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Talk Outline
• Low-rank Estimation Problems

– recommendation systems (e.g. Netflix Challenge)
– Multi-label Learning
– ….

• Alternating Minimization methods
– Most popular method
– Little theoretical understanding

• Study Alternating Minimization method
– General technique to analyze alternating minimization
– Linear convergence to optima

• Guarantees for:
– Matrix Completion
– RIP-based Matrix Sensing
– Rank-one Operator based Matrix Sensing

• Conclusions



Low-rank Matrix Completion

• Task: Complete ratings matrix
• Applications: recommendation systems, PCA with missing entries



Low-rank Matrix Sensing

Hidden matrix (𝑊∗)

⇒

Observed Measurements (A(𝑊∗))

,

,

… ⇒
Recovered Matrix (𝑊)



Low-rank Matrix Estimation—Linear Measurements

• 𝔸:𝐑𝒅𝟏×𝒅𝟐 → 𝑹𝒎

– Linear operator

– 𝔸 = {𝐀𝟏, 𝐀𝟐, … , 𝑨𝒎}

• Optimization Version: 

𝔸 𝑊∗ = 𝑏

𝔸 𝑊 =

〈𝐴1,𝑊〉
〈𝐴2,𝑊〉
⋮

〈𝐴𝑚,𝑊〉

min
𝑊
||𝔸(𝑊) − 𝑏||2

2

𝑠. 𝑡. 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑘



Low-rank Matrix Estimation

• NP-hard in general

– Hard to even approximate within log(𝑑1 + 𝑑2 +𝑚)
[MJCD’08]

• Tractable solutions for a variety of important 
problems

– Matrix completion

– RIP based matrix sensing

min
𝑊
||𝔸(𝑊) − 𝑏||2

2

𝑠. 𝑡. 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑘



Existing method: Trace-norm minimization

– ||𝑋||∗: sum of singular values

– Several powerful results: 

• Matrix Completion: [CR08, CT08, Gross09, Recht11….]

• RIP based Matrix Sensing: [RFP10]

– However, convex optimization methods for this 
problem don’t scale well

• Intermediate iterates can have rank much larger than “𝑘”

• SVD computation per step

min
𝑊
||𝔸(𝑊) − 𝑏||2

2

𝑠. 𝑡. ||𝑊||∗ ≤ 𝜏𝑘



Projected Gradient based Methods

• 𝑊0 = 0

• For t=1:T

𝑍 = 𝑊𝑡 − 𝜂𝔸
T 𝔸 𝑊t − b

𝑊𝑡+1 = arg min
𝑊
||𝑍 −𝑊||𝐹

2 ,

𝑠. 𝑡., 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑘

• Known analysis for RIP based matrix sensing

• No guarantees for other problems like matrix 
completion

[JMD10] [GM, FOCM11] [MTT10]



Alternating Minimization

𝑊∗ 𝑈 𝑉𝑇≅ ×

×

F

2

b − 𝔸 )(
𝑉𝑡+1 = min

𝑉
||𝑏 − 𝐴(𝑈𝑡𝑉𝑇) ||2

2

𝑈𝑡+1 = min
𝑈
||𝑏 − 𝐴 𝑈 𝑉𝑡+1 𝑇 ||2

2



Alternating Minimization
• Solving for 𝑈 or 𝑉 individually is “easy”

– Only a least squares problem with (𝑚 + 𝑛) × 𝑘
variables

• Several nice properties

– Small storage requirement: store only 𝑈, 𝑉

– Fast intermediate steps

• no requirement of eigenvalue or singular value 
decomposition

– Highly accurate in practice

• forms an important component of the winning entry to 
Netflix Challenge 



Empirical Performance of Alternative 
Minimization

• However, the overall problem is non-convex

– No known analysis for recovery of exact M

– Only convergence to local minima known



AltMin Algorithm

• Initialization: 

– 𝑈0 = Largest singular vector of  𝑖 𝐴𝑖𝑏𝑖

• t+1-th Iteration: 

𝔸 𝑊∗ =

〈𝐴1,𝑊
∗〉

〈𝐴2,𝑊
∗〉
⋮

〈𝐴𝑚 2𝑇+1 ,𝑊
∗〉

𝔸 𝑊∗ =

〈𝐴𝑚 2𝑇 +1,𝑊
∗〉

〈𝐴𝑚 2𝑇 +2,𝑊
∗〉

⋮
〈𝐴𝑚 2𝑇+1 ,𝑊

∗〉

𝔸 𝑊∗ =

〈𝐴1,𝑊
∗〉

〈𝐴2,𝑊
∗〉
⋮

〈𝐴𝑚,𝑊
∗〉

⋮ 2T+1

𝑉𝑡+1 = min
𝑉
||𝑏 − 𝐴(𝑈𝑡𝑉𝑇) ||2

2

𝑈𝑡+1 = min
𝑈
||𝑏 − 𝐴 𝑈 𝑉𝑡+1 𝑇 ||2

2



Conditions on   𝔸

• Assume that 𝔸 satisfies:
– Initialization: ||𝑠𝑣𝑑  𝑖𝐴𝑖𝑏𝑖 −𝑊∗||2 ≤ 𝛿 ||𝑊||∗
– Concentration:  

||
1

𝑚
 

𝑖=1

𝑚

𝐴𝑖𝑣𝑝𝑣𝑞
𝑇𝐴𝑖
𝑇 − 〈𝑣𝑝, 𝑣𝑞〉 𝐼||2 ≤ 𝛿 ||𝑣𝑝||2||𝑣𝑞||2

||
1

𝑚
 

𝑖=1

𝑚

𝐴𝑖
𝑇𝑢𝑝𝑢𝑞

𝑇𝐴𝑖 − 𝑢𝑝, 𝑢𝑞 𝐼||2 ≤ 𝛿 ||𝑢𝑝||2||𝑢𝑞||2

– 𝛿 ≤
1

100⋅𝑘1.5⋅𝛽
, 𝛽 = 𝜎∗

1/𝜎∗
𝑘

• 𝑢𝑝, 𝑣𝑝, 𝑢𝑞 , 𝑣𝑞 independent of 𝐴𝑖’s 

𝔸 𝑊∗ = 𝑈∗Σ∗𝑉∗
𝑇 =

〈𝐴1,𝑊∗〉
〈𝐴2,𝑊∗〉
⋮

〈𝐴𝑚,𝑊∗〉

[J., Dhillon, Arxiv’13]



Main General Result

• Assume 𝔸 satisfies Property 1, 2

• For all 𝑡 ≥ 1, 

𝑑𝑖𝑠𝑡 𝑈𝑡+1, 𝑈∗ ≤
1

2
𝑑𝑖𝑠𝑡 𝑈𝑡, 𝑈∗

𝑑𝑖𝑠𝑡 𝑉𝑡+1, 𝑉∗ ≤
1

2
𝑑𝑖𝑠𝑡 𝑉𝑡, 𝑉∗

• After 𝑇 = 𝑂 log
||𝑊∗||𝐹

𝜖
: 

||𝑊𝑇 −𝑊∗||2 ≤ 𝜖

[J., Dhillon, Arxiv’13]



Distance Function

• 𝑈⊥: basis of space orthogonal to 𝑠𝑝𝑎𝑛(𝑈)

• Largest principal angle between 𝑈,𝑈∗
• Commonly used distance function between 

subspaces

• For 1-d subspaces: 

𝑑𝑖𝑠𝑡 𝑢, 𝑢∗ = 1 − 𝑢, 𝑢∗
2

𝑑𝑖𝑠𝑡 𝑈, 𝑈∗ = ||𝑈⊥
𝑇𝑈∗||2



Proof Sketch

𝑣𝑡+1 = argmin
𝑣
 

𝑖=1

𝑚

𝐴𝑖 , 𝑢𝑡𝑣
𝑇 − 𝐴𝑖 , 𝑢∗𝑣∗

𝑇 2

 

𝑖=1

𝑚

𝐴𝑖 , 𝑢𝑡𝑣𝑡+1
𝑇 − 𝐴𝑖 , 𝑢∗𝑣∗

𝑇 𝐴𝑖
𝑇𝑢𝑡 = 0

 

𝑖

𝐴𝑖
𝑇𝑢𝑡𝑢𝑡

𝑇𝐴𝑖 𝑣𝑡+1 =  

𝑖

𝐴𝑖
𝑇𝑢𝑡𝑢∗

𝑇𝐴𝑖 𝑣∗

𝐵 𝐶

𝑣𝑡+1 = 𝑢𝑡 , 𝑢∗ 𝑣∗ − 𝐵
−1  

𝑖

𝐴𝑖
𝑇𝑢𝑡𝑢∗ 𝐼 − 𝑢𝑡𝑢𝑡

𝑇 𝐴𝑖 𝑣∗

[J., Netrapalli, Sanghavi, STOC’13]



Proof Sketch

• Applying concentration inequality: 
– Error term ≤ 2𝛿 𝑑𝑖𝑠𝑡(𝑢𝑡 , 𝑢∗)

• Error decay follows by using:
– Bound on error term

– Lower bound on 〈𝑢𝑡 , 𝑢∗〉 by initialization 

𝑣𝑡+1 = 𝑢𝑡 , 𝑢∗ 𝑣∗ − 𝐵−1  

𝑖

𝐴𝑖
𝑇𝑢𝑡𝑢∗ 𝐼 − 𝑢𝑡𝑢𝑡

𝑇 𝐴𝑖 𝑣∗

Power Method Term
𝑊∗
𝑇𝑢𝑡

Error Term

𝑢𝑝 𝑢𝑞

𝑢𝑝, 𝑢𝑞 = 0, ||𝑢𝑞||2 = 𝑑𝑖𝑠𝑡(𝑢𝑡, 𝑢∗)

[J., Netrapalli, Sanghavi, STOC’13] [J., Dhillon, Arxiv’13] 



Summary

• AltMin: Power method with Error Term

• Error term bounded using concentration 
assumption

• Lower bound on the “correct” term by 
initialization assumption

• Geometric convergence



Low-rank Matrix Completion

min
𝑊
𝐸𝑟𝑟𝑜𝑟Ω 𝑊 =  

𝑖,𝑗 ∈Ω

𝑊𝑖𝑗 −𝑊𝑖𝑗
∗ 2

𝑠. 𝑡 𝐫𝐚𝐧𝐤 𝑊 ≤ 𝑘

• Ω: set of known entries

• 𝔸 = {Aij, ij ∈ Ω}

– 𝐴𝑖𝑗 = 𝑒𝑖𝑒𝑗
𝑇

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

i

j



Our Results

• Show Property 1, 2 of General Theorem

• Assumptions: 
– Ω is sampled uniformly, i.e., 
Ω = 𝑂(𝑘7𝛽6(𝑑1 + 𝑑2) log(𝑑1 + 𝑑2) )

• 𝛽 = 𝜎1/𝜎𝑘

–𝑊∗: rank-k “incoherent” matrix
• Most of the entries are similar in magnitude

• Initialization property follows by [KMO’09]

• Decay property follows by using incoherence of 
𝑈∗, 𝑉∗, 𝑈𝑡 (recall that 𝑊∗ = 𝑈∗Σ∗𝑉∗

𝑇)
– Challenge:   Show that 𝑉𝑡+1 is incoherent

[J., Netrapalli, Sanghavi, STOC’13]



||𝑊∗ − 𝑈𝑉
𝑇||𝐹 ≤ 𝜖 ||𝑊||𝐹

after 𝑂(log
1

𝜖
) steps

Requires O(log
1

𝜖
) steps 

Each step require solving 2 
least squares problems

Require Singular value 
decomposition

Intermediate iterate always 
have rank-k

Intermediate iterates can 
have rank larger than k

Assumptions: random 
sampling and incoherence

Similar assumption

𝑚 = 𝑂 𝑘7𝛽6𝑑 log(𝑑)
𝑑 = 𝑑1 + 𝑑2

𝑚 = 𝑂 𝑘 𝑑 log(𝑑)
𝑑 = 𝑑1 + 𝑑2

Alternating Minimization Trace-Norm Minimization



Comparison to Keshavan’12

• Independent of our work

• Show results for Matrix Completion

– Alternating minimization method

– Similar linear convergence

– Ours:

|Ω| = 𝑂(𝑘𝛽8(𝑑1 + 𝑑2) log(𝑑1 + 𝑑2))

|Ω| = 𝑂(𝑘7𝛽6(𝑑1 + 𝑑2) log(𝑑1 + 𝑑2))

[J., Netrapalli, Sanghavi, STOC’13]



Low-rank Matrix Sensing

⇒

Matrix Completion: 

Matrix Sensing: 

⇒
Hidden matrix (𝑊∗) Observed Entries Recovered Matrix (𝑊)

Hidden matrix (𝑊∗)

⇒

Observed Measurements (A(𝑊∗))

,

,

… ⇒
Recovered Matrix (𝑊)



Restricted Isometry Property

• For all rank-k matrix (W): 
1 − 𝛿𝑘 ||𝑊||𝐹

2 ≤ ||𝔸 𝑊 ||2
2 ≤ 1 + 𝛿𝑘 ||𝑊||𝐹

2

• Examples:
– 𝔸 : sampled from multivariate normal distribution

– m = 𝑂(
𝑘

𝛿𝑘
2 (𝑑1 + 𝑑2) log(𝑑1 + 𝑑2))

𝔸
𝑊

𝔸(𝑊)



Alternating Minimization Trace-Norm Minimization

||𝑊∗ − 𝑈𝑉
𝑇||𝐹 ≤ 𝜖 ||𝑊||𝐹

after 𝑂(log
1

𝜖
) steps

Requires O(log(
1

𝜖
)) steps 

Each step require solving 2 
least squares problems

Require Singular value 
decomposition

Intermediate iterate always 
have rank-k

Intermediate iterates can 
have rank much higher than k

Assumptions: “random” 
measurement matrix 𝐴

Similar assumption

𝑚 = 𝑂 𝑘3𝛽2𝑑 log(𝑑)
𝑑 = 𝑑1 + 𝑑2

𝑚 = 𝑂 𝑘 𝑑 log(𝑑)
𝑑 = 𝑑1 + 𝑑2

[J., Netrapalli, Sanghavi, STOC’13]



Rank-One Measurements for  Matrix Sensing

• 𝐴𝑖 = 𝑥𝑖𝑦𝑖
𝑇 , 𝑥𝑖 , 𝑦𝑖 ∼ 𝑁 0, 𝐼 , ∀𝑖

• Property 1, 2 of General Theorem satisfies:

–𝑚 ≥ 𝐶 𝑘4𝛽2 𝑑1 + 𝑑2 log(𝑑1 + 𝑑2)

• Significantly more efficient signal acquisition

• Drawback: Not universal
– Requires new 𝔸 for each signal 𝑊∗

𝔸 𝑊∗ =

〈𝐴1,𝑊〉
〈𝐴2,𝑊〉
⋮

〈𝐴𝑚,𝑊〉

=

𝑥1
𝑇𝑊∗𝑦1
𝑥2
𝑇𝑊∗𝑦2
⋮

𝑥𝑚
𝑇𝑊∗𝑦𝑚

[J., Dhillon, Arxiv’13]





Removing Condition Number 
Dependence

• Main challenge:

– Require “good” initialization

• Necessary, even power method requires it

– The largest subspace dominates initialization step

– Solution: “remove” one subspace at a time



Stagewise Altmin

• Stage r = 1 to k

– Initialize by projected gradient 𝑃𝑟(𝑊 − 𝜂𝔸
T 𝔸 W − b )

– 𝑊 = 𝑈0Σ0𝑉0
𝑇

– For t=1 to T

– 𝑊 = 𝑈𝑇𝑉𝑇
𝑇

– End-Stage

𝑉𝑡+1 = min
𝑉
||𝑏 −𝔸(𝑈𝑡𝑉𝑇) ||2

2

𝑈𝑡+1 = min
𝑈
||𝑏 −𝔸 𝑈 𝑉𝑡+1 𝑇 ||2

2

[J., Netrapalli, Sanghavi, STOC’13]



General Result

• Let 𝔸 satisfy Property 1,2

– Concentration:
||𝐴𝑖𝑣𝑝𝑣𝑞

𝑇𝐴𝑖
𝑇 − 〈𝑣𝑝, 𝑣𝑞〉 𝐼||2 ≤ 𝛿 ||𝑣𝑝||2||𝑣𝑞||2

||𝐴𝑖
𝑇𝑢𝑝𝑢𝑞

𝑇𝐴𝑖 − 𝑢𝑝, 𝑢𝑞 𝐼||2 ≤ 𝛿 ||𝑢𝑝||2||𝑢𝑞||2

– 𝛿 ≤
1

10𝑘2

• After 𝑇 = 𝑂 log
||𝑊∗||𝐹

𝜖
: 

||𝑊𝑇 −𝑊∗||2 ≤ 𝜖



Results

• Results for other problems

– RIP based Matrix Sensing: 
𝑚 = 𝑂(𝑘4 𝑑1 + 𝑑2 ) log(𝑑1 + 𝑑2) )

– Rank-one Operator based Matrix Sensing
𝑚 = 𝑂(𝑘5 𝑑1 + 𝑑2 ) log(𝑑1 + 𝑑2) )

• Not applied to Matrix Completion

– Challenge: Incoherence for projected gradient 
step

[J., Netrapalli, Sanghavi, STOC’13] [J., Dhillon, Arxiv’13]



Phase Retrieval

• Only magnitudes of measurements available

• Applications in several areas

• Recent theoretical results
– Assume 𝑎𝑖 ∼ 𝑁(0, 𝐼)

– PhaseLift: trace norm based relaxation

𝑦𝑖
2 = 𝑎𝑖

𝑇𝑥∗𝑥∗
𝑇𝑎𝑖

– Relax 𝑥𝑥𝑇 → 𝑋

𝑦𝑖 = 𝑎𝑖 , 𝑥∗ , 1 ≤ 𝑖 ≤ 𝑚,
𝑥∗∈ 𝐶

𝑛



PhaseLift

• Exact recovery if 𝑚 = 𝑂(𝑛 log 𝑛) [CTV11]

• Later improved to 𝑚 = 𝑂(𝑛) [CL12]

• Optimization procedure is computationally 
expensive

min ||𝑋||∗
𝑠. 𝑡. 𝑦𝑖

2 = 𝑋, 𝑎𝑖𝑎𝑖
𝑇

𝑋 ≽ 0



Alternating Minimization

• 𝑃: phase of 𝐴𝑥∗
• Alternating minimization: 

– 𝑃𝑡 = 𝑃ℎ𝑎𝑠𝑒 𝐴𝑥𝑡
– 𝑥𝑡+1 = (𝐴

𝑇𝐴)−1𝐴𝑇𝑃𝑡𝑦

• Initialization: largest singular vector of  𝑖 𝑦𝑖
2𝑎𝑖𝑎𝑖
𝑇

• Exact recovery if 𝑚 = Ω(𝑛 log3 𝑛)

min
𝑃,𝑥
||𝑃𝑦 − 𝐴𝑥||2

2

[Netrapalli, J., Sanghavi, Arxiv’13]



[Netrapalli, J., Sanghavi, Arxiv’13]



Summary

• Popular approach: trace-norm relaxation

– ||𝑊||∗: sum of singular values

– Convex formulation

– Proven to solve rank problem 
• assumptions on error function

– Non-smooth optimization problem: doesn’t scale well 

min
𝑊
||𝔸(𝑊) − 𝑏||2

2

𝑠. 𝑡. 𝐫𝐚𝐧𝐤 𝑊 ≤ 𝑘
𝑘 ≪ dimensions(W)

min
𝑊
||𝔸(𝑊) − 𝑏||2

2

𝑠. 𝑡. ||𝑾||∗ ≤ 𝜆(𝑘)



Summary

• Alternating minimization: empirically successful

–𝑊 = 𝑈𝑉𝑇

– Computationally efficient

– Prone to local minima

• Little work on convergence guarantees

min
𝑊
𝐸𝑟𝑟𝑜𝑟 𝑊 = ||𝔸(𝑊) − 𝑏||2

2

𝑠. 𝑡. 𝐫𝐚𝐧𝐤 𝑊 ≤ 𝑘

𝑉𝑡+1 = min
𝑉
𝐸𝑟𝑟𝑜𝑟(𝑈𝑡 , 𝑉) , 𝑈𝑡+1 = min

𝑈
𝐸𝑟𝑟𝑜𝑟(𝑈, 𝑉𝑡+1)



Summary

• Provide generic conditions for which AltMin
works well
– Provide an enhanced stage-wise AltMin procedure to 

remove condition number dependence

• Provide results for:
– Low-rank Matrix Completion 
– Low-rank Matrix Sensing 

• Provide convergence to the global optima 
guarantees 
– Use similar assumptions as existing methods
– But slightly worse no. of measurements (or entries)



Future Work
• Optimal scaling for 𝑘 in the sample complexity 

bounds

• Matrix completion: remove dependence on 
𝛽: condition no. of 𝑊∗

• Application of our technique to other problems:

– Robust PCA

– Non-negative Matrix Approximation



Thank You!!!

Questions?


