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1. INTRODUCTION
In our recently published paper [1], we propose a method

which leverages bubble sorting network to transfer “ Bounded
M-sum constraint” into an efficient format. In Section 4.4.2,
we show in Figure 8(c) that we use linear formulations to en-
code the constraints in lines 10 and 11 of Algorithm 2. Nev-
ertheless, this encoding is not precise. The linear constraints
in Figure 8(c) is only approximating the original constraints
with absolute value formats in Algorithm 2.

In this technical report, we will explain why our bubble
sorting network method and FFC implementation are valid
despite of the preceding imprecision of the linear formula-
tion. We will proof that the linear formulation shown in
Figure 8(c) is sufficient to guarantee that the final TE this
formulation computes satisfies all FFC requirements.

2. BOUNDED M-SUM CONSTRAINT
In section 4.4, we show that FFC constraints on both con-

trol and data plane can be transferred into a single constraint
format, which is called “Bounded M -sum constraint ”.

DEFINITION 1 (BOUNDED M -SUM CONSTRAINT). Given
a set of variables X = {x1, . . . , xn}, and let x(i) be the ith
largest element in X , this constraint requires that:

M∑
i=1

x(i) ≤ B (1)

where B is a bound.

In other words, if we can make sure that (1) is true in the
final TE solution, the TE solution then is surely to satisfy
the FFC requirements.

In section 4.4.2, we show how to compress the number
of constraints in (1) from O(

(
n
M

)
) to O(kn) with a bubble

sorting network.

3. THE IMPRECISION IN FORMULATION
Let Y = {y1, . . . , yn} be the output of a complete bubble

sorting network. In section 4.4.2, we claim that yi = x(i).
This is true ideally if we use the comparison suggested by
Algorithm 2.

xmax =
x1 + x2 + |x1 − x2|

2
(2)

xmin =
x1 + x2 − |x1 − x2|

2

However, in practice we need to encode (2) with linear
constraints. Therefore, in Figure 8 (c), we show that in our
implementation we use the following linear constraints to
approximate (2):

xmax =
x1 + x2 + d

2
(3)

xmin =
x1 + x2 − d

2
−d ≤ x1 − x2 ≤ d

d ≥ 0

Because of this approximation, the statement that yi =
x(i) does not hold anymore. Nevertheless, the following
property still holds:

∀k ∈ {1, . . . , n} :

k∑
i=1

yi ≥
k∑
i=1

x(i) (4)

This means that
∑M
i=1 yi is an upper-bound of the maxi-

mum sum of M elements in X . By ensuring
∑M
i=1 yi ≤ B,

we still achieve the guarantee in (1). Hence, the approx-
imation in (3) still makes sure that the final TE found via
the bubble sorting network method satisfies all FFC require-
ments.

4. THE CORRECTNESS OF BUBBLE SORT-
ING NETWORK METHOD

Next, we prove that (4) always holds.
After themth round of bubble, we get ym and a collection

of residual variables Xm = {xm,1, . . . , xm,n−m}. Denote
x
(i)
m as the ith largest element in Xm. Firstly, we have fol-

lowing lemma:

LEMMA 1. After the mth round of bubble, the following
inequation always holds:

∀k ∈ {1, . . . , n−m} : ym +

k∑
i=1

x(i)m ≥
k+1∑
i=1

x
(i)
m−1 (5)

PROOF. Let π is an arbitrary permutation of nature num-
bers {1, . . . , k + 1}, and π(i) is the ith element in π. Sup-
pose that in the mth round bubble, x(1)m−1, . . . , x

(k+1)
m−1 are

compared with the order indicated by π.
At the comparison with x(i)m−1, denote v(i)m−1 as the other

input of the comparison, and v̄(i)m−1 and w(i)
m−1 as the larger
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and smaller output of this comparison. From (3) we can see
that:

∀i : x
(i)
m−1 + v

(i)
m−1 = v̄

(i)
m−1 + w

(i)
m−1 (6)

At the comparison of x(π(1))m−1 , we have:

v̄
(π(1))
m−1 ≥ x

(π(1))
m−1 (7)

At the comparison of x(π(i))m−1 , 2 ≤ i ≤ k + 1, we have:

∀i ∈ [2, k+ 1] : v̄
(π(i))
m−1 +w

(π(i))
m−1 = x

(π(i))
m−1 + v

(π(i))
m−1 (8)

Additionally, because of the structure of bubble sorting, we
also have:

∀i ∈ [2, k + 1] : v
(π(i))
m−1 ≥ v̄

(π(i−1))
m−1 (9)

Therefore, we derive:

∀i ∈ [2, k+1] : v̄
(π(i))
m−1 +w

(π(i))
m−1 ≥ x

(π(i))
m−1 +v̄

(π(i−1))
m−1 (10)

If we make a sum of (7) and (10), we derive:

v̄
(π(k+1))
m−1 +

k+1∑
i=2

w
(π(i))
m−1 ≥

k+1∑
i=1

x
(π(i))
m−1 =

k+1∑
i=1

x
(i)
m−1 (11)

Because w(i)
m−1,∀i ∈ [1, k + 1] are all elements in Xm

respectively, from (10), we have:

ym+

k∑
i=1

x(i)m ≥ v̄
(π(k+1))
m−1 +

k+1∑
i=2

w
(π(i))
m−1 ≥

k+1∑
i=1

x
(i)
m−1 (12)

, which finishes the proof.

THEOREM 1. Given n variables X = {x1, . . . , xn} and
x(i) as the ith largest element inX , and let Y = {y1, . . . , yn}
as the output of bubble sorting network which encodes each
comparison with (3), we always have:

∀m :

m∑
i=1

yi ≥
m∑
i=1

x(i) (13)

PROOF. From Lemma 1, we know:

∀m :

m∑
i=1

x(i) ≤ y1 +

m−1∑
i=1

x
(i)
1 (14)

≤ y1 + y2 +

m−2∑
i=1

x
(i)
2 ≤ . . . ≤

m∑
i=1

yi

, which finishes the proof.
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