
Differential and cross-version
program verification

Shuvendu Lahiri
Research in Software Engineering (RiSE),

Microsoft Research,

Redmond, WA USA

Halmstad Summer School on Testing (HSST 2015)

Software evolution

– Programmers spend a large fraction of their time
ensuring (read praying) compatibility after changes

Microsoft Confidential

Does my bug-fix
introduce a
regression?

Does the refactoring
change any observable

behavior?

How does the feature
addition impact existing

features?

Changes

• Bug fixes

• Feature addition (response to a new event)

• Refactoring

• Optimizations

• Approximations (tradeoff accuracy for
efficiency)

• …

Main question

• Can we preserve the quality of a software product as it
evolves over time?

• Currently, testing and code review are the only tools in
ensuring this
– Useful, but has its limitations (simple changes take long

time to checkin, no assurance on change coverage)

• How do we leverage and extend program verifiers
towards differential reasoning?
– Relatively new research direction

Outline

• Motivation
• SymDiff: A differential program verifier

– Program verification background
– Differential specifications
– Differential program verification

• SymDiff: Applications
• Other applications of differential reasoning for existing

verifiers
– Verification modulo versions, Interleaved bugs

• Other works in differential cross-version program analysis
• Works in differential analysis of independent

implementations

What will you learn

• Some flavor of program verification using SMT solvers

• Modeling of imperative programs for verification

• Formalizing differential specifications

• Practical automated, differential verification in SymDiff

• Applying differential verifier to improve existing
verifiers

• Applications of differential analysis (cross version and
independent implementations)

• Try out examples in SymDiff (Windows drop currently)

Compatibility: applications

f() { Print(foo);
g(); }

g() { ...
Print(foo); }

g() { ...
Print(foo);
Print(bar); }

New featuresRefactoring

Compilers
Library API
changes

Bug fixes

Version Control

Equivalence checking in hardware vs
software

Hardware

• One of commercial
success story of formal
verification
http://en.wikipedia.org/wiki/For
mal_equivalence_checking

• Routinely applied after
timing optimizations

• Commercial products

• Almost considered a
solved research problem

Software
• Most changes are

not semantics
preserving

• Explaining
equivalence failure
needs users to
understand the low-
level modeling of
programs (e.g. in the
presence of heap)

http://en.wikipedia.org/wiki/Formal_equivalence_checking

Motivation

• Ensure code changes preserve quality
– Help developers gain greater confidence for relatively

simple changes through program verification

• Cost effectiveness of program verification
– Only success stories in last several decades in the

hands of a few expert users, or domain-specific
properties (e.g. SLAM/SDV)
• Need for specification
• Scalability
• Need for complex program-specific invariants
• Environment models

What is SymDiff?

A framework to

– Leverage and extend program
verification for differential verification

Source code
http://symdiff.codeplex.com/

Install direction
http://symdiff.codeplex.com/documentation

Papers etc.
http://research.microsoft.com/symdiff

http://symdiff.codeplex.com/
http://symdiff.codeplex.com/documentation
http://research.microsoft.com/symdiff

Outline

 Motivation
• SymDiff: A differential program verifier

– Program verification background
– Differential specifications
– Differential program verification

• SymDiff: Applications
• Other applications of differential reasoning for existing

verifiers
– Verification modulo versions, Interleaved bugs

• Other works in differential cross-version program analysis
• Works in differential analysis of independent

implementations

Demo

• Equivalence

• DAC and relative verification

Program verification: background

Program verification

• A simple imperative language (Boogie)
– Syntax

– Modeling heap

• Specifications
– How to write the property to be checked

• Verification
– How to check that a given property holds

• Invariant Inference
– How to automatically generate intermediate facts

Boogie

• Simple intermediate verification language

– [Barnett et al. FMCO’05]

• Commands
– x := E //assignments
– havoc x //change x to an arbitrary value
– assert E //if E holds, skip; otherwise, go wrong
– assume E // if E holds, skip; otherwise, block
– S ; T //execute S, then T
– goto L1, L2, … Ln //non-deterministic jump to labels
– call x,y := Foo(e1,e2,..) //procedure call

Boogie (contd.)

• Two types of expressions
– Scalars (bool, int, ref, ..)

– Arrays ([int]int, [ref]ref, …)

• Array expression sugar for SMT array theory
– x[i] := y x := upd(x, i, y)

– y := x[i] y := sel(x,i)

• old(e): Value of an expression at entry to the procedure

Procedure specifications

• Each procedure has a specification (default true)
• Procedure calls can be replaced with their specifications

procedure Foo();
requires pre;
ensures post;
modifies x,y,z;

call Foo();
assert pre;
havoc x, y, z;
assume post;

precondition

postcondition

set of variables possibly
modified in Foo

Modeling imperative features

• Popular languages (e.g. C) support other features

– Pointers

– Structures/classes

– Address-of operations

– ..

• Various front-ends from such languages to Boogie

– C (HAVOC/SMACK/VCC/..)

– JAVA (Joogie/..)

– C# (BCT)

Translating Heap

– [Condit, Hackett, Lahiri, Qadeer POPL’09]

• HAVOC memory model
– A pointer is represented as an integer (int)
– One heap map per scalar/pointer structure field and

pointer type
– struct A { int f; A* g;} x;
Mem_f_A : [int]int

Mem_g_A : [int]int

Mem_A: [int]int

• Simple example
– C code
x->f = 1;

– Boogie
Mem_f_A[x + Offset(f,A)] := 1; 19

C Boogie

function g_A(:int) : int {u + 0}

function f_A(u:int): int {u + 40}

procedure create() returns d:int{

var @a: int;

call @a := malloc(4);

call d := malloc(44);

call init(g_DATA(d),10, @a);

Mem_f_A[f_A(d)] := Mem_INT[@a];

Mem_g_A[g_A(d) + 1*4]:=2;

free(@a);

return;

}

typedef struct {

int g[10]; int f;} A;

A *create() {

int a;

A *d = (A*)
malloc(sizeof(A));

init(d->g, 10, &a);

d->f = a;

d->g[1] = 2;

return d;

}

(Modular) verification problem

• Given a program P

– A list of procedures p1, p2, …

– Each procedure has assert , requires, ensures

• Verify that each procedure satisfies its
specifications/contracts (assuming the
contracts of other procedures)

Verification using VC + SMT

– Assume loops are tail-recursive procedures (for the
rest of this talk)

• Verification condition (VC) generation
– A quadratic encoding of each procedure p into a

logical formula VC(p)
• If VC(p) is valid then p satisfies its contracts

• Check the validity of each of VC(p) using an SMT
solver (e.g. Z3, YICES, CVC4, ..)
– Efficient solvers for Boolean combination over various

theories (arithmetic, arrays, quantifiers, …)
– [http://smtlib.cs.uiowa.edu/]

Quick summary of VC generation

– [Barnett&Leino FMCO’05, Godefroid & Lahiri LASER’11]

• High-level steps
– Replace procedure calls with their specifications

• call F(e) {assert pre_F; havoc x_F; assume post_F;}

– Eliminate assignments
• Perform static single assignment (SSA) for variables

• Replace an assignment xi := E with assume xi == E

– Perform weakest precondition for statements in
each basic block

– Replace goto statements with block equations

VC Generation
start: x := 1; goto l1;

l1: x := x + 1; goto l2, l3;

l2: assume x == 0;
x := x + 2;
goto l4;

l3: assume x 0;
x := x + 3;
goto l4;

l4: assert x == 5

A

B

C

D

E

VC Generation
start: assume x0 == 1; goto l1;

l1: assume x1 == x0 + 1; goto l2, l3;

l2: assume x1 == 0;
assume x2 == x1 + 2;
assume x4 == x2; goto l4;

l3: assume x1 0;
assume x3 == x1 + 3;
assume x4 == x3; goto l4;

l4: assert x4 == 5

Aok (x0 == 1 Bok)

Bok (x0 == 1 Cok Dok)

Cok (x1 == 0

(x2 == x1 + 2

(x4 == x2 Eok)))

Dok (x1 0

(x2 == x1 + 3

(x4 == x3 Eok)))

Eok (x4 == 5 true)

A

B

C

D

E

Aok

VC Generation
Aok (x0 == 1 Bok)

Bok (x0 == 1 Cok Dok)

Cok (x1 == 0

(x2 == x1 + 2

(x4 == x2 Eok)))

Dok (x1 0

(x2 == x1 + 3

(x4 == x3 Eok)))

Eok (x4 == 5 true)

Aok

Formula over Arithmetic,
Equality, and Boolean
connectives

Can be solved by
a SMT solver

Invariant inference

• Challenge: user needs to write down every pre/post
condition for modular verification to succeed

• Infer “program facts” that are true
– Missing loop invariants, procedure pre/post conditions

• Can be eager or lazy (property-driven)
– Eager (abstract interpretation [Cousot&Cousot POPL’77])

– Lazy (counterexample guided abstraction refinement
(CEGAR) [Clarke et al. CAV’00])

Boogie demo

• Input C program

• Intermediate Boogie program

Outline

 Motivation
• SymDiff: A differential program verifier
 Program verification background
– Differential specifications
– Differential program verification

• SymDiff: Applications
• Other applications of differential reasoning for existing

verifiers
– Verification modulo versions, Interleaved bugs

• Other works in differential cross-version program analysis
• Works in differential analysis of independent

implementations

SymDiff

• How do we leverage program verifiers for
differential verification

– How do we specify differential properties

– How do we check the properties

– How do we infer intermediate invariants

Differential specifications

(Partial) Equivalence

• Procedures p and p’ are partially equivalent if

– For all input states i, if p terminates in o and p’
terminates in o’, then o == o’

• Notes

• Verifying equivalence is undecidable for programs with
loops and unbounded counters

• Procedure may not-terminate (loops), and may have
multiple outputs for an input (non-determinism)

Specifying equivalence

• Construct a product procedure EQ_p_p’
procedure EQ_p_p’(i, i’): (o,o’) {

call o := p(i); //modifies g
call o’ := p’(i‘); //modifies g’

}

• Write a postcondition
– ensures (i == i’ && old(g) == old(g’) ==> o == o’)
– ensures (i == i’ && old(g) == old(g’) ==> g == g’)

• Caveats
– Note that we are comparing entire arrays for equality (good and bad)!
– Specification is easy, but verification often require more than

equivalence

Factorial

f1(n): returns r {

if (n == 0) {

return 1;

} else {

return n * f1(n - 1);

}

}

main(n) : r {r := f1(n);}

f2(n, a) : returns r {

if (n == 0) {

return a;

} else {

return f2(n - 1, a * n);

}

}

main(n) : r {r := f2(n,1);}

procedure EQ_main_main’(n, n’): (r, r’);
ensures (n == n’ ==> r == r’)

Equivalence too strong

• Most software changes are not equivalence
preserving
– Bug fixes, feature additions, adding logging, ..

• Need more relaxed specifications (failure
points to likely regressions)
– Generic specifications

• Differential assertion checking

• Control-flow equivalence

– Manual specifications

Differential assertion checking (DAC)

– [Lahiri et al. FSE’13, Joshi, Lahiri, Lal POPL’12]

• Correctness Relative correctness
– Check that an input that does not fail assertion in p does

not fail an assertion in p’

• How to specify
– Construct EQ_p_p’ procedure
– Replace assert A ok := ok && A;
– Write a postcondition
ensures (i == i' && old(g) == old(g’) ==> (ok ==> ok’))

• Note: asymmetric check

Relative Correctness (fails)

void strcopy_buggy

(char* dst, char*src,
int size)

{

int i = 0;

for(;*src &&

i<size-1; i++)

*dst++ = *src++;

*dst = 0;

}

void strcopy_correct

(char* dst, char*src,
int size)

{

int i = 0;

for(;i<size-1 &&

*src; i++)

*dst++ = *src++;

*dst = 0;

}

CEX: size=0, src =0, dst= some valid location

Relative Correctness (Passes)

void strcopy_correct
(char* dst, char*src, int
size)
{
int i=0;
for(;i<size-1 &&

*src; i++)
*dst++ = *src++;

*dtmp = 0;
}

void strcopy_buggy
(char* dst, char*src,
int size)
{
int i=0;
for(;*src &&

i<size-1; i++)
*dst++ = *src++;

*dst = 0;
}

• No need to constrain the
inputs

• Verifying absolute
correctness needs

preconditions and complex
program-specific loop

invariants

Mutual summaries

– [Hawblitzel, Kawaguchi, Lahiri, Rebelo CADE’13]

• General form of differential specification

– Captures EQ and DAC specifications

• Create a procedure similar to EQ_p_p’

– We name it as MS_check_p_p’ as the body of the
procedure is more complex (later)

Mutual summaries

• What is a mutual summary MS(F1, F2)?
– A specification over two-procedures’ input/output

vocabulary

• parameters, globals (g), returns and next state of globals (g’)

void F1(int x1){

if(x1 < 100){

g1 := g1 + x1;

F1(x1 + 1);

}

}

void F2(int x2){

if(x2 < 100){

g2 := g2 + 2*x2;

F2(x2 + 1);

}

}

MS(F1, F2): (x1 = x2 && g1 <= g2 && x1 >= 0) ==> g1’ <= g2’

Mutual summaries

• When does procedure pair (F1,F2) satisfy
MS(F1, F2)?
– For any (pre,post) state pairs (s1,s1’) of F1, and

(s2,s2’) of F2, (s1,s1’,s2,s2’) satisfies MS(F1,F2)

void F1(int x1){

if(x1 < 100){

g1 := g1 + x1;

F1(x1 + 1);

}

}

void F2(int x2){

if(x2 < 100){

g2 := g2 + 2*x2;

F2(x2 + 1);

}

}

MS(F1, F2): (x1 = x2 && g1 <= g2 && x1 >= 0) ==> g1’ <= g2’

Factorial (revisited)

f1(n): returns r {

if (n == 0) {

return 1;

} else {

return n * f1(n - 1);

}

}

main(n) : r {r := f1(n);}

f2(n, a) : returns r {

if (n == 0) {

return a;

} else {

return f2(n - 1, a * n);

}

}

main(n) : r {r := f2(n,1);}
procedure MS_check_main_main’(n, n’):
(r, r’);
ensures (n == n’ ==> r == r’)

MS(f1, f2):
(n1 == n2) ==> (r1*a2 == r2)

Note: Splitting a MS check

When MS(i,i‘,o,o’) is of the form

MS_pre(i,i‘) ==>MS_post(o,o’)

The following sound check avoids disjunction in
specifications (less efficient to infer)

procedure MS_Check_p_p’(i,i’) : (o, o’);

requires MS_pre(i,i‘);

ensures MS_post(o,o’);

Differential verification

(Modular) verification problem

• Given a program P

– A list of procedures p1, p2, …

– Each procedure has assert , requires, ensures

• Verify that each procedure satisfies its
specifications/contracts (assuming the
contracts of other procedures)

(Modular) differential verification
problem

• Given two programs P and P’

– A list of procedures {p1, p2, …} and {p1’, p2’, ..}

– Mutual summary specifications MS(p,q’), where
(p,q’) \in P X P’

• Need not be 1-1

• Verify that each MS_Check_p_q’ procedure
satisfies its specifications/contracts (assuming
the contracts of other procedures)

Sound solutions

– Different product construction (aka proof rules)

• Semantic equivalence (e.g. compiler loop
optimizations)
– [Necula PLDI’00]

• Equivalence with inlining
– Tries to inline upto recursion when equiv does not hold
– Useful mostly in the presence of changes in mutually

recursive procs
– [Godlin & Strichman DAC’09]

• Mutual summaries without inference
– [Hawblitzel, Kawaguchi, Lahiri, Rebelo CADE’13]

• Mutual summaries with invariant inference
– [Lahiri, McMillan, Sharma, Hawblitzel FSE’13]

More precise

More efficient

Strong semantic equivalence

• Construct the EQ procedures
procedure EQ_p_p’(i, i’): (o,o’) {

call o := p(i); //modifies g
call o’ := p’(i‘); //modifies g’

}

• Perform a bottom up analysis
– Perform equivalence of p and p’ after proving equivalence of callees
– Make equivalent procedures deterministic uninterpreted functions

• Recursion
– Sound to assume recursive calls to p and p’ are equivalent when proving

equivalence of p and p’

• Problem
– Limited applicability
– Mismatched parameters
– More complex differential invariants

Mutual summaries with invariant
inference

– [S. Lahiri, K. McMillan, R. Sharma, C. Hawblitzel FSE’13]

• Two steps
– Convert the differential verification problem to a

single program verification problem
– Leverage any program verification technique to infer

invariants on MS_check_f_f’ procedures

• Why can’t we infer invariants on EQ_f_f’
procedure described earlier?
– Because we did not have any callers for these special

procedures

proc f1(x1): r1
modifies g1
{

s1;
L1:

w1 := call h1(e1);
t1

}

proc f2(x2): r2
modifies g2
{

s2;
L2:

w2 := call h2(e2);
t2

}

Product Program

Instrument calls

Instrument calls

Replay,
constrain,
restore

f1

f2

proc f1(x1): r1
modifies g1
{

s1;
L1:

w1 := call h1(e1);
t1

}

proc f2(x2): r2
modifies g2
{

s2;
L2:

w2 := call h2(e2);
t2

}

Reduce differential verification
single program verification

Novel product
construction

Off-the-
shelf

program
verifier +
invariant
inference

Properties

– A little formalism first

• For a procedure p,
– TR(p) = {(i,o) |exists an execution from input state i to

output state o} //transition relation

– For a postcondition S of p
• ||S|| = {(i,o) | all input/output state pairs that make S true}

– p satisfies S if TR(p) ||S||

• Applies even to MS_check_p_p’ procedures
– MS_check_p_p’ satisfies MS(p,p’) if TR(MS_check_p_p’)
|| MS(p,p’) ||

Property

Theorems:

– If each MS_check_p_p’ modularly satisfies
MS(p,p’), then each MS_check_p_p’ satisfies
MS(p,p’)

• It allows us to infer invariants treating
MS_check_p_p’ as a single program

Automatic differential invariant
inference

• Exploit the structural similarity between
programs
– Provide simple differential predicates (difficult to infer

by program verification tools such as iZ3)

– Predicates x <> x’, where x in p and x’ in p’, and <>
{==, <=, >=, ==>, …}

• Predicate Abstraction [Graf&Saidi ‘95]
– Infer Boolean combination of predicates

– Can efficiently infer subsets of predicates that hold
(Houdini)

Implementation Workflow

P1P2.bpl

P1.bpl

P2.bpl

annotated
P1P2.bpl

SMT

Product
Invariant
inference

Z3

Boogie

Differential
templates
Booleans: 𝑣1 ⇒
𝑣2, 𝑣2 ⇒ 𝑣1
Integers: 𝑣1 ≤
𝑣2, 𝑣2 ≤ 𝑣1
Otherwise: 𝑣1 = 𝑣2

MS

SymDiff Applications

• Differential memory safety for buffer bounds
bugfixes

• Proving approximate transformations safe

• Cross-version compiler validation of CLR
– [Hawblitzel, Lahiri et al. FSE’13, Lahiri et al. CAV’15]

• Translation validation of compiler loop
optimizations

• Ironclad informational flow checking
– [Hawblitzel et al. OSDI ‘14]

Verifying Bug Fixes

• Does a fix inadvertently introduce new bugs?

• Verisec suite:
“snippets of open source programs which contain
buffer overflow vulnerabilities, as well as
corresponding patched versions.”

• Relative buffer overflow checking

• Examples include apache, madwifi, sendmail, …

http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/dac_examples/madwifi1/
http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/dac_examples/sendmail1/

Stringcopy (revisited)

void strcopy_correct

(char* dst, char*src, int size)

{

int i=0;

for(;i<size-1 && *src; i++)

*dst++ = *src++;

*dtmp = 0;

}

void strcopy_buggy

(char* dst, char*src, int size)

{

int i=0;

for(;*src && i<size-1; i++)

*dst++ = *src++;

*dst = 0;

}

Can prove relative memory-safety automatically
• No preconditions required
• Assertion does not need to know the buffer length!

Relative invariants:
src.1=src.2, dst.1=dst.2, size.1=size.2, i.1=i.2, ok.1 ==>
ok.2

Example
int main_patched()

{

…

fb := 0;

while(c1=read()!=EOF)

{

fbuf[fb] = c1;

fb++;

if(fb >= MAX)

fb = 0;

}

…

}

int main_buggy()

{

…

fb := 0;

while(c1=read()!=EOF)

{

fbuf[fb] = c1;

fb++;

}

…

}

Buffer
Overflow

Invariant: fb.2<=fb.1

Safety of approximate transformations

• Programmer may
sacrifice some
precision to optimize
performance
– Multimedia

applications, search
results

– Programmers can
control which part of
the program/data is
stored in approximate
but faster hardware
(more prone to faults)

Lahiri, Haran, He, Rakamaric MSRTR 2015

Verification effort
300LOC in Coq

[Carbin et al. ‘12]
4 predicates in

SymDiff

Precise taint
tracking of array

fragments

http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/resilience/approx_feb_2015/examples/carbin-12/swish-absHoudini/ms_symdiff_file.bpl
http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/resilience/approx_feb_2015/examples/control/arr1-absHoudini/ms_symdiff_file.bpl

Outline

 Motivation
 SymDiff: A differential program verifier

– Program verification background
– Differential specifications
– Differential program verification

• SymDiff: Applications
• Other applications of differential reasoning for existing

verifiers
– Verification modulo versions, Interleaved bugs

• Other works in differential cross-version program analysis
• Works in differential analysis of independent

implementations

SymDiff Applications

Differential memory safety for buffer bounds
bugfixes

Proving approximate transformations safe

• Cross-version compiler validation of CLR
– [Hawblitzel, Lahiri et al. FSE’13, Lahiri et al. CAV’15]

• Translation validation of compiler loop
optimizations

• Ironclad informational flow checking
– [Hawblitzel et al. OSDI ‘14]

Compiler validation

X86

ARM

ARM+opt

Source

v1 v2 v3

Versions

X86+opt

v4

Cross-version compiler
validation of .NET CLR

compiler

- Checked binaries
across versions,
architectures,
optimizations

- Found several bugs in
production compiler

(was used by compiler
testing team)

Compatibility: x86 vs. x86 example

Large x86 vs. ARM example

Translation validation of compiler loop
optimizations

– Looked at translation validation of parameterized programs [Kundu, Tatlock, Lerner
‘09]

– Manual mutual summaries (to test the extent of mutual summaries)

• Optimizations that can be proved
– Copy propagation, constant propagation, common sub-expression

elimination, partial redundancy elimination, loop invariant code
hoisting, conditional speculation, speculation, software pipelining,
loop unswitching, loop unrolling, loop peeling, loop splitting

• Optimizations that can’t be proved
– Loop alignment, loop interchange, loop reversal, loop skewing, loop

fusion, loop distribution

– Reason: the order of updates to array indices differ

– Previous works need a PERMUTE rule specific to reorder loop
iterations [Zuck et al. ‘05]

Reasonable since manual
changes are seldom as

complex

Outline

 Motivation
 SymDiff: A differential program verifier
 Program verification background
 Differential specifications
 Differential program verification

 SymDiff: Applications
• Other applications of differential reasoning for existing

verifiers
– Verification modulo versions, Interleaved bugs

• Other works in differential cross-version program analysis
• Works in differential analysis of independent

implementations

Diff verif for existing verifiers

– Program verifiers suffer from false alarm due to under constrained
environments (stubs, inputs)

• Verification Modulo Versions (VMV)
– [Logozzo, Lahiri, Fahndrich, Blackshear PLDI’14]
– Necessary and sufficient conditions to give relative guarantees, or

point regressions (based on abstract interpretation)
– Integrated with production static analyzer Clousot, verifying 80% of

alarms for relative correctness

• Interleaved bugs for concurrent programs
– [Joshi, Lahiri, Lal POPL’12]
– Using coarse interleavings as a specification to tolerate environment

imprecision
– Applied on concurrent device drivers in Windows

Related works in cross-version
program analysis

• Regression verification [Godlin & Strichman
DAC’09,..]

• Differential symbolic execution [Person et al.
FSE’08,..], DiSE [Person et al. PLDI’12]

• Abstract differencing using abstract
interpreters [Partush et al. ’13]

• UC-KLEE [Ramos & Engler CAV’11]

• Change contracts [Yi et al. ISSTA’13]

Other examples of differential analysis
of independent implementations

• Compiler testing

– Translation validation [Pnueli et al.’98, Necula ’00,…]

– Differential compiler testing [Regehr et al. PLDI’11, ..]

• Security testing

– Java security APIs vulnerabilities [Srivastava et al.
PLDI’11]

– SSL/TLS certificate validation [Brubaker et al. S&P’14]

– String validation in web applications[Alkhalaf et al.
ISSTA’14]

Outline

 Motivation
 SymDiff: A differential program verifier
 Program verification background
 Differential specifications
 Differential program verification

 SymDiff: Applications
 Other applications of differential reasoning for existing

verifiers
 Verification modulo versions, Interleaved bugs

 Other works in differential cross-version program analysis
 Works in differential analysis of independent

implementations

Summary

A framework to

– Leverage and extend program
verification for differential verification

Source code
http://symdiff.codeplex.com/

Papers etc.
http://research.microsoft.com/symdiff

http://symdiff.codeplex.com/
http://research.microsoft.com/symdiff

Research questions

• Relative termination

• Semantic change impact analysis

• Adding probabilistic reasoning

• Other generic relative specifications

• Diff verification of concurrent programs

