 941 0.39 825 0.35 19099 7.87 13064 5.43 41806 17.43 2.21
Fp12 1803 0.76 1623 0.68 61950 25.84 43720 18.22 108664 45.06 1.74

optimal ate pairings x86-64
bn256 cyc ms

projective 15,601,367 6.61

single pairing 15,151,212 6.30
20 at once (per pairing) 14,519,677 6.09

affine 20 at once, 1st argument fixed (per pairing) 13,315,367 5.57
product of 20 (per pairing) 5,039,186 2.02
product of 20, 1st argument fixed (per pairing) 3,598,167 1.50

single final exponentiation 7,422,983 3.07

Table 3. Field arithmetic timings in a 256-bit prime field and optimal ate pairing
timings on a 256-bit BN curve. Field timings average over 1000 operations, pairing
timings average over 20 pairings. Timings given in cpucycles (cyc) and milliseconds
(ms).



ARM, dual-core Cortex A9 @ 1GHz, Windows

446-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 1.17 1.03 4.01 3.92 35.85 8.94
Fp2 2.37 2.07 17.24 10.84 54.23 3.15
Fp6 7.77 7.15 152.79 109.74 302.34 1.98
Fp12 15.65 14.88 498.58 364.34 846.21 1.70

optimal ate pairings ARM
bn446 ms

projective 195.56

single pairing 184.28
20 at once (per pairing) 183.54

affine 20 at once, 1st argument fixed (per pairing) 167.83
product of 20 (per pairing) 62.33
product of 20, 1st argument fixed (per pairing) 46.50

single final exponentiation 86.75

x86, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

446-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 449 0.19 415 0.17 1890 0.79 1877 0.78 25400 10.53 13.33
Fp2 839 0.35 809 0.34 7768 3.24 5166 2.09 33890 14.10 4.35
Fp6 2500 1.04 2353 0.98 67611 28.35 48732 20.45 145554 60.94 2.15
Fp12 4933 2.06 4723 1.95 220707 92.51 161286 67.80 388908 162.81 1.76

optimal ate pairings x86
bn446 cyc ms

projective 87,212,586 36.49

single pairing 83,336,787 34.95
20 at once (per pairing) 81,812,153 34.30

affine 20 at once, 1st argument fixed (per pairing) 77,889,927 31.26
product of 20 (per pairing) 28,082,417 11.78
product of 20, 1st argument fixed (per pairing) 20,882,757 8.72

single final exponentiation 38,388,060 16.08

x86-64, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

446-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 275 0.11 233 0.10 850 0.36 851 0.35 19188 8.04 22.33
Fp2 493 0.20 457 0.19 3821 1.60 2445 1.01 22957 9.68 6.05
Fp6 1443 0.61 1276 0.53 36683 14.81 26306 10.82 79514 33.28 2.25
Fp12 2929 1.22 2886 1.10 116564 48.31 85535 35.60 206192 86.05 1.78

optimal ate pairings x86-64
bn446 cyc ms

projective 45,515,035 19.05

single pairing 44,152,307 18.46
20 at once (per pairing) 42,817,218 17.91

affine 20 at once, 1st argument fixed (per pairing) 39,195,813 16.43
product of 20 (per pairing) 14,465,284 6.01
product of 20, 1st argument fixed (per pairing) 10,840,389 4.53

single final exponentiation 20,156,765 8.47

Table 4. Field arithmetic timings in a 446-bit prime field and optimal ate pairing
timings on a 446-bit BN curve. Field timings average over 1000 operations, pairing
timings average over 20 pairings. Timings given in cpucycles (cyc) and milliseconds
(ms).



ARM, dual-core Cortex A9 @ 1GHz, Windows

638-bit add sub M S I R = I/M
prime field µs µs µs µs µs

Fp 1.71 1.53 8.22 8.18 56.09 6.82
Fp2 3.48 3.17 31.81 20.55 91.92 2.89
Fp6 10.63 10.09 261.87 186.21 535.42 2.04
Fp12 21.04 20.28 840.07 607.36 1454.38 1.73

optimal ate pairings ARM
bn638 ms

projective 768.06

single pairing 649.85
20 at once (per pairing) 650.08

affine 20 at once, 1st argument fixed (per pairing) 609.45
product of 20 (per pairing) 164.82
product of 20, 1st argument fixed (per pairing) 124.08

single final exponentiation 413.37

x86, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

638-bit add sub M S I R

prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 597 0.25 547 0.23 3205 1.36 3197 1.37 38882 16.17 11.89
Fp2 1141 0.48 1089 0.46 12453 5.23 8048 3.46 37111 21.99 4.20
Fp6 3388 1.42 3188 1.34 103040 43.08 73492 30.94 227431 95.20 2.21
Fp12 6713 2.80 6373 2.66 331261 139.57 240109 100.24 592520 242.72 1.74

optimal ate pairings x86
bn638 cyc ms

projective 310,613,286 131.62

single pairing 263,677,987 113.17
20 at once (per pairing) 265,516,406 111.92

affine 20 at once, 1st argument fixed (per pairing) 245,536,930 105.21
product of 20 (per pairing) 68,437,346 27.57
product of 20, 1st argument fixed (per pairing) 49,751,199 20.81

single final exponentiation 167,124,395 72.70

x86-64, dual-core Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)

638-bit add sub M S I R = I/M
prime field cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 366 0.15 302 0.13 1501 0.64 1471 0.62 28451 11.90 18.59
Fp2 659 0.27 620 0.25 6176 2.58 3961 1.64 34935 14.64 5.67
Fp6 1961 0.83 1737 0.75 52965 22.17 37768 15.85 122208 51.14 2.31
Fp12 3858 1.61 3584 1.50 171676 71.60 124590 52.01 313769 130.92 1.83

optimal ate pairings x86-64
bn638 cyc ms

projective 157,309,156 65.95

single pairing 136,534,428 56.88
20 at once (per pairing) 133,301,871 55.79

affine 20 at once, 1st argument fixed (per pairing) 125,428,050 52.36
product of 20 (per pairing) 33,485,833 13.97
product of 20, 1st argument fixed (per pairing) 25,288,926 10.57

single final exponentiation 85,037,269 35.61

Table 5. Field arithmetic timings in a 638-bit prime field and optimal ate pairing
timings on a 638-bit BN curve. Field timings average over 1000 operations, pairing
timings average over 20 pairings. Timings given in cpucycles (cyc) and milliseconds
(ms).



4.1 Summary of our implementation performance results

Here we summarize some of the results given in Tables 2, 3, 4, and 5 on the
performance of our implementation across platforms and security levels. As high-
level points of comparison, we note that:

1. At all security levels, there is roughly 10-fold speed-up when switching from
the ARM to the x86-64 architecture in clock-unadjusted form. The speed-
up when switching from the ARM to the x86 architecture is about 5-fold
(clock unadjusted). For example at the 128-bit security level, Table 2 shows
an affine optimal ate pairing on the ARM processor at 51 milliseconds vs.
5.9 milliseconds on x86-64. Using the same word-length (unit of operation
for unsigned integers) of 32 bits, a still rough but almost apples-to-apples
comparison between ARM and x86 when adjusted for clock speed can be
given by dividing the ARM timing by 2.4 to get 51/2.4 = 21.25 milliseconds.
This compares to 13 milliseconds on x86, slightly less than twice the speed of
the ARM platform. We conclude that, architecturally, computing a pairing
on x86 is about twice faster than on our ARM platform. We think that the
major reason for this difference is the use of SSE2 instructions on x86. The
clock-adjusted difference should narrow when we use SIMD instructions on
ARM.

2. Affine coordinates are better than projective coordinates for optimal ate
pairing computation in all cases shown: all platforms, all security levels.
The trend is toward bigger differences at higher security levels. On all three
platforms, the affine pairing is roughly 20% better at the 192-bit security
level instead of 10% better at the 128-bit security level.

For example, on ARM for the 254-bit curve, an affine pairing takes 51 mil-
liseconds while the projective pairing takes 55 milliseconds, whereas on ARM
for the 638-bit curve, an affine pairing takes 650 milliseconds while the pro-
jective pairing takes 768 milliseconds. On x86-64 for the 254-bit curve, an
affine pairing takes 5.9 milliseconds while the projective pairing takes 6.3
milliseconds, whereas on x86-64 for the 638-bit curve, an affine pairing takes
56.9 milliseconds while the projective pairing takes 65.9 milliseconds.

3. The inversion-to-multiplication ratio is lower in the base fields on the ARM
platform at all security levels. For example, for 254-bit fields, the I/M ratio
on ARM is 10.7 versus 25 for the x86-64 platform. For 638-bit fields, the I/M
ratio on ARM is 6.8 versus 18.6 for the x86-64 platform.

4. The inversion-to-multiplication ratio is lower in larger base fields on all plat-
forms. This can be seen in the example just given for the previous observa-
tion. Also, it largely explains observation 2 above.

5. In the degree-12 extension fields, the inversion-to-multiplication ratio is close
to 1.7:1 on all platforms at all security levels. There is very little variation
in that, despite big differences in ratios in the base fields, as observed in the
last two points.

6. The percentage of the computation time spent on the final exponentiation
goes up at the higher security levels, and this is true across platforms:



For example, on ARM for the 254-bit curve, an affine pairing spends 48%
of the time on the final exponentiation, whereas on ARM for the 638-bit
curve, an affine pairing spends 63% of the time on the final exponentiation.
On x86-64 for the 254-bit curve, an affine pairing spends 47% of the time on
the final exponentiation, whereas on x86-64 for the 638-bit curve, an affine
pairing spends 63% of the time on the final exponentiation.

5 Related work

In this section, we compare the performance of our pairing implementation on
ARM to related work previously presented in the literature. However, we note
that different implementations are often hard to compare because they use very
different underlying hardware, different processors that may operate at totally
different clock frequencies, use different operating systems, aim at a different
security level or use other pairing-friendly curves with different properties. We
still feel that it is worth contrasting our implementation with previous work.

For applications of pairings to privacy of electronic medical records using
Attribute-Based Encryption for key management, some recent performance num-
bers for pairings on ARM processors were reported in [1]. The comments in [1,
Section 6.1] give rough performance numbers for pairings on ARM: the Pairing-
Based Crypto (PBC) [19] library computes pairings in 135 milliseconds on an
ARM processor running on Apple A4 chip-based iPhone 4, running iOS 4 with
512MB of RAM and computing on a 224-bit MNT elliptic curve.

As mentioned above, it is hard to compare across different hardware and
operating systems, but as a point of reference, our implementation of affine
optimal ate pairings computes pairings on curves of comparable security level,
222-bit BN curves, in 53 milliseconds, on the hardware Tegra 2 NVidia, Dual-
core ARM Cortex A9, 1GHz, 1MB L2 cache, 32KB/32KB (I/D) L1 per core,
DDR2-667. Note that MNT curves have embedding degree 6 instead of 12 as for
BN curves, which means less security and faster extension field operations and
final exponentiation.

Another paper with performance numbers for pairings on small processors for
embedded devices is [25], which reports the performance of Tiny PBC. TinyPBC
is an efficient implementation of pairing-based cryptography (PBC) primitives,
suited for example for 8-bit processors used in wireless sensor networks (WSNs).
TinyPBC is open source code based on RELIC [2], a publicly available C library
which contains highly efficient code for optimized pairing computations, provid-
ing about 70 bits of security. For 8-bit processors, working on elliptic curves over
binary fields GF(2271) and using embedding degree 4, their implementation is
able to compute pairings in about 1.9 seconds on the MICAz Mote sensor node,
an ATmega128L microprocessor at 7.3828-MHz, with 4KB SRAM and 128KB
ROM. On processors more comparable to the ones considered here, on the Imote2
platform (13MHz PXA271, a 32-bit ARMv5TE with 32 KB data cache and 32
KB instruction cache), their implementation showed a pairing computation in
140 milliseconds [25, Table 3]. Again these computations are not really compara-



ble because of the 70-bit security level, different hardware and operating system,
binary fields, different curve and embedding degree.

In [31] the authors report a performance of some optimal pairings on super-
singular elliptic curves in characteristic 3, using the BREW emulator on 150 MHz
and 225 MHz ARM9 processors. Their implementation achieves a pairing com-
putation in 401 and 262 milliseconds respectively over the base field GF(3193)
on curves claimed to be at the 80-bit security level.

Acknowledgements. We thank Patrick Longa and Diego F. Aranha for valu-
able comments on an earlier version of this work and interesting discussions.

References

1. J. A. Akinyele, C. U. Lehmanny, M. D. Green, M. W. Pagano, Z. N. J. Peterson,
and A. D. Rubin. Self-protecting electronic medical records using attribute-based
encryption. Cryptology ePrint Archive, Report 2010/565, 2010. http://eprint.

iacr.org/2010/565/.
2. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.

http://code.google.com/p/relic-toolkit/.
3. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit

formulas for computing pairings over ordinary curves. In Advances in Cryptology –

EUROCRYPT 2011, Lecture Notes in Computer Science, Tallinn, Estonia, 2011.
Springer. To appear.

4. E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key
management - part 1: General (revised). Technical report, NIST National Insti-
tute of Standards and Technology, 2007. Published as NIST Special Publication
800-57, http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_
3-8-07.pdf.

5. P. S. L. M. Barreto, H. Y. Kim, B. L., and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In CRYPTO 2002, volume 2442 of Lecture Notes in

Computer Science, pages 354–368. Springer, 2002.
6. P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-

based cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.
7. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.

In Selected Areas in Cryptography – SAC 2005, volume 3897 of Lecture Notes in

Computer Science, pages 319–331. Springer, 2006.
8. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and

H. Shacham. Randomizable proofs and delegatable anonymous credentials. In
Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Com-

puter Science, pages 108–125. Springer, 2009.
9. J.-L. Beuchat, J. E. González Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-

Henŕıquez, and T. Teruya. High-speed software implementation of the optimal
ate pairing over Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing

2010, volume 6487 of Lecture Notes in Computer Science, pages 21–39. Springer,
2010.

10. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In
Theory of Cryptography – TCC 2005, volume 3378 of Lecture Notes in Computer

Science, pages 325–341. Springer, 2005.



11. C. Costello, T. Lange, and M. Naehrig. Faster pairing computations on curves
with high-degree twists. In Public-Key Cryptography – PKC 2010, volume 6056 of
Lecture Notes in Computer Science, pages 224–242. Springer, 2010.

12. S. D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Claus Fieker and David R. Kohel, editors, ANTS-V, volume 2369 of Lecture Notes

in Computer Science, pages 324–337. Springer, 2002.

13. R. Granger and M. Scott. Faster squaring in the cyclotomic group of sixth degree
extensions. In Public-Key Cryptography – PKC 2010, volume 6056 of Lecture Notes

in Computer Science, pages 209–223. Springer, 2010.

14. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
415–432. Springer, 2008.

15. F. Heß, N. P. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Trans-

actions on Information Theory, 52:4595–4602, 2006.

16. Ç. K. Koç and T. Acar. Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16:26–33, 1996.

17. K. Lauter, P. L. Montgomery, and M. Naehrig. An analysis of affine coordinates
for pairing computation. In Pairing-Based Cryptography – Pairing 2010, volume
6487 of Lecture Notes in Computer Science, pages 1–20. Springer, 2010.

18. E. Lee, H. S. Lee, and C.-M. Park. Efficient and generalized pairing computation
on Abelian varieties. IEEE Trans. on Information Theory, 55(4):1793–1803, 2009.

19. B. Lynn. The Pairing-Based Cryptography Library (PBC). available at
http://crypto.stanford.edu/pbc/.

20. V. S. Miller. Short programs for functions on curves, 1986. Unpublished
manuscript. http://crypto.stanford.edu/miller/.

21. V. S. Miller. The Weil pairing and its efficient calculation. Journal of Cryptology,
17(4):235–261, 2004.

22. P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519–521, 1985.

23. M. Naehrig. Constructive and Computational Aspects of Cryptographic Pairings.
PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2009.

24. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for
cryptographic pairings. In Progress in Cryptology – Latincrypt 2010, volume 6212
of Lecture Notes in Computer Science, pages 109–123. Springer, 2010. Corrected
version: http://www.cryptojedi.org/papers/dclxvi-20100714.pdf.

25. L. B. Oliveira, D. F. Aranha, C. P. L. Gouvêa, M. Scott, D. F. Câmara,
J. López, and R. Dahab. TinyPBC: Pairings for Authenticated Identity-Based
Non-Interactive Key Distribution in Sensor Networks. Computer Communications,
34(3):485–493, 2011.

26. G. C. C. F. Pereira, M. A. Simpĺıcio Jr, M. Naehrig, and P. S. L. M. Barreto.
A family of implementation-friendly BN elliptic curves. Journal of Systems and

Software, 2011. To appear, doi:10.1016/j.jss.2011.03.083.

27. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryp-

tology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 457–473. Springer, 2005.

28. M. Scott, N. Benger, M. Charlemagne, Ls J. Dominguez Perez, and E. J. Kachisa.
On the final exponentiation for calculating pairings on ordinary elliptic curves.
In Pairing-Based Cryptography – Pairing 2009, volume 5671 of Lecture Notes in

Computer Science, pages 78–88. Springer, 2009.



29. N. Smart (editor). ECRYPT II yearly report on algorithms and keysizes (2009-
2010). Technical report, ECRYPT II – European Network of Excellence in Cryp-
tology, EU FP7, ICT-2007-216676, 2010. Published as deliverable D.SPA.13,
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

30. F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

31. M. Yoshitomi, T. Takagi, S. Kiyomoto, and T. Tanaka. Efficient implementation
of the pairing on mobilephones using brew. In Information Security Applications

– WISA 2007, volume 4867 of Lecture Notes in Computer Science, pages 203–214.
Springer, 2007.


