Provable Alternating Minimization Methods for Low-rank Matrix Estimation Problems

Prateek Jain Microsoft Research India

Joint work with Praneeth Netrapalli, Sujay Sanghavi, Inderjit S. Dhillon

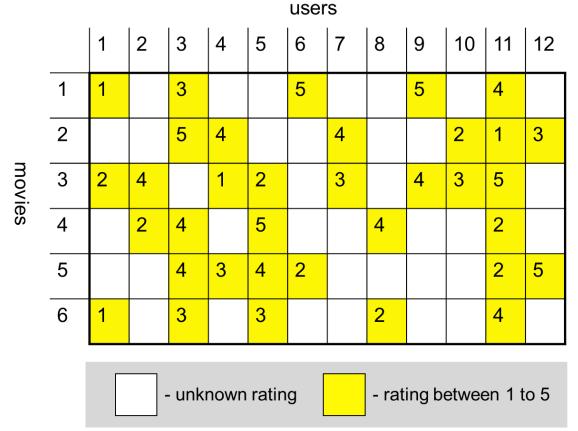
Talk Outline

- Low-rank Estimation Problems
 - recommendation systems (e.g. Netflix Challenge)
 - Multi-label Learning

—

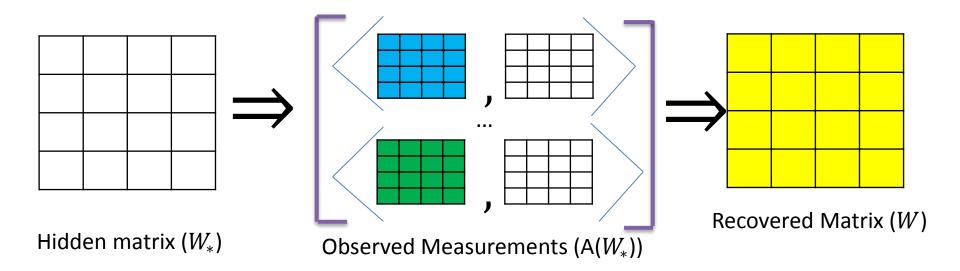
- Alternating Minimization methods
 - Most popular method
 - Little theoretical understanding
- Study Alternating Minimization method
 - General technique to analyze alternating minimization
 - Linear convergence to optima
- Guarantees for:
 - Matrix Completion
 - RIP-based Matrix Sensing
 - Rank-one Operator based Matrix Sensing
- Conclusions

Low-rank Matrix Completion



- Task: Complete ratings matrix
- Applications: recommendation systems, PCA with missing entries

Low-rank Matrix Sensing



Low-rank Matrix Estimation—Linear Measurements

$$\mathbb{A}(W^*) = b$$

- $\mathbb{A}: \mathbb{R}^{d_1 \times d_2} \to \mathbb{R}^m$ - Linear operator $-\mathbb{A} = \{A_1, A_2, \dots, A_m\}$ $\mathbb{A}(W) = \begin{bmatrix} \langle A_1, W \rangle \\ \langle A_2, W \rangle \\ \vdots \\ \langle A_m, W \rangle \end{bmatrix}$
- Optimization Version:

$$\min_{W} ||\mathbb{A}(W) - b||_2^2$$

s.t. $rank(W) \le k$

Low-rank Matrix Estimation $\min_{W} ||\mathbb{A}(W) - b||_{2}^{2}$ s.t. rank(W) $\leq k$

NP-hard in general

– Hard to even approximate within $log(d_1 + d_2 + m)$ [MJCD'08]

- Tractable solutions for a variety of important problems
 - Matrix completion
 - RIP based matrix sensing

Existing method: Trace-norm minimization

 $\min_{W} ||\mathbb{A}(W) - b||_2^2$ s.t. $||W||_* \le \tau_k$

- $||X||_*$: sum of singular values
- Several powerful results:
 - Matrix Completion: [CR08, CT08, Gross09, Recht11....]
 - RIP based Matrix Sensing: [RFP10]
- However, convex optimization methods for this problem don't scale well
 - Intermediate iterates can have rank much larger than "k"
 - SVD computation per step

Projected Gradient based Methods

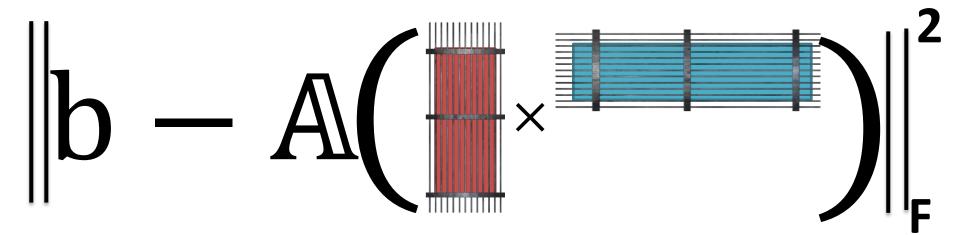
- $W_0 = 0$
- For t=1:T

$$Z = W_t - \eta \mathbb{A}^{\mathrm{T}}(\mathbb{A}(W_t) - \mathbf{b})$$
$$W_{t+1} = \arg\min_{W} ||Z - W||_F^2,$$
$$s.t., \quad rank(W) \le k$$

- Known analysis for RIP based matrix sensing
- No guarantees for other problems like matrix completion

[JMD10] [GM, FOCM11] [MTT10]

Alternating Minimization



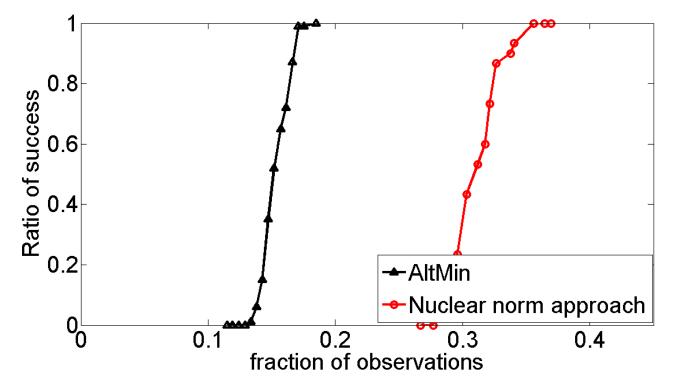
$W^* \cong U \times V^T$

 $V^{t+1} = \min_{V} ||b - A(U^{t}V^{T})||_{2}^{2}$ $U^{t+1} = \min_{U} ||b - A(U(V^{t+1})^{T})||_{2}^{2}$

Alternating Minimization

- Solving for U or V individually is "easy"
 - Only a least squares problem with $(m + n) \times k$ variables
- Several nice properties
 - Small storage requirement: store only U, V
 - Fast intermediate steps
 - no requirement of eigenvalue or singular value decomposition
 - Highly accurate in practice
 - forms an important component of the winning entry to Netflix Challenge

Empirical Performance of Alternative Minimization



- However, the overall problem is non-convex
 - No known analysis for recovery of exact M
 - Only convergence to local minima known

AltMin Algorithm

$$A(W^{*}) = \begin{bmatrix} \langle A_{1}, W^{*} \rangle \\ \langle A_{2}, W^{*} \rangle \\ \vdots \\ \langle A_{m(2T+1)}, W^{*} \rangle \end{bmatrix} \qquad A(W^{*}) = \begin{bmatrix} \langle A_{1}, W^{*} \rangle \\ \langle A_{2}, W^{*} \rangle \\ \vdots \\ \langle A_{m}, W^{*} \rangle \end{bmatrix} \qquad 2T+1$$

$$A(W^{*}) = \begin{bmatrix} \langle A_{m(2T)+1}, W^{*} \rangle \\ \langle A_{m(2T)+2}, W^{*} \rangle \\ \vdots \\ \langle A_{m(2T+1)}, W^{*} \rangle \end{bmatrix}$$

• Initialization:

 $-U_0 = \text{Largest singular vector of } \sum_i A_i b_i$

• t+1-th Iteration: $V^{t+1} = \min_{V} ||b - A(U^{t}V^{T})||_{2}^{2}$ $U^{t+1} = \min_{U} ||b - A(U(V^{t+1})^{T})||_{2}^{2}$

Conditions on
$$A$$

$$A(W_* = U_* \Sigma_* V_*^T) = \begin{bmatrix} \langle A_1, W_* \rangle \\ \langle A_2, W_* \rangle \\ \vdots \\ \langle A_m, W_* \rangle \end{bmatrix}$$

- Assume that A satisfies:
 - Initialization: $||svd(\sum_i A_i b_i) W_*||_2 \le \delta ||W||_*$
 - Concentration:

$$\begin{aligned} &||\frac{1}{m}\sum_{i=1}^{m}A_{i}v_{p}v_{q}^{T}A_{i}^{T}-\langle v_{p},v_{q}\rangle I||_{2} \leq \delta ||v_{p}||_{2}||v_{q}||_{2} \\ &||\frac{1}{m}\sum_{i=1}^{m}A_{i}^{T}u_{p}u_{q}^{T}A_{i}|-\langle u_{p},u_{q}\rangle I||_{2} \leq \delta ||u_{p}||_{2}||u_{q}||_{2} \end{aligned}$$

$$-\delta \leq rac{1}{100\cdot k^{1.5}\cdot eta}$$
 , $eta=\sigma_*^1/\sigma_*^k$

• u_p, v_p, u_q, v_q independent of A_i 's

[J., Dhillon, Arxiv'13]

Main General Result

- Assume A satisfies Property 1, 2
- For all $t \geq 1$,

$$dist(U_{t+1}, U_*) \leq \frac{1}{2} dist(U_t, U_*)$$
$$dist(V_{t+1}, V_*) \leq \frac{1}{2} dist(V_t, V_*)$$
$$After T = O\left(\log\left(\frac{||W_*||_F}{\epsilon}\right)\right):$$
$$||W_T - W_*||_2 \leq \epsilon$$

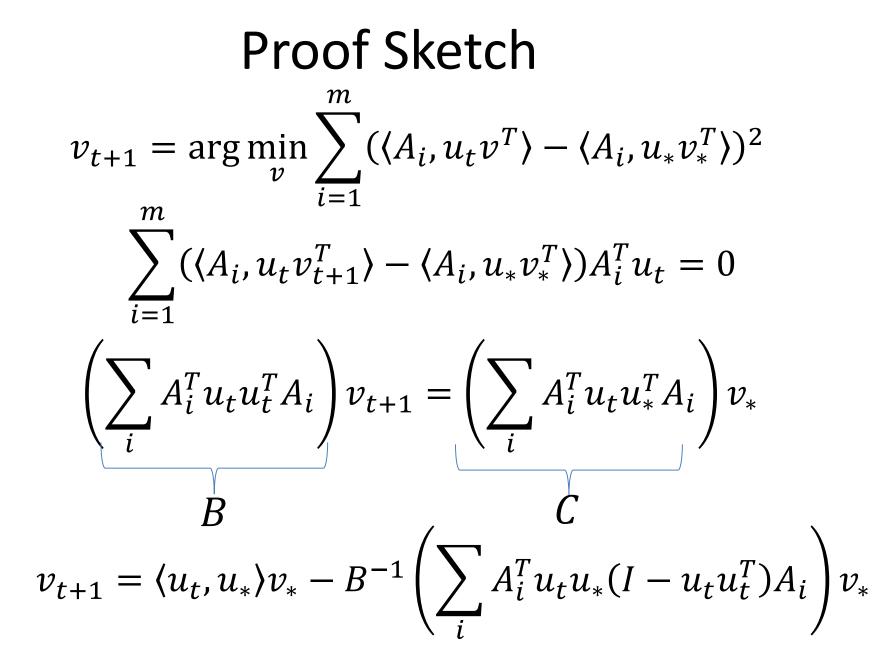
[J., Dhillon, Arxiv'13]

Distance Function

$dist(U, U_*) = ||U_{\perp}^T U_*||_2$

- U_{\perp} : basis of space orthogonal to span(U)
- Largest principal angle between U, U_*
- Commonly used distance function between subspaces
- For 1-d subspaces:

$$dist(u, u_*) = \sqrt{1 - \langle u, u_* \rangle^2}$$



[J., Netrapalli, Sanghavi, STOC'13]

$$Proof Sketch \overset{u_p}{\overset{u_q}{\overset{}}} \overset{u_q}{\overset{}} v_{t+1} = \langle u_t, u_* \rangle v_* - B^{-1} \left(\sum_i A_i^T u_t u_* (I - u_t u_t^T) A_i \right) v_*$$

Power Method Term $W_*^T u_t$

Error Term

$$\langle u_p, u_q \rangle = 0, \qquad ||u_q||_2 = dist(u_t, u_*)$$

- Applying concentration inequality: – Error term $\leq 2\delta dist(u_t, u_*)$
- Error decay follows by using:
 - Bound on error term
 - Lower bound on $\langle u_t, u_* \rangle$ by initialization

[J., Netrapalli, Sanghavi, STOC'13] [J., Dhillon, Arxiv'13]

- AltMin: Power method with Error Term
- Error term bounded using concentration assumption
- Lower bound on the "correct" term by initialization assumption
- Geometric convergence

Low-rank Matrix Completion

$$\min_{W} Error_{\Omega}(W) = \sum_{(i,j)\in\Omega} \left(W_{ij} - W_{ij}^* \right)^2$$

s.t rank(W) $\leq k$

• Ω : set of known entries

•
$$\mathbb{A} = \{ A_{ij}, ij \in \Omega \}$$

 $-A_{ij} = e_i e_j^T$
 $i \longrightarrow 0 \quad 0 \quad 1 \quad 0$
 $0 \quad 0 \quad 0 \quad 1 \quad 0$
 $0 \quad 0 \quad 0 \quad 0$
 $0 \quad 0 \quad 0$
 $0 \quad 0 \quad 0 \quad 0$
 $0 \quad 0 \quad 0$

Our Results

- Show Property 1, 2 of General Theorem
- Assumptions:
 - $-\,\Omega$ is sampled uniformly, i.e., $|\Omega| = O(k^7\beta^6(d_1+d_2)\log(d_1+d_2)\,)$
 - $\beta = \sigma_1 / \sigma_k$
 - W_{*}: rank-k "incoherent" matrix
 - Most of the entries are similar in magnitude
- Initialization property follows by [KMO'09]
- Decay property follows by using incoherence of U_*, V_*, U_t (recall that $W_* = U_* \Sigma_* V_*^T$)
 - **–** Challenge: Show that V_{t+1} is incoherent

[J., Netrapalli, Sanghavi, STOC'13]

Alternating Minimization	Trace-Norm Minimization
$ W_* - UV^T _F \le \epsilon W _F$ after $O(\log\left(\frac{1}{\epsilon}\right))$ steps	Requires $O(\log\left(\frac{1}{\epsilon}\right))$ steps
Each step require solving 2 least squares problems	Require Singular value decomposition
Intermediate iterate always have rank-k	Intermediate iterates can have rank larger than k
Assumptions: random sampling and incoherence	Similar assumption
$m = O(k^7 \beta^6 d \log(d))$ $d = d_1 + d_2$	$m = O(k \ d \log(d))$ $d = d_1 + d_2$

Comparison to Keshavan'12

- Independent of our work
- Show results for Matrix Completion
 - Alternating minimization method
 - Similar linear convergence

$$|\Omega| = O(k\beta^8(d_1 + d_2)\log(d_1 + d_2))$$

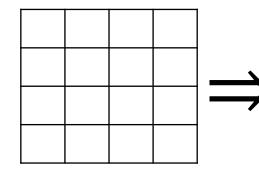
– Ours:

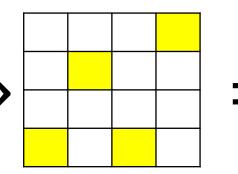
$$|\Omega| = O(k^7 \beta^6 (d_1 + d_2) \log(d_1 + d_2))$$

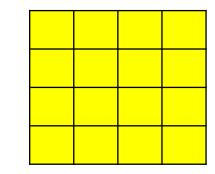
[J., Netrapalli, Sanghavi, STOC'13]

Low-rank Matrix Sensing

Matrix Completion:





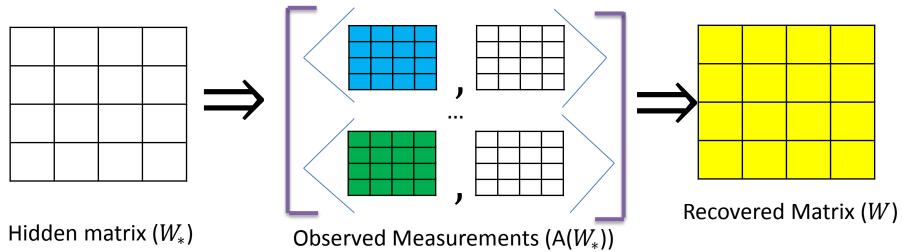


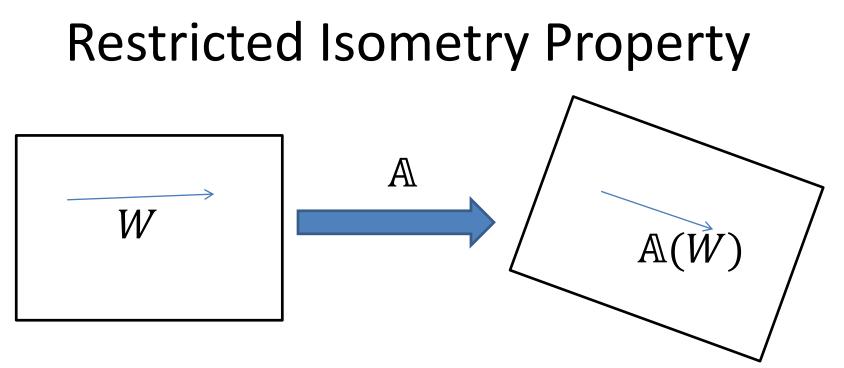
Hidden matrix (W_*)

Observed Entries

Recovered Matrix (W)

Matrix Sensing:





- For all rank-k matrix (W): $(1 - \delta_k) ||W||_F^2 \le ||\mathbb{A}(W)||_2^2 \le (1 + \delta_k) ||W||_F^2$
- Examples:

 $- \mathbb{A}$: sampled from multivariate normal distribution

$$-m = O(\frac{k}{\delta_k^2}(d_1 + d_2)\log(d_1 + d_2))$$

Alternating Minimization	Trace-Norm Minimization
$ W_* - UV^T _F \le \epsilon W _F$ after $O(\log(\frac{1}{\epsilon}))$ steps	Requires $O(\log(\frac{1}{\epsilon}))$ steps
Each step require solving 2 least squares problems	Require Singular value decomposition
Intermediate iterate always have rank-k	Intermediate iterates can have rank much higher than k
Assumptions: "random" measurement matrix A	Similar assumption
$m = O(k^3\beta^2 d \log(d))$ $d = d_1 + d_2$	$m = O(k \ d \log(d))$ $d = d_1 + d_2$

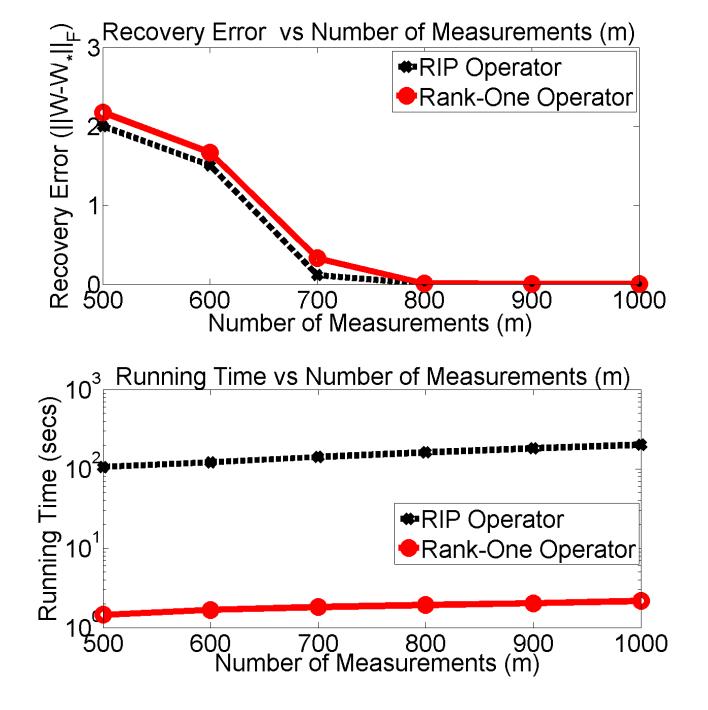
[J., Netrapalli, Sanghavi, STOC'13]

Rank-One Measurements for Matrix Sensing

$$\mathbb{A}(W_*) = \begin{bmatrix} \langle A_1, W \rangle \\ \langle A_2, W \rangle \\ \vdots \\ \langle A_m, W \rangle \end{bmatrix} = \begin{bmatrix} x_1^T W_* y_1 \\ x_2^T W_* y_2 \\ \vdots \\ x_m^T W_* y_m \end{bmatrix}$$

- $A_i = x_i y_i^T$, $x_i, y_i \sim N(0, I), \forall i$
- Property 1, 2 of General Theorem satisfies: $-m \ge C k^4 \beta^2 (d_1 + d_2) \log(d_1 + d_2)$
- Significantly more efficient signal acquisition
- Drawback: Not universal
 - Requires new \mathbb{A} for each signal W_*

[J., Dhillon, Arxiv'13]



Removing Condition Number Dependence

- Main challenge:
 - Require "good" initialization
 - Necessary, even power method requires it
 - The largest subspace dominates initialization step
 - Solution: "remove" one subspace at a time

Stagewise Altmin

- Stage r = 1 to k
 - Initialize by projected gradient $P_r(W \eta \mathbb{A}^T(\mathbb{A}(W) b))$
 - $-W = U_0 \Sigma_0 V_0^T$
 - For t=1 to T

$$V^{t+1} = \min_{V} ||b - \mathbb{A}(U^{t}V^{T})||_{2}^{2}$$
$$U^{t+1} = \min_{U} ||b - \mathbb{A}(U(V^{t+1})^{T})||_{2}^{2}$$
$$- W = U_{T}V_{T}^{T}$$
$$- \text{End-Stage}$$

[J., Netrapalli, Sanghavi, STOC'13]

General Result

• Let A satisfy Property 1,2

$$\begin{aligned} &- \text{Concentration:} \\ &||A_i v_p v_q^T A_i^T - \langle v_p, v_q \rangle I||_2 \leq \delta \, ||v_p||_2 ||v_q||_2 \\ &||A_i^T u_p u_q^T A_i - \langle u_p, u_q \rangle I||_2 \leq \delta \, ||u_p||_2 ||u_q||_2 \\ &- \delta \leq \frac{1}{10k^2} \end{aligned}$$

• After
$$T = O\left(\log\left(\frac{||W_*||_F}{\epsilon}\right)\right)$$
:
 $||W_T - W_*||_2 \le \epsilon$

Results

• Results for other problems

- RIP based Matrix Sensing: $m = O(k^4(d_1 + d_2)) \log(d_1 + d_2))$

- Rank-one Operator based Matrix Sensing $m = O(k^5(d_1 + d_2)) \log(d_1 + d_2))$

- Not applied to Matrix Completion
 - Challenge: Incoherence for projected gradient step

[J., Netrapalli, Sanghavi, STOC'13] [J., Dhillon, Arxiv'13]

Phase Retrieval

$$y_i = |\langle a_i, x_* \rangle|, \qquad 1 \le i \le m,$$
$$x_* \in C^n$$

- Only magnitudes of measurements available
- Applications in several areas
- Recent theoretical results

- Assume $a_i \sim N(0, I)$

PhaseLift: trace norm based relaxation

$$y_i^2 = a_i^T x_* x_*^T a_i$$

 $-\operatorname{Relax} xx^T \to X$

PhaseLift

$$\min ||X||_*$$

s.t. $y_i^2 = \langle X, a_i a_i^T \rangle$
 $X \ge 0$

- Exact recovery if $m = O(n \log n)$ [CTV11]
- Later improved to m = O(n) [CL12]
- Optimization procedure is computationally expensive

Alternating Minimization

$$\min_{P,x} ||Py - Ax||_2^2$$

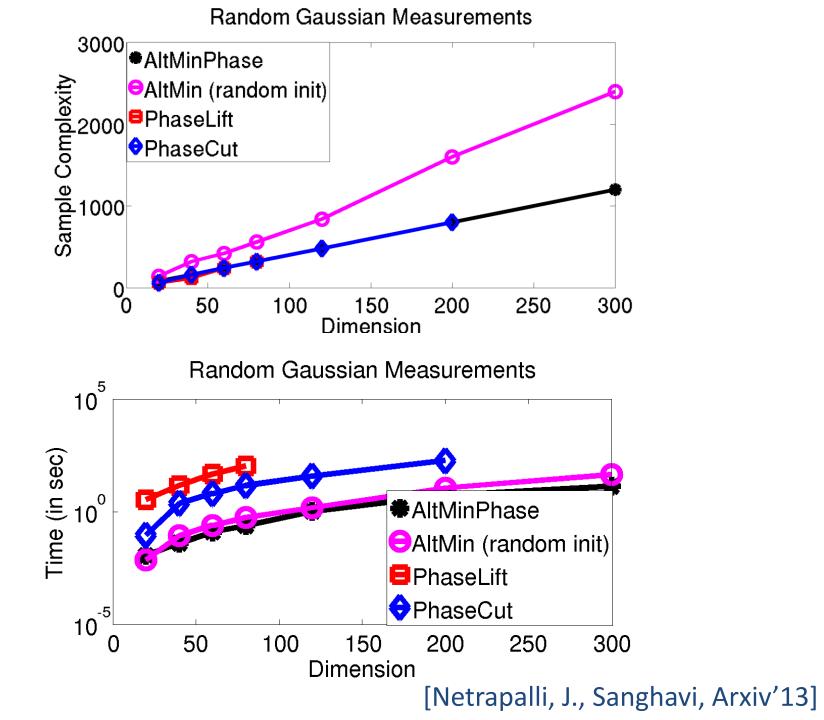
- *P*: phase of Ax_*
- Alternating minimization:

$$-P_t = Phase(Ax_t)$$

$$-x_{t+1} = (A^T A)^{-1} A^T P_t y$$

- Initialization: largest singular vector of $\sum_i y_i^2 a_i a_i^T$
- Exact recovery if $m = \Omega(n \log^3 n)$

[Netrapalli, J., Sanghavi, Arxiv'13]



 $\begin{array}{ll} \min_{W} & ||\mathbb{A}(W) - b||_{2}^{2} \\ s.t. & \mathbf{rank}(W) \leq k \\ & k \ll \text{dimensions(W)} \end{array}$

• Popular approach: trace-norm relaxation

$$\min_{W} ||\mathbb{A}(W) - b||_{2}^{2}$$

s.t.
$$||W||_{*} \le \lambda(k)$$

- $||W||_*$: sum of singular values
- Convex formulation
- Proven to solve rank problem
 - assumptions on error function
- Non-smooth optimization problem: doesn't scale well

$$\min_{W} \quad Error(W) = ||\mathbb{A}(W) - b||_{2}^{2}$$

s.t.
$$\operatorname{rank}(W) \le k$$

• Alternating minimization: empirically successful $-W = UV^T$

 $V^{t+1} = \min_{V} \quad Error(U^{t}, V), U^{t+1} = \min_{U} Error(U, V^{t+1})$

- Computationally efficient
- Prone to local minima
 - Little work on convergence guarantees

- Provide generic conditions for which AltMin works well
 - Provide an enhanced stage-wise AltMin procedure to remove condition number dependence
- Provide results for:
 - Low-rank Matrix Completion
 - Low-rank Matrix Sensing
- Provide convergence to the global optima guarantees
 - Use similar assumptions as existing methods
 - But slightly worse no. of measurements (or entries)

Future Work

- Optimal scaling for k in the sample complexity bounds
- Matrix completion: remove dependence on β : condition no. of W_*
- Application of our technique to other problems:
 - Robust PCA
 - Non-negative Matrix Approximation

Thank You!!!

Questions?