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ABSTRACT 
Two important performance metrics in collaborative 

systems are local and remote response times. Previous 

analytical and simulation work has shown that these 

response times depend on three important factors: 

processing architecture, communication architecture, and 

scheduling of tasks dictated by these two architectures.  We 

show that it is possible to create a system that improves 

response times by dynamically adjusting these three system 

parameters in response to changes to collaboration 

parameters such as new users joining and network delays 

changing.  We present practical approaches for collecting 

collaboration parameters, computing multicast overlays, 

applying analytical models of previous work, preserving 

coupling semantics during optimizations, and keeping 

overheads low. Simulations and experiments show that the 

system improves performance in practical scenarios.  
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INTRODUCTION 
As the landscape of available collaborative applications 

expands, it is critical for an application to differentiate itself 

from the rest of the field in a useful fashion. An important 

differentiation factor for these systems is performance. If an 

application does not respond to user actions in a timely 

fashion or quickly notify users of actions of others, users 

may get frustrated and switch to a different application.  

In general, in computer science, the performance of a 

system is a function of available resources. If resources are 

abundant, then the system always performs well. On the 

other hand, if resources are insufficient, then the system 

never performs well. These two boundary cases bracket the 

case in which resources are sufficient but scarce, called the 

window of opportunity [9].  In the window of opportunity, a 

system can have good performance, but new algorithms and 

implementations may be necessary to achieve it.  

In this paper we focus on the window of opportunity for 

improving the performance of collaborative systems. We 

present a new collaborative framework that can take 

advantage of this opportunity and meet performance criteria 

better than existing systems without requiring hardware, 

network, or user-interface changes. Several performance 

metrics have been identified, such as local [14] and remote 

[4] response time, throughput [5], bandwidth [7], jitter [6], 

task completion time [2], and frame rate [16]. While all of 

them are important, our focus is on response times.  

Previous work has shown that response times depend on 

three important factors: processing architecture, 

communication architecture, and scheduling of tasks 

dictated by these two architectures [2,3,10,11].  This work 

has developed theoretical analytical models and used 

simulations to validate these models. In this paper, we 

present a system that keeps track of all three of these factors 

and dynamically adjusts them to improve response times.  

A flavor of the kind of improvements the system can 

provide is shown in Figure 1. It shows the response times 

from an actual collaborative session and that they are better 

with than without the system. In fact, the performance with 

the system eventually approaches the x-axis, which is the 

theoretical best performance where response times are zero. 

More importantly, these improvements are noticeable to 

users. Human-perception studies by Youmans [17] and Jay 

 
Figure 1.  Response times during an actual collaboration 

session with and without the self-optimizing system 
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et al. [8] have shown that people can notice changes of 

50ms in local and remote response times, respectively. As 

the response times in Figure 1 show, the system improves 

the response by as much as 300ms, which is noticeable. 

The rest of this paper is organized as follows. First, we 

discuss background work that motivated the development 

of our system. We then present an issue based discussion of 

the implementation of the system. Following this, we 

present simulations and experiments that evaluate the 

benefits of the system in practical collaboration scenarios. 

Then, we discuss practical applications and broader impacts 

of the system. We end with conclusions and future work. 

BACKGROUND WORK  
Three important response time factors identified so far are 

processing architecture, communication architecture, and 

scheduling of tasks dictated by these two architectures.  

Processing Architecture 
Two main architectures have been used in the construction 

of collaborative systems [3]: centralized (client-server) 

replicated (peer-to-peer). In both cases, it is assumed that 

the shared application is logically divided into separate 

user-interface and processing components. The user-

interface component transforms user input into input 

commands and sends these commands to the program 

component. Conversely, it processes output commands that 

it receives from the program component and transforms the 

result into updates to the display. The program component 

processes user input by converting input commands to 

output commands. The user-interface component is 

replicated on each user’s computer and allows a user to 

manipulate application state not shared with the other users. 

The program component is logically shared by all users and 

may be physically centralized or replicated, depending on 

the processing architecture. Each user interface is mapped 

to exactly one program component. 

In the centralized (client-server) architecture, all of the 

user-interface components are mapped to a single program 

component running on one of the user’s computers. The 

computer running the program component is called the 

master and all of the other computers are called slaves. In 

the replicated (peer-to-peer) architecture, each user-

interface component is mapped to the program component 

running on the local computer. Whenever a master receives 

a command from the local user, it sends the command to all 

of the other computers, thereby ensuring the program 

components on different masters are kept in sync. 

The traditional rule of thumb has been that the replicated 

architecture provides the best response times. While there 

are scenarios in which this rule is accurate, Chung [2] was 

the first to show, both analytically and experimentally, that 

(a) low network latency actually favors a centralized 

architecture and (b) asymmetric processing powers actually 

favor a centralized architecture. 

Communication Architecture 
Regardless of whether a centralized or the replicated 

architecture is used, master computers transmit commands 

to all other computers. If commands are large or the number 

of users is high, then transmission costs can be high. 

An important question when transmission costs are high is 

whether a master computer uses unicast or multicast to 

communicate with other computers. Junuzovic and Dewan 

[10] studied the use of multicast in realistic collaboration 

scenarios. They found that while multicast usually improves 

response times, it can harm them in some cases. 

Scheduling Policy 
Both the processing and the communication architecture 

mandate specific tasks that the users’ devices must perform. 

The processing architecture determines which computers 

process input commands in addition to processing outputs, 

while the communication architecture dictates the 

destinations to which a computer transmits commands. 

The order in which a computer carries out the processing 

and transmission tasks impacts response times. Four single-

core policies for scheduling these tasks have been identified 

by Junuzovic and Dewan [11]. Three of these are 

straightforward: (a) process-first, which completes the 

processing task before starting the transmission task, (b) 

transmit-first, which does the reverse, and (c) concurrent, 

which creates a separate thread for each of these tasks and 

schedules these threads in a round-robin fashion. The 

fourth, called lazy, gives precedence to the processing task, 

but delays its execution and allows the transmission task to 

run during this delay if the resulting increase in local 

response times is not noticeable. As a result, a part of the 

transmission task can run earlier, thereby noticeably 

improving remote response times of some users.  

On multi-core devices, intuitively the best response times 

will be obtained by executing the transmission and 

processing tasks in parallel on as many cores as possible. 

However, Junuzovic and Dewan [11] argue against this 

intuition. Specifically, they state that neither task should be 

scheduled on more than one core. Their reason for 

scheduling the processing task on one core is because in 

general the processing task is an application defined black 

box that cannot be parallelized by general frameworks. The 

reason for doing so with the transmission task is two-fold. 

First, using multiple cores for the transmission task makes it 

difficult to predict response times because the operating 

system can schedule the parallel send calls in an arbitrary 

order. Second, since the CPU is much faster than the 

network card, a single core saturates the network card. Thus 

there are no performance gains to using multiple cores to 

perform the transmission task.  

They simulated performance with these policies in realistic 

scenarios. On single-core devices, they found that the (a) 

the lazy policy dominates the process-first policy and (b) 

none of the lazy, transmit-first, and process-first policies 
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dominate each other. On multi-core devices, they found that 

(a) the parallel policy dominates all single-core policies and 

(b) using one core to perform both tasks can give 

performance that is equivalent to that of the parallel policy. 

Summary 
In summary, previous work has studied the impact of 

processing architecture, multicast, and scheduling policy on 

response times. Prior work shows that the combination of 

these three factors that provides the best response times 

depends on collaboration conditions. As these conditions 

can differ within and across collaborative sessions, it would 

be useful to develop a system that automatically optimizes 

the factors. In this paper, we present the first such system.  

SYSTEM 
In this first cut at the design and evaluation of a system that 

improves performance by automatically maintaining the 

processing architecture, communication architecture, and 

scheduling policy, we focused on three driving problems: a 

distributed PowerPoint presentation; a collaborative 

Checkers computer game; and instant messaging. They are 

important examples of real collaborative scenarios. 

Distributed presentations are becoming common, instant 

messaging is pervasive, and collaborative games, such as 

checkers, chess, and online poker, are extremely popular. In 

fact, by itself, distributed presentations are an important 

scenario as an entire industry has been created around them. 

The self-optimizing framework both shares applications and 

improves their performance. These two responsibilities are 

carried out by the sharing and optimization sub-systems.  

Sharing Sub-System 
The sharing sub-system is a reimplementation of Chung’s 

approach [2]. In Chung’s work, a part of the system, which 

we refer to as the client component, is logically situated 

between the user-interface and program components on 

each computer. The application is not aware of the system 

component: to the user interface, it appears to be the 

program component, and to the program component, it 

appears to be the user interface. The client components 

communicate directly with each other. They can be setup to 

enforce replicated or centralized architectures. In our 

system, we modified these components to also support 

multicast. We also modified them to support scheduling 

policy enforcement. When they intercept a command, they 

create separate threads for processing and transmitting the 

command. By controlling when and on what core these 

threads execute, they can enforce any scheduling policy. 

Optimization Sub-System 
While modifying the sharing aspects of Chung’s system is a 

contribution, our main contribution is the optimization sub-

system and the implementation issues it raises.  

Driving Optimization Decisions 

The main question with any optimization system is how it 

derives optimization decisions. In our case, the question 

translates to how it predicts the combination of response 

time parameters that give the best response times.  

One approach is to use learned rules of thumb. Wolfe et al. 

[16] developed a system called Fiia that uses rules of thumb 

along with developer hints to automatically centralize or 

replicate parts of the application at runtime in order to 

improve response times and frame rates. As mentioned 

earlier, however, an issue with using rules of thumb is that 

they do not always accurately predict performance. For 

instance, Chung showed that there exist collaboration 

conditions that favor a centralized architecture for good 

response times, which contrasts the rule of thumb that the 

replicated architecture provides the best response times.   

An alternative approach that always accurately predicts 

performance is to use an analytical model. Ideally, an 

analytical model should predict the impact on performance 

of processing architecture, communication architecture, and 

scheduling policy since these have been shown to be 

response time factors. It should also support an arbitrary 

number of users and take advantage of the latest hardware 

and software trends such as multi-core CPUs and non-

blocking communication. The only model of which we are 

aware that satisfies all of these requirements was presented 

by Junuzovic and Dewan [11], which predicts response 

times in centralized and replicated architectures with an 

arbitrary number of users. It supports think times, multicast, 

multi-core processors, and non-blocking communication.  

An analytical model usually has a set of assumptions that 

define the scenarios in which the model applies. Junuzovic 

and Dewan [11] make only one assumption: an application 

implements only mandatory coupling functionality and no 

optional functionality, such as awareness and concurrency 

control. This assumption is satisfied by the applications that 

we target, namely, PowerPoint, Checkers, and IM. In 

general, however, applications implement optional 

functionality. We will return to the issue of optimizing 

these applications in more detail in the discussion section.  

To apply the Junuzovic and Dewan [11] model, one must 

first collect values for all of its parameters. Moreover, while 

the model predicts performance with multicast, it does not 

actually build a multicast overlay. Therefore, one must also 

compute a multicast overlay before invoking the model.  

Collecting Values of Collaboration Parameters 

The parameters include for each computer the processing 

and transmission times of input and output commands, the 

think times, and network latencies to all other computers. 

While most of these parameters are self-explanatory, the 

transmission times warrant a second look. The transmission 

of a command is done in two steps: first, the CPU queues 

the command for transmission by the network card, and 

then the network card transmits the command. Thus, the 

time required for both steps needs to be collected.  

Parameter values are measured by a client component of the 

optimization sub-system running on each computer. These 
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components record the processing and transmission times 

of each command, as well as its think time if the local user 

entered it. They also measure network latencies to other 

computers, as well as, report the performance data. 

Once parameters are collected during a session, it pays to 

save them as this can reduce the time the system takes to 

perform the first optimization in future sessions. For 

instance, processing and transmission costs measured for a 

computer in one session can be used as cost estimates for 

that computer in future sessions. Further reuse is possible 

by grouping and saving these costs based on processor type. 

Think times can also be reused by grouping them on a user 

or application basis. With the reuse of values of these 

parameters, the system can perform an optimization in a 

future session as soon as it collects network latencies.  Such 

reuse is also useful when latecomers arrive. Specifically, if 

costs have been gathered for the latecomer’s computer type, 

then the system can optimize response times as soon as it 

receives latencies among the latecomer and other users.  

Computing Multicast Overlays 

The idea of multicast requires the construction, for each 

source of messages, a multicast overlay that defines the 

paths a message takes to reach its destinations. We make 

two assumptions regarding multicast. First, because IP-

multicast is not widely deployed, we assume an application-

layer multicast in which end-hosts form the overlay. 

Second, as in peer-to-peer file sharing systems, we assume 

that only the users’ computers can be used in the overlay. In 

this first-cut at a self-optimization system that uses 

multicast, we did not want to develop a new multicast 

scheme. Instead, we chose an existing application-layer 

scheme: the HMDM algorithm presented by Brosh and 

Shavitt [1]. It is the only algorithm of which we are aware 

that accounts for application-layer transmission costs. 

Applying a multicast algorithm requires the collection of its 

parameters. The HMDM scheme parameters include 

network latencies and transmission costs. Since these 

parameters are also collected for the analytical model, no 

additional data needs to be collected by our system in order 

to build a multicast tree using the HMDM scheme. 

An important issue is how many multicast trees are 

computed. One option is to compute a multicast tree rooted 

at every user, but HMDM’s                     
runtime makes this approach impractical in large scenarios. 

A more practical alternative is to compute a single multicast 

tree that is shared by all users. An issue with this option is 

that a command from any user but the one who is at the root 

of the tree must first reach the tree, which increases the 

response times. Our system can be configured to create an 

arbitrary number of trees. The default is one. 

Applying the Analytical Model 

Once a multicast overlay is created, the system can use the 

analytical model to predict performance. Unfortunately, it 

may not be able to predict performance for all combinations 

of response time factors using only the reported values. The 

reason is that some parameter values may be missing 

because not all computers report values of all parameters at 

all times. For example, in a centralized architecture, a slave 

does not report input processing costs, so the collected 

values are not sufficient for predicting the performance of 

an architecture in which the slave is a master. 

When parameter values are missing, it is possible to 

estimate them using the values of other parameters. One 

approach is to assume that the input and output processing 

cost ratio is the same for all computers. Since there is 

always a master computer, the ratio can be computed. 

Consider the missing input processing cost of a slave. A 

master’s processing cost ratio and the slave’s output 

processing cost can be used to estimate the missing value. 

Other parameters can be estimated similarly.  

Estimated parameter values may not reflect the actual 

parameter values, however, so they may result in 

optimizations that degrade performance. Such degradations 

are temporary. As the optimization system gathers data, it 

will eventually discard estimated values. In addition, by 

reusing computer costs across sessions, eventually, it will 

know most if not all parameter values at session start time. 

While the analytical model is able to predict performance 

for different configurations of a system, it does not predict 

which configuration gives the best performance. The 

simplest approach for picking a configuration is to pick the 

one with the best average response times. However, this 

approach does not account for the fact that response times 

are inherently partially ordered and external criteria must be 

used to create a total order. In general, infinitely many 

external criteria exist and their application depends on the 

response time requirements. To satisfy the requirements, we 

rely on the notion of a response time function introduced by 

Junuzovic and Dewan [11], which is an expression of the 

requirements. Their function distinguishes between primary 

and secondary users and between local and remote response 

times. It accepts response times of configurations, a list of 

inputting users, and identities of all users as parameters and 

returns a ranking of configurations from best to worst.  

Preserving Coupling Semantics During Optimizations  

Once the system begins to perform an optimization, it is 

important to ensure that the switch is performed atomically 

from the perspective of commands already in the system or 

those entered during the change. Otherwise, a command 

may not reach all of its intended destinations or it may 

reach a destination multiple times. For example, during 

processing architecture change, a computer that changed 

from a master to slave may receive an input command, 

which would be inconsistent with the notion of replicated 

and centralized architectures. Also, during a communication 

architecture change, a command may reach a destination 

multiple times since a computer may forward commands to 

different destinations in the old and the new architectures.  

In some cases, an optimization may be performed when the 

shared application is in a quiescent state, in which case 
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distribution semantics are not impacted by the change. For 

example, a switch may happen during think times if they 

are high. Alternatively, the system could ensure a quiescent 

state by delaying an optimization until users take a break. 

In general, however, an optimization may be triggered 

when the shared application is in a non-quiescent state. One 

approach to performing the optimization atomically is to 

suspend user inputs during the switch and wait for the 

distribution of commands already in the system to complete 

before starting the optimization. An issue with this solution 

is that response times of commands can be high if the 

switch time is long. A more intelligent solution is to run the 

old and new configurations in parallel and switch to the 

new configuration when it is fully deployed, which is done 

by Chung for processing architecture changes [2]. As this 

approach has been implemented previously for processing 

architecture changes, we did not duplicate it in our system. 

However, as discussed below, our system demonstrates that 

the general idea of concurrently running two architectures 

can be applied to other reconfiguration steps. Specifically, a 

compromise taken by our system is to break the 

optimization into three sequential atomic sub-steps, one for 

each response time factor, and suspend user inputs only 

during the processing architecture change. Since the 

processing architecture defines which computers process 

inputs, it must be deployed before the communication 

architecture as the latter dictates how inputs are distributed. 

The scheduling policy can be changed last as it is 

independent of the two architectures.  

Our system first changes the processing architecture by 

reconfiguring the client components of the sharing system. 

To bring program components up to date on computers 

changing from a slave to a master, it uses Chung’s solution 

[2] of replaying input commands to these components. To 

support the replay, the system logs input commands on 

master computers. It picks one old master at random to 

replay commands to new masters. During the change, the 

system suspends user inputs.  

One issue when deploying a new processing architecture is 

deciding what communication architecture and scheduling 

policy should be used until they are also changed. In 

particular, since the new processing architecture redefines 

which users process input commands, a previous multicast 

architecture may distribute input commands to new slave 

computers, which is inconsistent with the notion of 

collaboration architectures. Therefore, when changing the 

processing architecture, the system changes the 

communication architecture to unicast. The system must 

also choose a scheduling policy to use. It simply keeps the 

old scheduling policy since, as mentioned above, task 

scheduling is independent of the processing architecture.  

Once the new processing architecture is deployed, the 

system resumes user inputs and begins the communication 

architecture change. During this step, the system changes 

the communication pattern among the client components. 

To handle user inputs, the system continues to distribute 

them using the old architecture while it deploys the new 

one. The new communication architecture is activated only 

once it has been deployed on all computers, and it is 

immediately used for all new commands.  

An important aspect of the system is that it does not discard 

the old architecture immediately after activating the new 

one. The reason is that when the new architecture is 

activated, there may be commands that have been only 

partially distributed using the old architecture. Thus, the old 

architecture continues to distribute these commands. To 

help each other decide which architecture to use, source 

computers tag each command with the version number of 

the architecture that should be used to distribute it. The net 

effect of using the old architecture for commands entered 

before the new architecture is activated is that from the 

perspective of commands, the change is atomic because a 

command is distributed using only the old or only the new 

architecture. Eventually, the old architecture can be torn 

down. To ensure that it is not removed prematurely, the tear 

down should be delayed by the maximum response time. In 

our experience, a delay of several minutes is sufficient.  

Finally, the system performs the scheduling policy change. 

A scheduling policy change is always atomic from the 

perspective of user commands because scheduling policies 

do not determine the distribution of commands. However, 

using a mix of old and new policies may lead to 

performance degradations because the performance was not 

predicted for any mix of policies. Fortunately, it is a 

temporary degradation; once the computers switch to the 

new policy, the performance will improve as predicted. 

Minimizing Overhead Impact on Performance 

The optimization steps described above require both CPU 

and network resources. Therefore, care must be taken so 

that they do not negatively impact performance.  

Two of these steps have to be executed by the client 

components on the users’ computers. Only these 

components can accurately measure the model parameters, 

and only they can reconfigure themselves when an 

optimization is performed. The data collection and 

reporting overheads can negatively impact the response 

times of the local user, although in our experiments they 

were insignificant. If these overheads are an issue, they can 

be reduced by increasing (a) the number of commands a 

client waits before reporting data, (b) reducing the network 

latency polling frequency of a client, and (c) reducing the 

number of destinations in each latency poll.  

The remaining steps are particularly CPU intensive. One 

reason is that they involve the execution of the multicast 

algorithm, which requires heavy computation when there 

are many users. Fortunately, these steps do not need to be 

executed by the client components. We encapsulate them 

into a component called the server component. An 

important issue is the location of the server. We do not 

centralize it on a user machine for fear of degrading the 
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user’s response times. An alternative is to distribute the 

server among multiple machines. While this decentralized 

approach reduces the performance impact on any single 

user, such approaches in general suffer from a distributed 

consensus problem. To avoid the consensus issue, we 

centralize the server, but on an infrastructure (non-user) 

computer, such as the one running the session manager. 

Such a computer exists even in the most highly distributed 

systems, and is often called the bootstrapping node [15]. An 

issue with this approach is that computing an optimization 

may take a long time when there are many concurrent 

sessions. Fortunately, this issue is temporary, as the system 

eventually finishes the computation. More importantly, it 

does not degrade response times during this time. 

EVALUATION 
So far, we have presented the self-optimizing system. An 

important question is whether it has practical benefits.  

Experiments vs. Simulations 
In computer science, it is common that the performance of a 

system is evaluated through experiments and simulations. 

Experiments measure the performance of a system in use, 

while simulations estimate the performance of a system by 

using an analytical model of the system. Simulations are 

more than a pure theoretical evaluation, however. While 

theoretical evaluations can give trends and implications, 

simulations can also provide quantitative results.  

The choice between experiments and simulations involves a 

tradeoff. Although experimental results are arguably more 

believable than simulated results, simulations generally 

require fewer resources than experiments making them 

easier to run. In fact, when large scale experiments are not 

possible because of a lack of resources, simulations may 

still be possible. In this case, one way of reducing the 

“believability gap” is to validate subparts of the simulation 

with small-scale experiments.  

Whenever possible, we performed experiments instead of 

simulations. Unfortunately, in our lab, we do not have a 

sufficient number of machines to perform large experiments 

– we only have ten. Although public clusters, such as 

PlanetLab and Amazon’s EC2, provide access to a large 

number of machines, they do not offer sufficient control 

needed for performance experiments. For instance, there is 

no way to ensure that the same set of machines is always 

used. In addition, in PlanetLab, machine loads can vary 

across experiments because users share machines. Thus, for 

our large scale scenarios, we had to use simulations.  

When we performed large-scale simulations, we also 

carried out smaller-scale experiments that were possible on 

our equipment to validate subparts of the simulations. We 

used a virtualization approach in which we treat each user’s 

computer as a virtual computer that is mapped to a physical 

computer. One physical computer may have multiple virtual 

computers mapped to it. We added the virtualization 

functionality to our framework. It supports mapping up to 

one hundred users onto a single computer before memory 

becomes an issue. The performance data for users who are 

not mapped to a dedicated physical computer must be 

discarded because when multiple users are mapped to a 

single physical computer, timing measurements for them 

and thus any users downstream from them are not reliable.  

Processing Architecture Automation Experiments 
We used experiments to study the impact on performance 

of processing architecture changes in practical scenarios. To 

obtain realistic user commands and think times, we logged 

a collaborative Checkers game in which users play together 

against the computer. We chose this program because it is a 

computer-intensive task and its transmission costs are low, 

allowing us to validate the effect of processing time 

differences. In the experiments we conducted to gather 

these logs, two users played together against the computer 

and both users made Checkers moves. We assumed that the 

data in the logs is independent of the number of 

collaborators, their devices, and network latencies. 

We used three computers, a Core2 2.0GHz desktop, a P4 

1.7GHz desktop, and a P3 500MHz desktop, which have 

processing power differences that can be expected when 

users collaborate. We use the P3 desktop to simulate next-

generation mobile devices and current generation netbooks. 

The computers are connected on a local LAN. Thus, the 

latencies between them were low (i.e., ~0ms).  

To replay the logs, we added functionality to our system 

that enables us to replay previously recorded logs. For fear 

of having our measurements affected by other applications, 

we removed as many active processes as possible on each 

computer, which is a common approach in experiments 

comparing alternatives. Nevertheless, as LAN delays and 

CPU loads vary during an experiment, we performed each 

one ten times and report the average performances.  

We performed the following three-user experiment. 

Initially, two users are playing Checkers. User1 is using the 

P4 and user2 the P3 desktop. Suppose that the users are on 

the same LAN. Suppose also that after fifteen turns, user3 

joins using a Core2 desktop on the same LAN. We 

performed two sets of three experiments. In both sets, we 

used all three possible initial architectures: replicated, 

centralized on user1’s P4 desktop, and centralized on user2’s 

P3 desktop. In the first set of experiments, the optimization 

system was disabled so the architecture did not change 

during the session, while in the second set, it was enabled. 

We did not provide any historical performance data to the 

optimization system; it collected all data from reports sent 

during the session. We configured (a) the client components 

to send reports after each command, (b) the clients to poll 

for network latencies every sixty seconds, and (c) the server 

component to perform optimizations every five commands. 

Finally, we used a total order function that ranks one 

system to be better than another if the former gives better 

response times to more users than the latter.  
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We expect two optimizations. We expect the first one to 

occur five moves into the game as the system gathers 

sufficient data by then. It should result in a switch to the 

centralized architecture in which the P4 is the master. The 

reason is that the P4 is more powerful than the P3. We 

expect the other optimization to happen after the twentieth 

move as this is five moves after user3 joins, which means 

that sufficient data has been collected for user3’s computer. 

It should result in a switch to the centralized architecture in 

which the Core2 is the master because it is the most 

powerful computer in the session. Specifically, we also 

expect that when the user3 joins, the arrival does not trigger 

an optimization as there is no data for user3’s computer. It 

should join as a slave of user1. Since we expect 

optimizations after the fifth and twentieth commands, we 

present the average response times for commands one to 

five, six to twenty, and twenty-one to forty-eight (the end). 

As Table 1 shows, in all cases except one, the performance 

is either better or no worse with than without optimization. 

As mentioned above, we consider a change of 50ms in 

response times significant. The highlighted cells in the table 

show noticeable improvements. Consider user2’s response 

times. When the replicated architecture is used initially, the 

user2’s average response times are improved by 133ms and 

77.9ms after the first and second optimization, respectively. 

The only case in which performance is worse with than 

without the self-optimizing system occurs for user3 for 

commands six through twenty when the replicated 

architecture is used initially. This is actually expected. The 

reason is when the optimization system is running, by the 

time user3 joins, the system had switched to the centralized 

architecture in which user1’s computer is the master. Thus, 

when user3 joins, user3’s computer joins as a slave of 

user1’s computer. On the other hand, when the system is not 

running, the architecture had not changed from replicated to 

centralized before user3 joined. Thus, user3’s computer 

would have joined as a master. Since user3 has a more 

powerful computer than user1, the architecture in which it is 

the master will offer better performance to user3. 

As described earlier, user inputs are paused during a 

processing architecture change. In our experiments, the 

pause did not negatively impact performance. The reason is 

that the maximum switch time, 360ms, was less than the 

minimum think time, 2134ms, so a switch could only 

happen either during think time or overlap with at most one 

command. The former was always true in our experiments.  

System overheads also had no impact on response times. 

Such an impact would be betrayed in the response times for 

the first five commands. The reason is that in the case when 

our system is running, it does not change the architecture 

during the first five commands but it is still collecting data. 

As Table 1 shows, the response times for the first five 

commands with and without our system are the same. 

Communication Architecture Automation Experiments 
As mentioned above, the choice of unicast or multicast 

communication is important when the cost of transmitting 

commands is high. Thus, to study the effects of multicast on 

response times, we must consider large scale scenarios. 

Because large scale experiments were infeasible for us, we 

relied on simulations to evaluate the benefits of our system 

in large scale scenarios. Since simulations use an analytical 

model of a system to predict the performance of the system, 

the analytical model used in our simulations is the same as 

the model used by the self-optimizing system. 

As was the case with experiments, we used realistic 

simulation data in the simulations. We considered a 

PowerPoint scenario in which the presentation is being 

given to 100, 200, 300, 400, and 500 audience members 

around the world. PowerPoint is a good choice of 

application for two reasons. It is perhaps a popular business 

collaborative application. Also, its transmission costs can 

be high, and thus multicast could help with its performance. 

To obtain realistic PowerPoint commands and think times, 

we identified user-commands in logs of actual PowerPoint 

use. We analyzed recordings of two presentations. These 

recordings contain actual data and users’ actions – 

PowerPoint commands and slides. We assumed that the 

data in the logs is independent of the number of 

collaborators, their devices, and network latencies.  

To obtain the processing and transmission costs, we ran 

small scale distributed PowerPoint sessions with our 

system. We configured to system to just collect parameters 

without making optimization decisions. We then replayed 

Architecture 
User1 User2 User3 

1-5 6-20 21-48 1-5 6-20 21-48 1-5 6-20 21-48 

Initial Opt? Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev 

Cent on 

User1 

No 44.3 34.2 74.0 48.7 33.1 16.0 67.1 27.8 88.4 46.6 48.8 15.9   61.8 43.9 34.1 16.2 

Yes 44.8 33.8 75.4 48.9 19.2 6.25 64.0 30.8 87.4 47.7 29.6 7.16   63.0 46.6 16.9 6.42 

Cent on 

User2 

No 128 91.3 217 139 98.9 49.3 131 89.0 221 139 104 49.3   174 121 98.1 49.1 

Yes 126 86.1 75.6 48.9 18.5 7.06 130 85.8 87.8 46.5 29.9 7.03   62.0 45.0 16.7 7.19 

Rep 
No 43.8 33.8 74.7 48.9 34.0 16.2 135 88.9 222 138 107 49.6   26.7 17.0 15.9 6.13 

Yes 43.9 33.6 75.3 48.4 19.4 6.45 133 86.3 88.9 46.2 29.1 6.64   62.6 44.3 17.1 6.73 

Table 1. Response times (ms) measured during the Checkers architecture optimization experiment for commands before the first 

optimization (1-5), after the first but before the second optimization (6-20), and after the second optimization (21-48) 
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the logs. To get costs for different machines, we repeated 

the procedure with four different computers: Core2 2.0GHz 

desktop; P4 1.7GHz desktop; P3 500MHz desktop; and 

1.6GHz Atom netbook. As with the Checkers experiment, 

we removed all active processes that we could from the 

computers in order to reduce noise in the measurements. 

Based on the published network latency data between 1740 

computers [12], we set the network latencies between all 

users equal to those between a random subset of 100, 200, 

300, 400, and 500 of the 1740 computers. Zhang et al. [18] 

showed that such subsets are representative of the entire set. 

To create a multicast tree, we ran the HMDM algorithm 

with the latencies and measured transmission cost values. 

Finally, we simulated the performance for a scenario in 

which (a) the centralized architecture is used, (b) the 

transmit-first policy is in effect, (b) the presenter is using a 

netbook, (c) the remaining users are using a random mix of 

netbooks and P3, P4, and Core2 desktops, and (d) a total 

order function that prioritizes maximum remote response 

times is used. We configured the system to use historical 

data and existing latencies instead of gathering them 

dynamically. We also configured it to begin performing the 

first optimization once the first command is replayed. We 

performed ten simulations and report the average results. 

Table 2 shows the maximum remote response times as the 

number of users varied. The maximum remote response 

times increased much faster with unicast than with 

multicast as the number of users grew. As the number of 

users increased from 100 to 500, the maximum unicast 

remote response time grew by 5104ms, while the multicast 

remote response times grew only by 54.31ms. Also, the 

remote response times are noticeably better with multicast 

than with unicast for all sizes of collaborations: 1052ms 

better with 100 and 6102ms better with 500 users. The local 

response times are shown in Table 3. As Table 3 shows, 

with unicast, the local response time increased linearly with 

the number of users (427.6ms), while with multicast, it 

increased slightly (2.03ms). More importantly, local 

response times were significantly better with multicast than 

with unicast for all sizes of collaborations: 82.41ms better 

with 100 and 509.0ms better with 500 users. We did not 

find high maximum remote response time variability. The 

randomness in the simulations came mainly from randomly 

assigning realistic computer types to users and latencies 

among these computers, which mainly impact the multicast 

algorithm. The HMDM scheme was able to consistently 

navigate this randomness, which is a tribute to its design. 

The simulation results show that the system can noticeably 

improve performance through multicast. Whether the 

system would actually deploy multicast depends on the 

response time function. If the function favors configurations 

that minimize the maximum local or remote response times, 

then the system would deploy multicast. Also, although 

multicast appears to always be better than unicast, unicast is 

still useful. Unicast is easy to deploy and maintain while 

multicast requires computation for both. Thus, unicast can 

be the default option that is overridden by multicast only 

when it is noticeably worse than multicast. 

Through limited experiments made possible by our 

virtualization approach described earlier, we compared the 

simulated and experimental values for a scenario with 2 and 

100 users. We found that in all but one case, the simulated 

value was within 10ms of the measured value. The case it 

was not within 10ms was the maximum remote response 

time in the 100 user scenario, where it was 79.1ms lower. 

However, the measured value was 1415ms. Thus, the error, 

though higher than the noticeable threshold, was less than 

6%. Even with the error, the response time trends predicted 

in the simulations were observed in the experiments. 

Scheduling Policy Automation Experiments 
We also measured the impact on response times of 

automating the scheduling policy maintenance. Because of 

space restrictions, we only give a summary of the results. 

We wanted to verify that our system choses the same 

scheduling policies as those predicted by Junuzovic and 

Dewan simulations [11]. They found that on single-core 

devices, the lazy, transmit-first, and concurrent policies do 

not dominate each other. Hence, the one that optimizes 

response times depends on the users’ response time 

requirements. They also show that on multi-core devices, 

the parallel policy dominates all single-core policies, 

although in some cases using a single-core policy on a 

single-core can give performance that is equivalent to that 

when using multiple cores with the parallel policy.   

As for the communication architecture results, we used the 

simulation-and-validation approach. We showed that on 

single-core devices, our system chooses the scheduling 

policy that best meets response time requirements. In 

particular, if the response time function favors a system that 

(a) provides the best local response times, our system 

deploys the lazy policy, (b) provides the best remote 

response times to as many users as possible, our system 

switches to the transmit-first policy, and (c) improves as 

many remote response times as possible without noticeably 

degrading the local response times, the system deploys the 

lazy policy. In all simulations, the remote response time 

requirements would have been satisfied noticeably worse 

with other policies. Moreover, we show that on multi-core 

devices, the system uses the parallel policy only if it gives 

Num Users 100 200 300 400 500 

Unicast 1651 2923 4227 5510 6756 

Multicast 599.3 615.4 640.5 647.5 653.7 

Table 2. Average maximum remote response times (ms) 

Num Users 100 200 300 400 500 

Unicast 164.2 271.2 378.1 485.0 591.9 

Multicast 80.85 82.00 82.16 82.94 82.88 

Table 3. Average local response times (ms) 
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significantly better performance than all of the single-core 

policies. These results confirm simulations from prior work. 

DISCUSSION 
In this section, we discuss the broader impact and issues 

with the adoption of the self-optimization system.  

Beyond the Scope 
It is important to note that the limitations of the model used 

by our system are not limitations of the system. The 

implementation issues we presented are orthogonal to the 

choice of analytical model. Regardless of the model, it is 

necessary to gather its parameters, handle nuances in its 

application, and compute multicast overlays. The remaining 

issues, namely, the steps required to keep overheads low 

and preserve coupling semantics, are model independent. 

On the other hand, the scope of applications whose 

performance can be improved by our system is dictated by 

the scope of applications supported by the analytical model 

it uses to predict performance. Since the applications in our 

driving problems had only coupling functionality, it was 

sufficient for our system to use a model that accounted only 

for coupling commands. As new performance models are 

created that relax this assumption, they can be used by our 

system to expand its application scope. For instance, new 

models that account for costs of consistency maintenance 

and conflict resolution could be used in our system to 

improve performance in scenarios where users generate a 

high rate of small actions, such as real-time editing systems. 

Even with the current model, our system can still be useful 

for applications that have optional functionality. For 

instance, World of Warcraft has concurrency control. Thus, 

our system with the current model may not correctly predict 

performance when conflicts occur and may even degrade it. 

However, the model still applies to, and our system will still 

improve, the performance of, non-conflicting commands. 

Hence, if our system happens to degrade performance of 

conflicting commands, the degradation has to be weighed 

against the improved performance of non-conflicting 

commands. This is important given that the majority of 

commands do not conflict. In fact, sometimes conflicts do 

not occur at all. For instance, they did not happen in the 

collaborations we logged. Also, in some scenarios, social 

protocols prevent conflicts or users do not care about them. 

In the scenarios we tested, users took turns to play a game 

and broadcasted a presentation. Ideally, we should also 

evaluate the system for scenarios with co-authoring actions, 

such as co-creating a presentation. Unfortunately, such logs 

are not publicly available, and we did not have an 

opportunity to observe and log any such sessions ourselves.   

Immediate Applicability 
An important question is whether performance of 

collaborative systems is an issue today. Consider Citrix 

GoToMeeting, Cisco Webex, and Microsoft Live Meeting, 

three of the most popular collaborative systems. Websites 

for all three products contain instructions on how to 

improve performance. Moreover, numerous unofficial 

websites offer help to users who are suffering from poor 

mouse and keyboard response times in these systems. Thus, 

performance of systems today does indeed matter.  

We have shown that a window of opportunity for 

improving performance exists in some practical scenarios 

assuming that 50ms is a noticeable threshold. While 50ms 

is the only noticeable threshold reported by prior work, it 

was not studied using PowerPoint, Checkers, or Instant 

Messaging, so it is possible that it may not apply to these 

applications. More studies are needed to resolve this issue. 

Also, there is no guarantee that a noticeable improvement is 

always possible. We have shown that it is possible when 

resources are somewhat stressed. An important question is 

whether these conditions occur in practice.  

Even if a noticeable performance improvement is possible, 

an important question is whether the complexity of the 

optimization system is worth it. As with any complex 

system, it has development and deployment costs, but it is 

not all or nothing. The components for optimizing each of 

the three factors are logically independent, and it is possible 

to implement some but not all of them to get some but not 

all of the benefits. The amount of implementation effort is 

proportional to the benefits it provides. For instance, 

applications typically support either centralized or 

replicated semantics. To get the full benefit of our system, 

they can be updated to support both architectures, or they 

stay unchanged but still get the benefit of our system’s 

communication architecture and scheduling policy 

automation. This is consistent with the philosophy in 

successful commercial software, which provides features 

that are not used all the time. Also, in our case, the extra 

functionality does not have a performance overhead, as we 

see above, and unlike several commercial systems, no user 

overhead, as the user-interface is not changed. In general, 

implementation overhead is less important than 

performance or user overhead, as it does not deteriorate the 

end-user experience. Moreover, such a system has to be 

implemented and tested only once for all applications. 

Additional complexity arises from the sharing sub-system, 

as the component situated between the user-interface and 

program components has to be implemented for each 

application. However, Chung [2] has already shown that its 

implementation is straightforward for applications with 

well-defined user-interface and program components and 

whose source code is available. In addition, we were also 

able to implement it for a black-box application, which, as a 

result, does not satisfy these requirements – PowerPoint. 

PowerPoint provides a COM interface. To bridge Java and 

COM, we used J-Integra, and then we were able to build the 

client component for PowerPoint. The process took two 

weeks. The majority of the time was spent on investigating 

COM-Java bridges. Thus, building the component for other 

COM applications will take less time. We anticipate similar 

investments for applications with other types of interfaces. 
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Future Applicability 
An important question is whether our system will be useful 

in the future. For instance, as processor and network speeds 

improve, it may seem that processing and transmission 

costs will decrease. As a result, the choice of processing 

and communication architectures may not matter. However, 

historically, increasing processor and network speeds have 

resulted in more complex applications with increasing 

resource requirements. Also, on mobile devices, the 

hardware capabilities are developing less rapidly because of 

power conservation issues. Thus, architectures will continue 

to matter. Similarly, as devices become multi-core, it may 

seem that the choice of scheduling policy will not matter. 

Multi-core processors, however, are less power efficient, 

which is an issue for mobile devices. For this reason, many 

mobile devices still use a single-core processor. Thus, 

scheduling policies will continue to matter. 

CONCLUSION 
This paper makes two main contributions. First, it shows 

that it is possible to develop a self-optimizing system for 

collaborative applications that uses an analytical model to 

drive optimizations. It also presents new implementation 

issues relevant to all future self-optimizing frameworks. In 

addition, the presented system can be used as an 

instructional tool for teaching students about collaborative 

systems. In particular, students can use the system to 

experience the impact on response times of processing 

architecture, multicast, and scheduling policy. Currently, 

we are incorporating it into a graduate collaborative 

systems course and plan to make it available for download. 

It will be useful to (a) extend the design space of 

applications that can benefit from our system; (b) improve 

the performance of massive online virtual worlds, such as 

Second Life; and (c) perform user studies to evaluate the 

perceived benefits of our system in actual collaborations. It 

is also important to study multi-pronged solutions to user 

experience issues caused by high response times. For 

instance, our work improves user experience by reducing 

response times. An orthogonal approach, taken by Savery 

and Graham in the TimeLines model [13], is to adjust 

processing of commands in a manner that masks them. 

Neither approach is perfect: ours does not reduce response 

times to zero and theirs does not perfectly mask them. It 

would be useful to first reduce responses times with our 

system and then use TimeLines to mask them as this may 

give a better user experience than with either system alone. 

It would also be interesting to add performance parameters 

that capture human factors as users can work around some 

performance issues. While functional, these workarounds 

may prevent optimal use of a system and may open other, 

potentially hidden, opportunities for improvement. 
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