
Dimension Independent Risk Bounds for Private Learning

A. Proof of Dimension Independence for
Output Perturbation (Theorem 1)

First, we prove the following lemma, which bounds the ex-

cess loss (empirical risk) due parameter vector θpriv com-

pared to θ̂.

Lemma 1. Let L(θ) = 1
n

∑n
i=1 ℓ(〈θ,xi〉; yi). We have,

E
b

[
L(θpriv)− L(θ̂)

]
= O

(
(LR2)

2
√

log(1/δ)+ǫ

λǫ

)
.

Proof. Now,

L(θpriv)− L(θ̂) =
1

n

n∑

i=1

(ℓ(〈θpriv,xi〉; yi)

−ℓ(〈θ̂,xi〉; yi)
)
.

By the Lipschitz property of the loss function ℓ, we have

L(θpriv)− L(θ̂) ≤
1

n

n∑

i=1

L|〈θpriv − θ̂,xi〉|

≤ L

n

n∑

i=1

|〈b,xi〉| .

Notice that, each inner product 〈b,xi〉 is distributed as

N (0, σ2‖xi‖2), where σ =
(LR2)

√
log(1/δ)+ǫ

λǫ . Therefore,

E
b

[
L(θpriv)− L(θ̂)

]
≤ L

n

n∑

i=1

Eb [|〈b,xi〉|]

≤ Lσ

n

n∑

i=1

‖xi‖2 ≤ LR2σ.

Hence Proved.

Now, let J(θ) = E
(x,y)∼Dist

[ℓ(〈θ,x〉; y)] + λ
2n‖θ‖22 and

J̃(θ) = 1
n

n∑
i=1

ℓ(〈θ,xi〉; yi) + λ
2n‖θ‖22. Also, let θ∗ =

argminθ∈Rp J(θ) and θ̂ = argminθ∈Rp J̃(θ). Then, us-

ing Lemma 1, we have:

E
b

[J̃(θpriv)− J̃(θ̂)] ≤ O(LR2σ) + E
b

[
λ‖θpriv‖22

2n

]
.

(13)

Now, we use the following excess risk theorem by (Shalev-

Shwartz et al., 2009).

Theorem 5 (One sided uniform convergence

(Shalev-Shwartz et al., 2009)). Let J(θ), J̃(θ), θ̂, λ
and the loss function ℓ be defined as above. Then, the

following holds ∀θ ∈ R
p (with probability at least 1− γ):

J(θ)−J(θ∗) ≤ 2
(
J̃(θ)− J̃(θ̂)

)
+O

(
(LR2)

2 log(1/γ)

λ

)
,

where L is the Lipschitz constant of the loss function ℓ, and

R2 is an upper bound on the L2-norm of the feature vectors

in the training data set.

Let F (θ) = E
(x,y)∼Dist

[ℓ(〈θ,x〉; y)]. From Theorem 5 and

(13), we have the following with probability at least 2/3
over the data generating distribution Dist:

E
b

[J(θpriv)− J(θ∗)] ≤ O(LR2σ) + E
b

[
λ‖θpriv‖22

2n

]

+O

(
(LR2)

2

λ

)
.

That is,

E
b

[F (θpriv)−F (θ∗)] ≤ O

(
LR2σ +

(LR2)
2

λ

)
+

λ

2n
‖θ∗‖22.

Theorem now follows by using σ =
(LR2)

√
log(1/δ)+ǫ

λǫ , by

setting λ = LR2

√
n

‖θ∗‖2 in the above given bound and by using

Markov’s inequality.

B. Proofs for Private ERM over Simplex

B.1. Proof of Privacy Guarantee (Theorem 3)

Proof. We first characterize the optimal non-private θ̂ ob-

tained by solving (8). To this end, we form the Lagrangian

of (8):

L(θ, ν) = 1

n

n∑

i=1

ℓ(〈xi,θ〉; yi) +
λ

n

p∑

j=1

θj log(θj)

+
ν

n
(
∑

i

θi − 1) (14)

Now, using optimality conditions:

(θ̂, ν∗) = max
ν

min
θ∈∆

L(θ, ν).

By setting the gradient of the Lagrangian to be zero and by

using primal feasibility, we get:

θ̂j = exp

(
−ν∗

λ
− 1− 1

λ

∑

i

ℓ′(〈xi, θ̂〉; yi)xj
i

)
,

exp

(
ν∗

λ

)
=
∑

r∈[p]
exp


−1− 1

λ

∑

i∈[n]
ℓ′(〈xi, θ̂〉; yi)xr

i


 ,

where ℓ′ is the derivative of ℓ and x
j
i denotes the j-th coor-

dinate of xi.

That is,

θ̂j =

exp

(
− 1

λ

∑
i

ℓ′(〈xi, θ̂〉; yi)xj
i

)

∑
r
exp

(
− 1

λ

∑
i

ℓ′(〈xi, θ̂〉; yi)xr
i

) . (15)
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Similarly, let θ̂′j be the solution to (8) but by us-

ing a different data set D′ that differs from D =
{(x1, y1), . . . , (xn, yn)} in exactly one data point. With-

out loss of generality, we assume thatD andD′ differs only

in the first entry (x′1, y
′
1).

Now, consider an index as that is sampled from the proba-

bility distribution θ̂. Now, probability of sampling as =

j, given that θ̂ is learned using data set D is given by:

Pr(as = j|D) = θ̂j . Similarly, Pr(as = j|D′) = θ̂′j .

Hence,

max
j

Pr(as = j|D)

Pr(as = j|D′)
= max

j

θ̂j

θ̂′j

= max
j

exp

(
− 1

λ

∑
i

ℓ′(〈xi, θ̂〉; yi)x
j
i

)

∑
r

exp

(
− 1

λ

∑
i

ℓ′(〈xi, θ̂〉; yi)xr
i

) (16)

·

∑
r

exp

(
− 1

λ
ℓ′(〈x′

1, θ̂
′〉; y′

1)x
′r
1 −

1

λ

n∑
i=2

ℓ′(〈xi, θ̂
′〉; yi)x

r
i

)

exp

(
− 1

λ
ℓ′(〈x′

1
, θ̂′〉; y′

1
)x′j

1
− 1

λ

n∑
i=2

ℓ′(〈xi, θ̂′〉; yi)x
j
i

) .

Now, first consider the following:

exp

(
− 1

λ

∑
i

ℓ′(〈xi, θ̂〉; yi)xj
i

)

exp

(
− 1

λℓ
′(〈x′1, θ̂′〉; y′1)x′j1 − 1

λ

n∑
i=2

ℓ′(〈xi, θ̂′〉; yi)xj
i

)

= exp

(
− 1

λ
ℓ′(〈x1, θ̂〉; y1)xj

1 +
1

λ
ℓ′(〈x′1, θ̂′〉; y′1)x′j1

+
1

λ

n∑

i=2

(
ℓ′(〈xi, θ̂〉; yi)− ℓ′(〈xi, θ̂

′〉; yi)
)
x
j
i

)

≤ exp

(
2LR∞

λ
+

nR∞
2Lg‖θ̂ − θ̂

′‖1
λ

)
= A, (17)

where the last inequality follows by: a) using Lipschitz

continuity of ℓ, i.e., ℓ′(·; ·) ≤ L, b) ‖xi‖∞ ≤ R∞, c) by us-

ing Lipschitz continuity of ℓ′, and d) by applying Holder’s

inequality |〈xi, θ̂ − θ̂
′〉| ≤ ‖xi‖∞‖θ̂ − θ̂

′‖1.

Now, we bound ‖θ̂ − θ̂
′‖1 using strong convexity of

the entropy regularizer w.r.t. L1 norm. Let J(θ) =

1
n

n∑
i=1

ℓ(〈xi,θ〉; yi) + λ
n

p∑
j=1

θj log(θj). As θ̂ is the mini-

mum of (8):

λ

2n
‖θ̂ − θ̂

′‖21 + J(θ̂|D) ≤ J(θ̂′|D).

Similarly, using optimality of θ̂′ for (8) with data set D′:

λ

2n
‖θ̂ − θ̂

′‖21 + J(θ̂′|D′) ≤ J(θ̂|D′).

Adding the above two equations, using the fact that D −
D′ = (x1, y1), by applying the Lipschitz continuity of ℓ,
and by using Holder’s inequality, we get:

‖θ̂ − θ̂
′‖1 ≤

LR∞
λ

.

Now plugging the above bound in (17), we get:

A ≤ exp

(
2LR∞

λ
+

nLR∞
3Lg

λ2

)
.

Using the above equation with (16), we get:

max
j

Pr(as = j|D)
Pr(as = j|D′) ≤ exp

(
4LR∞

λ
+

2nLR∞
3Lg

λ2

)
.

(18)

Note that this ensures, that each “sample” as is ǫ =

exp
(

4LR∞

λ +
2nLR∞

3Lg

λ2

)
differentially private. Hence,

ǫ and (ǫ, δ) differential privacy for the computation of

the collection of m samples {a1, a2, . . . , am} and conse-

quently θpriv follows by using the weak and the strong

composition theorems of (Dwork et al., 2006b; 2010c) re-

spectively.

B.2. Proof Utility Guarantee (Theorem 4)

We first prove in Lemma 2 the excess risk bound of Algo-

rithm (8) for any choice of m and λ. We then set m =(
ǫλ

log(1/δ)

)2 (
32 + 16nR∞

2

λ Lg

)−2

and λ = n2/3

ǫ1/3 log1/3 p
to

get the final guarantee.

Lemma 2. Let L, Lg be as defined in Theorem 3. With

probability at least 2/3 over the randomness of Dist and

the randomness of θpriv , the following is true.

E(x,y)∼Dist [ℓ(〈θpriv,x〉; y)− ℓ(〈θ∗,x〉; y)] =

O

(
LR∞ logm√

m
+

λ

n
log p+

(LR∞)2

λ

)
.

Here θ
∗ = argminθ∈∆ E

(x,y)∼Dist
[ℓ(〈θ,x〉; y)].

Proof. Recall that,

θpriv =
1

m

∑

s

eas
,

where eas
is the as-th canonical basis vector and as ∈

{1, 2, . . . , p}, ∀s ∈ [m] are sampled i.i.d. according to the

probability distribution θ̂.

Now, for any fixed x: 〈x,θpriv〉 = 1
m

∑
s
〈x, eas〉. Note

that, E
as

[〈x, eas
〉] = 〈x, θ̂〉. Therefore,

E
θpriv

[〈x,θpriv〉] = E
as

[〈x, eas〉] = 〈x, θ̂〉
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Furthermore, |〈x, eas
〉| ≤ ‖x‖∞ = R∞. Therefore by

Hoeffding’s inequality, with probability at least 1− γ,

|〈x,θpriv〉 − 〈x, θ̂〉| = O

(
R∞ log(1/γ)√

m

)
.

Observing |〈x,θpriv〉 − 〈x, θ̂〉| is universally bounded by

R∞, and setting γ = 1√
m

, we have

E
θpriv

[
|〈x,θpriv〉 − 〈x, θ̂〉|

]
= O

(
R∞ logm√

m

)
.

Now,

E
θpriv

[
E

x∼Dist

[
|〈x,θpriv〉 − 〈x, θ̂〉|

]]
=

E
x∼Dist

[
E

θpriv

[
|〈x,θpriv〉 − 〈x, θ̂〉|

]]

≤ max
x∈X

E
θpriv

[
|〈x,θpriv〉 − 〈x, θ̂〉|

]
= O

(
R∞ logm√

m

)

Therefore, with probability at least 9/10 over the random-

ness of θpriv , we have

E
(x,y)∼Dist

[ℓ(〈x,θpriv〉; y)−ℓ(〈x, θ̂〉; y)] = O

(
LR∞ logm√

m

)
.

Now, using standard uniform convergence bound of

(Shalev-Shwartz et al., 2009; Kakade et al., 2008), we get:

E
(x,y)∼Dist

[ℓ(〈x, θ̂〉; y)− ℓ(〈x,θ∗〉; y)] =

O

(
LR∞ logm√

m
+

λ

n
log p+

(LR∞)2

λ

)
.


