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Talk Outline

Low-rank Estimation Problems

— recommendation systems (e.g. Netflix Challenge)
— Multi-label Learning

Alternating Minimization methods

— Most popular method

— Little theoretical understanding

Study Alternating Minimization method

— General technique to analyze alternating minimization
— Linear convergence to optima

Guarantees for:

— Matrix Completion

— RIP-based Matrix Sensing

— Rank-one Operator based Matrix Sensing

Conclusions



Low-rank Matrix Completion
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- unknown rating - rating between 1 to 5

* Task: Complete ratings matrix
* Applications: recommendation systems, PCA with missing entries



Low-rank Matrix Sensing
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Low-rank Matrix Estimation—Linear Measurements

A(W*) =b
+ A:R%1*%2 - g™ (A, W)
— Linear operator A(W) = <A2'. W)
—A={A1, A,y ... Ay} _(Am‘, W),

* Optimization Version:

min [[A(W) - b||3
s.t. rank(W) <k



Low-rank Matrix Estimation
min [|A(W) — bl|5
s.t. rank(W) <k

* NP-hard in general

— Hard to even approximate within log(d; + d, + m)
[IMJCD’08]
* Tractable solutions for a variety of important
problems
— Matrix completion
— RIP based matrix sensing



Existing method: Trace-norm minimization

min [|A(W) ~ |3
s.t. ||W]], <7
— || X||+: sum of singular values

— Several powerful results:
* Matrix Completion: [CRO8, CT08, Gross09, Recht11....]
* RIP based Matrix Sensing: [RFP10]

— However, convex optimization methods for this
problem don’t scale well

* Intermediate iterates can have rank much larger than “k”
* SVD computation per step



Projected Gradient based Methods

WO — O
For t=1:T

Z =W, —nA'(A(W,) — b)
Wiyr = argmin||Z — W||g,
w

S.t.,

rank(W) <k

Known analysis for RIP based matrix sensing
No guarantees for other problems like matrix

completion

[JIMD10] [GM, FOCM11] [MTT10]



Alternating Minimization

b— A

W*

X

~y

U x VT
Vt+1 — mVin Hb _ A(UtVT) H%
Ut = min||b — AUV H)T]I3




Alternating Minimization

* Solving for U or VV individually is “easy”

— Only a least squares problem with (m +n) X k
variables

* Several nice properties

— Small storage requirement: store only U,V
— Fast intermediate steps

* no requirement of eigenvalue or singular value
decomposition

— Highly accurate in practice

e forms an important component of the winning entry to
Netflix Challenge



Empirical Performance of Alternative
Minimization
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 However, the overall problem is non-convex
— No known analysis for recovery of exact M
— Only convergence to local minima known



AltMin Algorithm

[ (Alr W*> ]

(A, W7) AW?) = <A2’:W*>

(Ay, W) -<Am:'W*>-

: : — 2T+1
(Amer+), W) (Amer+o W]

A(W?*) =

(Amer+1), W)
e |nitialization:

— U, = Largest singular vector of }.; A;b;
* t+l-thlteration: V&' =min|lb— AUV I3
Ut+1 — mUin ||b _ A(U(VHl)T)H%



Conditions on A
-<A11VV*>-

A\(VV* — U*Z*V*T) — (Az,:VV*>

. (A, W)
e Assume that A satisfies:

— Initialization: ||svd(3; A;b;) — W ||, < 6 ||W]].
— Concentration

II—ZA VU Al — (Vp, V) 12 < 8 [1vpll211vg] 12

||—ZATup - = (L2 < 8 gl

-5 < 100k15,8 B =o0l/ck
* Uy, Up, Uy, Vg independent of A;’s
[J., Dhillon, Arxiv’13]



Main General Result

* Assume A satisfies Property 1, 2
e Forallt = 1,

dist(Up,1,U,) < > dist(Uy, U.)
dist(Vesq,V.) < 5 dist(V,, V)

e AfterT =0 (log (”W”F)).
[|Wr =W, [l <€

[J., Dhillon, Arxiv’13]



Distance Function

dist(U,U,) = ||UTU,||,

U, : basis of space orthogonal to span(U)
Largest principal angle between U, U,

Commonly used distance function between
subspaces

For 1-d subspaces:
dist(u,u,) = \/1 — (U, U,)?




Proof Sketch

Vesr = arg minZ«Ai,utvU — (A, u.vT))’

1=

z(<‘41»utvt+1> (A;, u, vINA]u, = 0

2 Aluul A, )vtﬂ = (2 Aluul A; )

\ )

B c

Verq = (Up, u v, — B71 (Z Aluu, (I —uul)A; )
i

[J., Netrapalli, Sanghavi, STOC’13]



Proof Sketch *» tq

( \
Vi1 = (U, UV, — B~1 (z Aluyu, (I — ututT)Ai> v,
—— | ; | |
Power Method Term Error Term
V'/*Tut
(Up, ug) =0, [lugll2 = dist(ug, u,)

* Applying concentration inequality:
— Error term < 26 dist(us, uy)
* Error decay follows by using:
— Bound on error term
— Lower bound on (u;, u,) by initialization
[J., Netrapalli, Sanghavi, STOC’13] [J., Dhillon, Arxiv’13]



Summary

AltMin: Power method with Error Term

Error term bounded using concentration
assumption

Lower bound on the “correct” term by
initialization assumption

Geometric convergence



Low-rank Matrix Completion

. N2
min Errorqg(W) = z (Wij — Wl-j)
(i,j)EQ
s.t rank(W) <k
e (): set of known entries
e A = {All’ll € .Q.}

_ T
_Aij — eie]-

oO|lo|O|O
OO0 |O|O
OO |k |O |l .
OO0 |O|O




Our Results

Show Property 1, 2 of General Theorem

Assumptions:
— () is sampled uniformly, i.e.,
Q] = 0(k7B°(dy + dy)log(d; +d3))
* B =o01/0y
— W.: rank-k “incoherent” matrix

* Most of the entries are similar in magnitude

Initialization property follows by [KMO’09]

Decay property follows by using incoherence of
U,, V., U, (recall that W, = U, X, V.I)
— Challenge: Show that V., { is incoherent

[J., Netrapalli, Sanghavi, STOC’13]



Alternating Minimization Trace-Norm Minimization

W, = UV ||r < € |IW]|F
after O (log G)) steps

Requires O(log G)) steps

Each step require solving 2
least squares problems

Require Singular value
decomposition

Intermediate iterate always
have rank-k

Intermediate iterates can
have rank larger than k

Assumptions: random
sampling and incoherence

Similar assumption

m = 0(k’B°dlog(d))
d — d1 + dz

m = 0(k dlog(d) )
d — dl + dz




Comparison to Keshavan’12

* Independent of our work
* Show results for Matrix Completion

— Alternating minimization method

— Similar linear convergence
Q] = 0(kB®(dy + dy)log(d; + dy))

— Qurs:
Q] = 0(k’Be(dy + dy)log(d; + ds))

[J., Netrapalli, Sanghavi, STOC’13]



Low-rank Matrix Sensing

Matrix Completion:

Hidden matrix (W,)

Matrix Sensing:

Hidden matrix (W)
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Observed Measurements (A(WW,

Recovered Matrix (W)



Restricted Isometry Property

A

w ——>

* For all rank-k matrix (W):
(1 =8 )IIWIlE < [JAMW)]|5 < (1 + )15
 Examples:
— A : sampled from multivariate normal distribution

K
—m = 0(5_’% (d, +d3)log(d, +d3))



Alternating Minimization Trace-Norm Minimization

W, —UV||r < €||W]|g Requires O(log(é)) steps
after O (log (i)) steps

Each step require solving 2 Require Singular value
least squares problems decomposition
Intermediate iterate always Intermediate iterates can
have rank-k have rank much higher than k
Assumptions: “random” Similar assumption
measurement matrix A4

m = 0(k3B?*dlog(d)) m = 0(k dlog(d) )

d:dl‘l‘dz d:d1+d2

[J., Netrapalli, Sanghavi, STOC’13]



Rank-One Measurements for Matrix Sensing

(A, WY1 [x{Wyy~

A\(VV*) — (AZ:W>

szW*YZ

(A, WY [xE W,y
A =xy{,  x,y; ~N(0,D),Vi
Property 1, 2 of General Theorem satisfies:
—m > C k*B?(d, + d,)log(d; + d5)
Significantly more efficient signal acquisition
Drawback: Not universal

— Requires new A for each signal W,
[J., Dhillon, Arxiv’13]



Recovery Error vs Number of Measurements (m)

wRIP Operator
®Rank-One Operator

Recovery Error (J|W-W || )
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Removing Condition Number
Dependence

* Main challenge:
— Require “good” initialization
* Necessary, even power method requires it

— The largest subspace dominates initialization step
— Solution: “remove” one subspace at a time



Stagewise Altmin

e Stager=1tok
— Initialize by projected gradient P.(W — nAT(A(W) — b))
—W =UyZ Vs
— Fort=1toT

Vi =min||b — AUV |2

Ut+1 — mL;n ”b _ A(U(V”l)T)H%
—W =UsVE
— End-Stage

[J., Netrapalli, Sanghavi, STOC’13]



General Result

* Let A satisfy Property 1,2

— Concentration:
T AT
IIAiTvpqui — (U, V) I]2 < O [|vpll2]lvgll2
|1 A; upug Ay — (up, ugM ||z < 8 ||uyll2llugllz
1
10k?2

e AfterT =0 (log (”W*”F)):

€

|Wyr — W, ]|, <€

-0 <




Results

* Results for other problems

— RIP based Matrix Sensing:
m = 0(k*(dy + d;)) log(d; +d3))
— Rank-one Operator based Matrix Sensing
m = 0(k>(d; + d3)) log(d; +d3) )
* Not applied to Matrix Completion

— Challenge: Incoherence for projected gradient
step

[J., Netrapalli, Sanghavi, STOC’13] [J., Dhillon, Arxiv’13]



Phase Retrieval

Vi = |<ai1x*>|) 1 < l < m,
x,€ C"

* Only magnitudes of measurements available

* Applications in several areas

* Recent theoretical results
— Assume a; ~ N(0,1)
— Phaselift: trace norm based relaxation
vy =ax.x!aq;
— Relax xxT - X



PhaselLift

min || X]|.
s.t yl-2 = (X, alalT
X=0

* Exact recoveryifm = O(nlogn) [CTV11]
* Later improved tom = O(n) [CL12]

* Optimization procedure is computationally
expensive



Alternating Minimization
min ||Py — Ax||5
P,x

P: phase of Ax,

Alternating minimization:
— P, = Phase(Ax;)
— Xy1 = (ATA)TTAT Py

Initialization: largest singular vector of ¥; yfa;a]

i
Exact recovery if m = Q(nlog3 n)

[Netrapalli, J., Sanghavi, Arxiv’'13]



Random Gaussian Measurements
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[Netrapalli, J., Sanghavi, Arxiv’13]



Summary
min  |[|A(W) — b||3

w

s.t. rank(W) <k
k <« dimensions(W)

* Popular approach: trace-norm relaxation
min ||[A(W) — b||3

w

s.t. [|[W]]. = A(k)
— ||W||.: sum of singular values

— Convex formulation

— Proven to solve rank problem
e assumptions on error function

— Non-smooth optimization problem: doesn’t scale well



Summary

mmi/n Error(W) = ||A(W) — b||%
s.t. rank(W) <k

e Alternating minimization: empirically successful
-Ww =uvT

pi+l = min Error(UL, V), Uttt = min Error(U,VttH

— Computationally efficient
— Prone to local minima

* Little work on convergence guarantees



Summary

* Provide generic conditions for which AltMin
works well

— Provide an enhanced stage-wise AltMin procedure to
remove condition number dependence

* Provide results for:
— Low-rank Matrix Completion
— Low-rank Matrix Sensing
* Provide convergence to the global optima
guarantees
— Use similar assumptions as existing methods
— But slightly worse no. of measurements (or entries)



Future Work

e Optimal scaling for k in the sample complexity
bounds

* Matrix completion: remove dependence on
f: condition no. of W,

* Application of our technique to other problems:
— Robust PCA

— Non-negative Matrix Approximation



Thank You!!l

Questions?



