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ABSTRACT 

We define a security model for FPGAs that provides virtualization 

and sharing of the reconfigurable fabric. The approach is to 

encapsulate the reconfigurable fabric within the context of a 

standard OS process, separated from the security-sensitive 

resources iff the process is a user-mode one. The key elements of 

the model are the software application loader and the physical 

interface between the processor and reconfigurable fabric. The 

basic approach is to virtualize the reconfigurable fabric by 

encapsulating it within the virtual memory confines of the 

application process(es) that uses it. 

A fabric configuration file must pass a number of security checks 

before it gains the trust of the system software. The system loader 

only loads images signed by a locally recognized entity and 

applies standard tamper detection tests to the executable images 

and to the fabric configuration files. Before the fabric is loaded, 

the interconnection points in the configuration file are checked for 

location, direction, and routing of the signals that cross the 

interface to the processor. System software applies functional tests 

before enabling a minimal set of signals and the full interface only 

after the file passes additional tests. Privileged signals are only 

available for certified privileged-mode fabric configurations. 

We implemented the model in the eMIPS dynamically extensible 

processor [25]. A standard MIPS ISA operates in conjunction with 

one or more reconfigurable Extension slots. Applications of 

eMIPS include zero-overhead online software verification, 

application-specific hardware accelerators, a secure and extensible 

software debugger, and loadable I/O peripherals and bus 

interfaces.  The new functionality supports additional security 

defenses. Two instances include debugging support and intrusion 

detection.  

1. INTRODUCTION 
Application specific hardware acceleration can increase the 

performance of software applications by several orders of 

magnitude over traditional microprocessor execution. These 

accelerators take various forms including specialized functional 

units, coprocessors, GPUs and FPGAs. FPGAs are especially 

suited for application specific acceleration, but currently there 

exists no security model for a general purpose, multi-user 

application environment that supports reconfigurable fabrics. This 

is a serious deficiency because many of the attacks addressed by 

modern security models exploit system vulnerabilities by injecting 

code or data into trusted applications without the knowledge of 

the user or system administrator. Examples include viruses, 

worms, malware, and spyware. Programmable hardware 

accelerators are just as vulnerable to malicious code and data 

injections as their host microprocessors. If used naively in a multi-

user environment they provide attackers with entirely new vectors 

for old and new exploits.  The eMIPS processor, depicted in 

Figure 1, manages these risks while exploiting the opportunities 

reconfigurable fabric provides for augmenting system 

performance and security. 

 

The physical interface between the reconfigurable fabric and the 

base processor is especially relevant for the system's security. 

Some of the security requirements include guaranteeing that the 

application’s logic can only access the intended hardware 

resources and that the application’s logic cannot physically 

damage the system. Some signals intended for operating system 

extensions (such as I/O peripherals) are privileged. Privileged 

signals should only be enabled for privileged-mode fabric 

configurations. 

The reconfigurable fabric can support the operating system to 

realize additional safeguards. Special support for debugging is 

often the culprit for security breaches because it provides non-

standard and less-carefully scrutinized interfaces to the system. 

For instance, a JTAG interface can be used not just to debug 

software but also to take control and arbitrarily alter a deployed 

system. Reconfigurable architectures may forego the built-in 

debugging solution for one implemented securely in the 

reconfigurable fabric and then removed from the deployed 

system. 

A reconfigurable fabric tightly coupled to a microprocessor can 

transparently watch the processor and prevent known malicious 

operations, such as return-address modifications via buffer 

overflows. This type of monitoring is performed with zero timing 

overhead [4], which is a required property for real-time programs. 

Monitoring with zero timing overhead also has the added 
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Figure 1. eMIPS block diagram. The Soft Fabric can be 

reconfigured at run time to extend the capabilities of the 

processor. 



advantage of rendering the monitor invisible to application code. 

Other potential uses include code obfuscation, virus signature 

detection and generation, software integrity verification via 

Oblivious Hashing [5] and Integrity Checking Expressions[6], and 

information flow control [7][8]. 

This paper describes the specific strategy implemented by the 

eMIPS processor to enhance system performance and security 

through integration of processor and reconfigurable fabric. The 

issues encountered in the eMIPS processor are similar to those 

encountered by other hardware acceleration architectures and the 

solutions are therefore more generally applicable. 

The rest of the paper is organized as follows. Section 2 provides 

some pre-requisite information on the reconfigurable fabric 

properties and the basic architecture of the microprocessor. 

Section 3 defines the threat model for the architecture. Section 4 

comprises the majority of the paper. It describes how the system is 

implemented and how the loader enforces the threat model in both 

software and hardware. Section 5 describes how the system 

software enforces the model in the presence of interrupts and 

exceptions. Section 6 describes how to leverage the architecture in 

new security mechanisms. Section 7 presents our results to date 

and the current project status. Section 8 surveys the related work 

and Section 9 presents our conclusions. 

2. BACKGROUND 
The eMIPS processor system provides a MIPS [1] RISC data path 

tightly integrated with a configurable logic fabric. The eMIPS 

processor prototype is implemented using a Xilinx Virtex 4 FPGA 

[9] [10]. The Partial Reconfiguration feature (PR) of this FPGA 

[11] allows the processor to dynamically change subsets of its 

own logic, e.g. to partially reconfigure itself, while the rest of the 

processor logic remains active. The fine-grained coupling between 

processor and fabric provides maximum flexibility for hardware 

acceleration. The eMIPS fabric applications include accelerating 

application execution time, implementing plug and play on-chip 

peripherals and bus interfaces, monitoring and model-checking 

applications, and debugging of application software during 

development. Uses of the eMIPS fabric are termed Extensions. 

During the design phase of the PR tool flow, the hardware design 

is partitioned and split into a static region and one or more 

reconfigurable regions. The static and reconfigurable regions can 

only connect at fixed physical locations in the FPGA fabric using 

modules called Bus Macros. In the eMIPS case, the static region 

implements the base processor and includes the Trusted ISA, or 

TISA, the memory interface and the static peripherals. In a 

product, this section would be realized in tamper-proof, non-

reconfigurable logic (such as in ASIC technology). The 

reconfigurable regions are further subdivided into a number of 

slots, called Extension slots.  System software dynamically 

allocates these Extension slots to implement application and 

system modules called Extensions. In a product, they would be 

realized in reconfigurable logic, such as in Embedded FPGA 

technology. The actual PR process consists of writing a 

configuration data file to the reconfiguration port, which is an 8-

bit or 32-bit parallel port included in the TISA design. The file is 

the product of the PR tool flow. It contains a standard preamble, 

commands to address specific locations in the FPGA fabric, 

configuration data, and routing data. A simplified model for the 

FPGA reconfiguration data plane is to view it as RAM, readable 

and writeable only via the reconfiguration port. 

Figure 1 is a logical block diagram of the eMIPS processor. The 

Extension slots allow for acceleration of software applications by 

replacing blocks of instructions that occur frequently within the 

execution history of the application with specialized hardware that 

can perform the same task more efficiently. In addition to 

accelerating software, eMIPS Extensions provide capability for 

transparently monitoring software [4] and for debugging [3]. 

Section 6 provides additional details on these features. 

The eMIPS processor adds registers to the system coprocessor of 

the MIPS ISA to allow software to control the state of the 

interfaces between the TISA and each Extension slot. Controls are 

both global (effecting all Extensions) and per-Extension. Using 

these parameters, the system software may restrict an Extension to 

user or kernel mode and disable/re-enable individual Extensions 

when the system context switches between processes.  MMLite, 

the embedded RTOS for eMIPS [2] integrates these controls into 

its application loader and scheduler.  The basic approach is to 

virtualize the reconfigurable fabric by encapsulating it within the 

virtual memory confines of the application process(es) that uses it.  

To guarantee system backward compatibility and function, 

applications are developed in such a way as to continue to 

function even if they do not receive an Extension slot. 

3. THREAT MODEL 
The model considers a hardware or software component 

trustworthy iff the system software has determined to the best of 

its ability that the component poses no threat to the physical 

system or its data.  First, the component must come from a safe 

source.  Second, especially in the case of hardware components, 

the component must not cause damage to the system or its data.  

Finally, the component must not access resources it is not entitled 

to or gather any unintended information. 

When using hardware accelerators in a multi-user environment we 

must guard system resources such as registers and memory from 

corruption or access by malicious or malfunctioning accelerators. 

In case the corruption is not preventable, mechanisms must be 

available to system software to detect and recover from the 

corruption. The eMIPS prototype is implemented as a soft-core on 

an FPGA, and the processor data path and the hardware 

accelerator reside on the same device. This configuration requires 

additional care to protect the configurable fabric of the TISA 

against tampering, as well as to prevent the creation of dangerous 

circuits such as shorts (Figure 2a, 2b) and collisions (Figure 2d). 

Each implementation of the eMIPS processor will have a floor 

plan that defines the locations, sizes, shapes, and connection 

points of the Bus Macros as shown in Figure 2. A design rules 

checker (DRC) must determine if the fabric image fits within 

these parameters. If a hardware image arbitrarily configures 

frames outside the Extension slot (Figure 2e), it could change or 

damage the functionality of the TISA in unpredictable ways. If 

some required connection points do not route to the Bus Macros 

(Figure 2c), the Extension will not function correctly. There are 

attack vectors even inside the Extension. For instance, an attacker 

could create a short by connecting a power line directly to ground, 

thereby over-heating and eventually damaging the chip. The DRC 

must catch these cases by scanning for circuit patterns in the 

configuration bits before it is loaded onto the FPGA. 

An Extension operating in User mode must not be able to access 

privileged resources, or resources that belong to a different 

process. Extensions can be restricted to a specific process or a 



thread within a specific process. Being able to control on a per-

thread basis provides valuable extra flexibility in some cases. The 

operating system software running on the TISA must be able to 

seamlessly modify the access parameters of each active Extension 

in the eMIPS processor, without revealing global execution 

patterns (the PCs of other threads) or system-wide parameters 

(frequency of context switches and other scheduling parameters). 

 

An Extension that recognizes an instruction opcode as its own 

takes control of the execution, potentially stalling the TISA while 

accessing registers and memory. An interrupt or exception can 

occur while the Extension is stalling the TISA and before it has 

completed its task. The system must recognize an interrupt in a 

timely manner, which means that the Extension should be able to 

clean up its state before returning control to the TISA. The system 

must obfuscate the reason for the interruption to prevent snooping 

of system-wide parameters. There exist established methods for 

checking the trustworthiness of software application images, 

usually by means of certified digests. We must extend those 

methods to hardware application images as well. In some 

instances, we must be able to defend against an attack that occurs 

after software has validated the image. 

Table 1: Summary of security checks. 

Check Classification Section 

Image Format, Security Signature, Software Checks 4.3 

Compatibility, Dangerous Circuits, 
Configuration Boundaries 

Hardware Checks 4.4 

User or Kernel Mode, Per thread, 

process or global 

Mode and Scope 4.5 

Sanity, Functional Discovery and 

Verification 

Functional 

Verification 

4.6 

A number of attack vectors are specific to the application logic 

and are presently too hard to detect in an online system, at least in 

an efficient manner. A temperature-dependent oscillator [31] can 

detect the load of a system and create a form of power-based 

attack. An antenna-shaped circuit can send and/or receive an FM 

signal. The signal goes outside the chip, but also potentially inside 

the chip to a second Extension operating in a different security 

context. Detecting the presence of these and/or similar circuits is 

prohibitively complex. The synthesis tools complicate matters by 

injecting a large degree of randomness in the appearance of the 

configuration bit-streams. Simulated annealing is the preferred 

method for place-and-route, with the result that a simple 

recompilation of a design produces a potentially very different 

(but still correct) result. This defies the use of virus-signatures e.g. 

checksums and similar ways to uniquely identify a known 

malicious file. The approach we take here is to use security 

signatures to positively identify valid images, and we refuse to 

accept non-signed or tampered images. 

4. RTOS APPLICATION LOADER  
The RTOS is easily customizable and developers may adjust the 

strictness of the security model enforced by the system according 

to the needs of the target system. For the purpose of this paper, we 

assume the strictest level of security. This section describes the 

steps performed by the loader during secure image activation. 

Table 1 summarizes the steps taken by the loader and the relevant 

checks performed in the various loading phases. To the best of our 

knowledge, this is the first secure loader for reconfigurable 

hardware. 

4.1 Secure Executable Images 
Application images on eMIPS can include both software and 

hardware components. Figure 3 shows the Secure Executable (SE) 

image format supported by the RTOS application loader. SE 

images consist of four parts, which are ordered as follows: 

software image (application code and data), hardware image 

(Extension), security signature, and SE header. It is possible to 

have an SE image with only a software or hardware image or 

neither. The SE format does not specify what the format of the 

software or hardware images is. The software image format of the 

eMIPS processor is ELF. We currently generate software images 

using a standard GCC compiler, targeted for a generic MIPS32 

processor. Locating the SE header and other elements at the end 

of the file provides backward-compatibility with the existing tools 

that handle ELF images. 

 

 

The hardware image format for an eMIPS Extension is currently 

the Xilinx ACE file format. Included in the ACE file image are 

the configuration bits for setting up the Extension hardware for 

the desired function as well as the commands to write these bits to 

the FPGA. The SE security signature varies according to the 

desired security level; the SE image header indicates the type of 

signature. Some possible options include a simple checksum, a 

MD5 hash, SHA-1 hash, or SHA-256 hash. Security digests must 

cover the entire file, including the SE image header. The digest is 

independent of the format of the software or hardware images. At 

the end of the SE image is the SE header. The SE header contains 

a list of the images that precede it, the system configuration bits 

for the Extension included in the SE image, and references to 

other libraries that the application uses. The header lists the 

properties of each Extension, which are only applicable after 

reaching the appropriate level of trust. An Extension can be an 

application accelerator, a user or kernel module, a local or global 

module, a peripheral, or it needs privileged resources. 

Figure 3. Format of the Secure Executable image file. 

Figure 2. The Design Rule Checker tests an Extension before 

it is loaded detect signals that are either (a,b) shorted (c) 

unconnected (d) with a wrong direction or (e) do not connect 

to a Bus Macro. 



SE images containing only software images have an advantage 

over the ELF image alone. The SE image’s security signature is a 

format independent authentication mechanism that can be used to 

verify the source of the SE image and is the first line of security 

against malicious attacks. SE images are produced using a simple 

set of tools included in the RTOS distribution. Image signing 

might require a public-key infrastructure and related tools. 

When loading an SE image the application loader performs 

checks on the images therein to verify the security digest and to 

assess its level of trustworthiness. Before the loader configures an 

Extension slot with an image it verifies the resource availability 

(slot number and location), system compatibility (versioning), and 

the safety of the image. Only after all these checks pass does the 

application loader configure the Extension slot using the hardware 

image. Note that the Extension is loaded but not immediately 

enabled. After the hardware image is loaded, the application 

loader tests it for minimal functionality against each configuration 

parameter asserted for the Extension. If any of these tests fail, the 

application loader removes the Extension and loading of the 

application potentially fails. In the case of application and system 

accelerators, the application will still work even without the 

Extension, because the code the accelerator optimizes is still 

present in the software image.  

4.2 Initial State 
The power-up state of the system is precisely defined both for the 

eMIPS prototype FPGA implementation and for a product level 

implementation. To simplify the present exposition, we will 

assume that the loader operates under the following initial 

conditions: The TISA and any external peripherals have been 

initialized, the RTOS has booted, it has initialized itself, and it is 

ready to load the initial application. Proper serialization 

guarantees that identical conditions apply if the user interface or 

some other module requests image activation during normal 

system operation. The configuration fabric of any unused 

Extension slot (all of them at power-up time) is in an unknown 

state. The states of signals from this region are unknown and 

therefore the system cannot trust them. Therefore, all signals 

between the empty Extension slots and the TISA are initially 

gated off to prevent negative interference with the TISA. All 

parameters for the Extension slot are initially de-asserted. 

The RTOS receives a command to start an application from 

permanent storage, which could be an embedded FLASH-based 

file system, a compact-FLASH or a system disc, or a remote file 

system over some communication medium. The RTOS invokes 

the application loader and passes it the file location. The 

application loader reads the entire file image into memory and 

checks the file format. If the file image is not an SE image, the 

application loader fails and returns an error. Since we are using a 

high security setting for this model, the application loader would 

also fail on an image that lacks a proper security signature. 

4.3 Software Checks 
The application loader checks the security signature for validity 

and source. The application loader ensures that the security 

signature is valid and that the signature comes from a trusted 

source. If the source of the SE image is not trusted or unknown to 

the system, the loader fails and returns an error. After determining 

the trustworthiness of the source of the application image, the 

loader checks the contents of the image for potential tampering, 

using the security digest. If none of the images in the SE file 

requires special privileges the loader is satisfied and proceeds to 

the next step. We describe special cases in Sections 4.8 and 4.9. 

4.4 Hardware Checks 
eMIPS can work with many of the different FPGA devices that 

are available on the market, but the properties of the Extension 

slots on one device are most likely quite different from those on a 

different device. Even on the same device, there can be different 

implementations or revisions of the eMIPS architecture, with 

different geometry and/or interface specifications. Before a 

hardware image for an Extension is loaded, the application loader 

must verify that the hardware image is compatible with the FPGA 

used in the target system. Preliminary checks include the device 

type, stepping, and system versioning data. 

Even after the preliminary tests pass, the system still does not trust 

that the hardware image is safe to use. As indicated in Section 3, 

the hardware images configure the routing and logic of the FPGA 

fabric, and there exist known configurations that can damage it or 

produce unpredictable results. The loader uses a design rules 

checker (DRC) to scan the hardware image and to detect such 

damaging configurations.  The configuration data for of the 

hardware image is a binary file that represents the functions of 

logic elements and the routing between them.   

Searching for binary patterns or signatures in the image is a 

common method for detecting malicious code such as viruses in 

software. This method is not as effective for hardware images.  

Compilation of software images from source code is mostly a 

deterministic process, whereas hardware synthesis is not.  

Hardware images are synthesized into logical netlists, mapped to 

the functional units available and signals routed between the 

functional units.  This process is NP-hard and thus performed 

using heuristic algorithms. Typically, simulated annealing 

algorithms place and route the mapped logic and minimize 

parameters such as speed and area.  Simulated annealing 

incorporates random moves to prevent the process from settling 

into valleys along the optimization space. The process is therefore 

not deterministic and the results vary from run to run.  For this 

reason, the binary encoding of a circuit can vary widely, and 

searching for an instance of a dangerous circuit in a hardware 

image is a computationally expensive problem.  

One efficient way to search hardware images for dangerous 

circuits is to use a higher level of abstraction.  Software can 

extract the logic and routing information from the hardware 

configuration image.  Using this information we can reconstruct a 

circuit graph equivalent to the synthesized net lists originally used 

to implement the hardware image.  Using the circuit graph, the 

DRC traces the hardware image for sub graphs that match patterns 

in a database stored on the system,  If at any time the DRC detects 

a sub graph that is identified as dangerous the application loader 

throws a violation and exits the application.  Potentially dangerous 

circuits that the DRC could encounter and are easy to detect 

include but are not limited to output connected to output 

(collision), input connected to input (floating signal), and power 

signals connected directly to ground (short). 

Implementations of the eMIPS processor have a specific floor 

plan that fixes the locations, sizes, shapes, and connection points 

through the Bus Macros. The DRC uses this geometry information 

to determine the compatibility of the hardware to the target 

system. The DRC scans the configuration frame addresses and 

verifies that the configuration image only modifies the region of 



the targeted Extension slot (i.e. no frames outside the Extension 

slot are modified). Using the circuit graph again, the DRC checks 

that the connection points can only route via the Bus Macros. If 

the DRC detects any violation of the geometric constraints, the 

application loader will not load the hardware image but this is not 

a fatal error.  If the software images passes the remaining checks, 

the application will still be loaded, but without hardware support. 

 

 

4.5 Mode and Scope of an Extension 
The current state of the Extension interface is defined by the 

privilege mode (User versus Kernel) and scope (Local to a process 

or Global) and by the current mode and process executing on the 

TISA. From these we can derive four accelerator classes: Local 

User (LU), Global User (GU), Local Kernel (LK), and Global 

Kernel (GK). Both LU and GU Extensions can only operate while 

the processor is in user mode. LU is further restricted to a given 

thread or process while GU is active across all user processes and 

threads. LK and GK are restricted to kernel mode, LK is restricted 

to specific kernel mode threads or processes and GK is not. 

LU Extensions are application specific Extensions shipped with 

the application and loaded when the application is loaded on the 

target machine. GU Extensions are shared libraries of general-

purpose operations that any user application can invoke to 

accelerate performance. Likewise, LK Extensions are Extensions 

included as part of a specific kernel services such as a network 

stack accelerator. GK Extensions support the base OS services 

such as interrupt service routines or scheduling. The plug-and-

play on-chip peripherals are GK class Extensions and are further 

discussed in Section 4.8. A SE image that requests any Kernel or 

Global privilege will only load successfully if the security 

signature warrants that assignment. In practice, most Extensions 

will be LU type Extensions. 

4.6 Functional Verification 
Once the Extension passes all static tests, the application loader 

streams the configuration and command bits to the FPGA 

configuration port. Note that there exist devices on the market that 

will perform tamper-detection of the configuration stream in 

hardware, using AES signatures and/or encryption. These devices 

will defeat attacks timed at this stage of the loading process. After 

it sent the last byte of the configuration stream, the application 

loader must wait a small number of cycles for the FPGA to 

complete the re-configuration process. The application loader 

enables the clock to the target slot and a single wire, called the 

PRESENT signal, connecting the slot to a lock module. The state 

of the signals that cross the TISA/Extension interface is as 

depicted in “Slot 1” in Figure 4. The application loader sets the 

key to the lock and the lock listens to the wire from the Extension. 

The Extension must demonstrate its viability by modulating the 

signal according to the required key. If the lock does not report a 

match by the deadline, the Extension must be malfunctioning. A 

malfunctioning Extension is immediately unloaded.  

 

 

If it finds a match, the lock notifies the application loader through 

an interrupt from a system peripheral called the Extension 

Controller. The Extension Controller module acts as an 

intermediary between system software and the active but not-yet 

trusted Extension; it is described with more details elsewhere [12]. 

Extensions contain an interface to permit interrogation by the 

system software through the Extension Controller. During this 

stage of application loading, connections to the memory bus by 

the Extension continue to be gated off except when it is 

communicating to system software through the Extension 

Controller. The control signals that interface the Extension to the 

memory controller and the Extension Controller are depicted in 

Figure 5. One Extension Controller configures all the Extensions, 

using multiple sets of such control signals.  

Each Extension declares its functionality and its resource 

requirements via a set of standard registers, accessible only via the 

Extension Controller. When software tries to read this information 

from the Extension, the Extension Controller raises the 

BAT_Enable signal, allowing the Extension to temporarily “see” 

the request on the memory bus and respond to it. The Extension 

Controller removes the BAT_Enable signal once the Extension 

places the data on the memory bus and raises the Done signal. A 

timeout can override the Done signal to prevent the memory bus 

from locking-out when there is no Extension present, or in case a 

malicious or misbehaving Extension tries to obtain and retain 

control of the bus. The same procedure applies when software 

writes to the Extensions registers to assign resources. Therefore, 

during the entire configuration, only the Extension Controller can 

grant access to the memory bus to the Extension, and for a single 

transaction. The Extension itself is not able to take control of the 

bus. 

The Extensions can be in one of the four states shown in the state 

machine of Figure 6. The application loader sets the initial state of 

the Extension; other system software such as a device driver can 

modify it later on, but only via the Extension Controller. The 

states are as follows:  

Absent: The Extension is not present. This means that the 

Extension was never loaded or that it was removed. In the latter 

case, the Extension might still be present in the Extension slot. An 

Extension in the absent state will not respond to any interface 

Figure 5. Extension interfaces to the memory controller and to 

the extension controller 

Figure 4. The interface signals between TISA and Extension 

are selectively enabled, according to the current level of trust 

and the required functionality. 



except the Extension Controller interface. The Extension 

Controller returns this value when an Extension does not respond 

(Done signal) before the timeout expires. If an Extension times 

out during interrogation, the Extension Controller interrupts the 

processor to indicate that the Extension is malfunctioning. 

 

 

 

Config: This state indicates that the Extension is in the process of 

being configured. When an Extension is first loaded, it is in the 

Config state. System software can also bring an Extension from 

Running to the Config state in order to change its resource 

assignments. No interface other than the discovery interface is 

enabled and the Extension can access the memory bus only 

through the Extension Controller, using the BAT_Enable signal. 

Running: Once the Extension is verified and configured, the 

application loader updates its state to Running. This is the normal 

operating state of the Extension. In this state, all the requested 

resources and interfaces are enabled. 

Suspended: While the Extension is running, system software can 

temporarily put it in the suspended mode to save power or for 

other reasons. In this state, the Extension suspends its normal 

operation and waits to return to the running state.  

The lock module raises the PRESENT signal when there is a key 

match. This indicates to the Extension Controller that a functional 

Extension is now present in the slot. The Extension enters the 

Config state and waits for the application loader. The application 

loader interrogates the Extension hardware to verify the 

Extension’s functionality and resource requirements against what 

the SE header indicates (privilege, interrupts, peripheral). There 

exists a security violation if anything is inconsistent between the 

SE header and the actual Extension registers. In such case, the 

Extension is unloaded and the application loader reports failure.  

The Extension keeps modulating the Present signal to the lock 

module while it is loaded. The Extension only lowers the Present 

signal when it enters the Absent state. On the falling edge of the 

Present signal (out of the lock), the Extension Controller issues an 

interrupt to the processor in much the same way as during the load 

event and indicates that the Extension slot is now free.  

4.7 Application Accelerators 
An Extension should not be able to see the execution trace of 

threads that are not supposed to use it, even though the Extension 

is enabled for the overall process. System software can control the 

execution status on a per-thread basis, using the extension control 

registers. Enabling the execution path of the Extension enables the 

instruction decode interface of the Extension, allowing it to see 

the PCs and instructions as they enter the instruction decode phase 

of the pipeline. When an Extension detects one of its own 

Extension instructions in the pipeline, the Extension petitions the 

pipeline arbiter for permission to execute its function. If the 

pipeline arbiter gives it permission to execute, the Extension may 

access registers and memory. While the Extension accesses 

pipeline resources, the Extension may have to stall the TISA for 

operations that takes more than the minimal number of cycles 

(three currently). 

The accelerator enters the Config state after it has been loaded. 

The SE header has already indicated that this Extension is an 

application accelerator and an execution path is included in this 

Extension. Using the Extension Controller, the application loader 

interrogates the Extension to confirm the information in the SE 

header. If the test passes, the Extension will be able to recognize 

its own instructions within its assigned scope, and after receiving 

the permission of the pipeline arbiter. Otherwise, the Extension is 

unloaded and the application loader returns an error. 

4.8 Extension Peripherals 
Extensions can also implement loadable on-chip peripherals [12]. 

Peripherals need to interface for more than just discovery and 

verification because they must answer to read/write operations to 

specific physical addresses. Peripherals might also need access to 

I/O pins that interface to external chips or busses. This peripheral 

interface thus requires high privilege level. Other useful 

peripherals might be developer aids such as system-wide tracers 

and profilers. 

Extensions that function as peripheral devices are severe security 

risks because they are persistent in all contexts, and they have 

access to the physical memory bus. For this reason, an Extension 

peripheral can only be loaded from a SE image that originates 

from a trusted source and that explicitly declares the requirement 

for this privileged access. The application loader decides whether 

to grant access based on its analysis of the SE header and security 

digest.  This was described previously in Section 4.1.  Normally 

an Extension can only see and use virtual addresses, which are 

translated by the MMU inside the TISA. This confines the 

Extension within the process’ user address space. 

If the SE header indicates that this is a peripheral, the application 

loader checks an additional wire that communicates to the 

Extension Controller whether the peripheral requests its own 

interrupt line. The application loader will only allocate the 

interrupt if the SE header also requests it. If not, the discrepancy is 

a security violation; the Extension is unloaded and the application 

loader throws an error. Each Extension slot has a corresponding 

interrupt line to the interrupt controller. If the peripheral requires 

an interrupt, the interrupt line is enabled. The interrupt however 

remains masked in the interrupt controller for later use by the 

software device driver. If the peripheral requests access to 

external pins, permission for those resources is again determined 

by checking the SE header and the security signature. If the test 

passes, the I/O pins of the Extension slot connect through a 

general-purpose I/O module to the external pins.  

The tight integration between Extensions and the TISA makes it 

possible to realize different communication models between 

software and peripheral devices. Extension peripherals may 

appear on the TISA’s memory I/O subsystem just as the other 

static peripherals included in the TISA. Extension peripherals may 

also execute special I/O instructions; in the same manner as 

application, accelerators do (see Section 4.7). Implementing 

special I/O instructions has some advantages over other 

approaches. For instance, the Extensions can perform multiple 

Figure 6. Extension configuration state machine 



register and memory operations before returning control of the 

data path to the TISA. Consequently, an Extension can execute 

atomic operations involving several registers or memory 

addresses without disabling interrupts and without exposing the 

physical memory bus.  

Table 2: Peripheral Base Address Translation Table. 

Size (bytes) Starting Address Address Valid 

Size 1 Address 1 1 

Size 2 Address 2 0 

… … … 

Size n Address n 0 

If the Extension peripheral interfaces to software via the memory 

bus, the Extension requires insertion into the I/O memory map. 

For Extension Peripherals, the registers used in the discovery 

phase of the application loader include the Base Address 

Translation (BAT) table shown in Table 2. Each BAT entry 

contains a base address and a size that defines a range of 

addresses reserved for the Extension in the physical memory map, 

and a valid flag. Each peripheral on the memory map has at least 

one entry for a control region. Interfaces such as a SRAM 

controller indicate two ranges: a 32-byte range for the control 

region and a separate range for the SRAM proper. The size is 

read-only; it provides the memory space requirement during 

configuration. The application loader selects a free range and 

writes the Start Address in the BAT entry.  

When the Extension is active, the memory bus interface is enabled 

and the Extension watches the addresses on the memory bus and 

compares them to its BAT entries. If there is a match, the 

Extension completes the read/write transaction.  

Interfacing peripherals via the memory bus has the advantage of 

allowing for better software reuse because existing device drivers 

can more easily port to the new peripheral. Additionally, the 

memory-mapped interface does not entail the cost of allocating 

opcodes to an Extension with global scope, thereby reducing the 

number of available opcodes. 

4.9 Extensions as Shared Libraries 
Many software image formats support shared libraries; they 

represent in one form or another external dependencies, e.g. 

dependencies on software modules that are provided separately. 

We extend this concept to hardware Extensions, using the idea of 

treating the full SE image in the same way software treats an ELF 

image. In other words, the dependent shared library is in turn an 

SE image, with or without Extension images in it. The loader 

loops through the tree of dependents. If any fails to load the 

application as a whole fails to load. Actual sharing of Extensions 

across processes however does create potential security risks. 

Only stateless Extensions can safely be shared in this way. Since a 

DRC checker cannot verify this rule, we have to rely on the 

security signature alone. An Extension that is intended for sharing 

must be marked safe at the highest security level, even though it 

might operate in User mode only. 

Once all dependents are loaded and activated the application is 

ready to start executing. The application loader creates a new 

thread, with the appropriate values for the extension control 

registers. When the scheduler activates the thread, its state is 

loaded and at the first RFE instruction, the extension control bits 

take effect, bringing the context in effect. While the Extension is 

in scope, the state of the signals that cross the TISA/Extension 

interface are as depicted in “Slot 2” or “Slot 3” in Figure 4, 

depending on the Extension type.  The scheduler enables and 

disables these interfaces as the Extension enters and exists scope. 

5. EXCEPTIONS AND EXTENSIONS 
In the eMIPS processor, the active state of the Extension slots is 

treated in the same way as interrupts are handled in a traditional 

MIPS processor. It may be necessary to disable all user 

Extensions very quickly, such as when the processor switches 

from user mode to kernel mode upon an interrupt or exception. 

These Extensions are re-enabled when the processor returns to 

user mode after software has serviced the interrupt or exception. 

Kernel Extensions become active when the processor is in kernel 

mode and disabled when the processor enters user mode unless 

the Global parameter is set (i.e. a GK Extension). 

An interrupt or exception might stop an Extension in the middle 

of an operation. When this occurs, the Extension has a limited 

opportunity to complete any pending write-backs to the register 

file and to report its virtual location in the basic block it is 

accelerating, before the TISA forcibly resumes control. After a 

maximum number of cycles expires, all user mode Extensions are 

deactivated, the mode is changed in the processor status register, 

kernel Extensions are activated, and the processor restarts 

execution at the proper exception vector. See [32] for more 

details. 

Allowing Extension hardware to stall the processor and then force 

it to release it on interrupts and exceptions creates a possible 

secondary attack vector. An application can include an Extension 

that stalls the pipeline whenever it enters its process and only 

releases it when an interrupt context switches the processor. 

Counting the cycles spent in the Extension can reveal the 

frequency of interrupts. From that information, the attacker can 

deduce other critical data, such as keystrokes on a keyboard. 

The frequency of interrupts can be obfuscated using random 

intervals to generate spurious interrupts. This cancels Extension 

operations just as a real interrupt would, but context switches back 

to the same process. In this way, a malicious Extension spying on 

the system cannot be sure if the cancelation was a real interrupt or 

a random cancel. If the minimum interval is sufficiently large, it 

will have little impact on most legitimate Extensions. 

6. AUGMENTED SECURITY  
Reconfigurable microprocessors such as eMIPS and Stretch [13] 

provide new opportunities to improve security. In this section, we 

describe two ideas that we have implemented on eMIPS, and 

indicate other future work. 

6.1 eBug: a Reconfigurable, On-Demand, Per 

Process Debugger  
Most embedded microprocessors ship with some type of 

embedded hardware debugging support. Often this consists of a 

serial interface such as JTAG that links to a debugger such as 

GDB or other UI. This debugging is important to system 

developers for identifying and correcting software defects before 

the release of the system, but it also provides to an attacker a 

wealth of information about the system behavior and parameters. 

Embedded hardware debuggers are global debuggers, meaning 

that all threads, processes, and modes are visible. They can 

arbitrarily access memory and other system resources and 



therefore create a security hole. A JTAG debugger is also a 

physical threat in a shipping product. An attacker only has to 

connect a JTAG cable to gain complete control of the system. 

The eMIPS processor differs from other processors in that it ships 

with no embedded hardware debugging support. That is not to say 

it does not have a debugger. Included with the eMIPS processor 

release is a debugging Extension, eBug [3]. eBug can be loaded 

into an Extension slot during application debugging and then 

removed when the system is ready for release. In a released 

system, the physical pins used by the debugger are left floating, 

and an attacker will gain nothing by gaining physical access to 

them. eBug is not signed and can only be loaded on an RTOS with 

a low security setting. Therefore, an attacker that wants to use the 

debugger to gather information surreptitiously must overcome 

first the application loader. 

Another advantage provided by eBug is that it is a per-process 

debugger, with a user-local scope. This means that even if an 

attacker loads eBug, the debugger only sees local information 

about the process connected to it and nothing else. The RTOS 

hides all the other processes by disabling eBug whenever it de-

schedules the process, and enabling it again when it reschedules it. 

By restricting the debugger to a single process context, eMIPS 

eliminates the risk of using the embedded debugger as an attack 

vector. 

6.2 P2V: Security through Zero-Overhead 

Assertion Checking 
The P2V compiler [4] generates hardware Extensions for the 

eMIPS processor useful for assertion-based verification of 

application software. The Extensions monitor passively the 

internal register and memory busses, looking for violations to the 

given assertions. The monitors operate strictly within the scope of 

their process and do not interfere with the running application. 

They do not change the execution flow in any case, and do not 

even change the timing behavior in any case of practical interest. 

The software running on the eMIPS processor is not aware of the 

monitor; P2V requires no changes to it. When the monitor detects 

a violation, it can throw an exception to launch a debugger, or to 

terminate the application. Other behaviors are possible.  

Many of the assertions used to detect bugs in an application are 

useful to detect security attacks on the system. System developers 

can ship a security monitor generated from assertions targeted at 

known attacks. The monitor is loaded at system boot time and 

never unloaded. Then as analysts identify new threats, developers 

can release a new version of the monitor along with their system 

patches and updates. 

Using P2V, we have developed monitors to detect stack-smashing 

attacks, as shown in Figure 8. In the experiment, we deployed a 

simple but erroneous program on the eMIPS. The program reads 

data from the console and copies it to an array on the program 

stack, without bounds checking. As the user continues to type, the 

array pointer goes outside the bounds of the array and eventually 

overwrites the return address stored on the stack. The monitor 

loaded in the Extension slot checks the PSL assertion 

"never($writing == $return)", which states that the return address 

of a function should never be overwritten. When the program 

eventually does overwrite the return address, the monitor detects 

the violation and throws an exception.  

Also of interest is the stealthy manner in which these monitors 

operate. Because they do not affect the timings of the application 

and execute in an isolated hardware unit, they are not detectable 

by an attacker e.g. via timing attacks. The monitors can also be 

used to trace the source of the security violation to a specific 

process or thread. 

 

 

6.3 Other Opportunities 
Additional applications of the eMIPS architecture to security 

include, but are not limited to, code obfuscation, virus signature 

detection and generation, software integrity verification via 

Oblivious Hashing [5] or Integrity Checking Expressions[6], and 

information flow control [7][8]. The use of extension instructions 

can aid in code obfuscation since the extension opcodes are 

undefined and they have different meanings in different 

applications, possibly even for different threads in the same 

process. The Extension can randomly choose to recognize the 

instruction or not to make reverse engineering even more difficult. 

Virus signatures currently rely on static code sequences alone. An 

Extension can additionally rely on dynamic code sequences and 

on specific data values in registers. A stack-smashing detector can 

save, for instance, the last few instructions executed to create or 

recognize this virus's dynamic signature, with zero-overhead and 

completely stealthy behavior. It can also check and modify the 

arguments to a call to a memory copy function to detect and 

prevent buffer overflows. Software integrity checking as in 

Oblivious Hashing, Integrity Checking Expressions, and related 

techniques prevents code tampering by verifying code integrity 

during execution. This usually involves two software parties 

periodically checking each other's integrity and generating a 

degraded system behavior when they detect a violation. The two 

parties of a challenge-response based scheme could be 

implemented one in software (the TISA) and one in hardware (the 

Extension), with the added benefit that the hardware component 

can be neither detected nor altered by the attacker. In information 

flow control, an Extension can help by isolating the tags attached 

with data and make them tamper-proof. 

7. STATUS AND RESULTS 
The baseline eMIPS processor has been available since December 

2007 on the Microsoft Research Embedded and Reconfigurable 

Systems Group website [25]. The release includes full source and 

is free for academic and non-commercial use.  

Figure 8. The FPGA fabric can perform intrusion detection. 

A Monitor watches the CPU transactions and detects 

attempts to over-write the return address. 



Table 3: Resource Utilization by Extensions 

 LX25 SX35 

EXT Total % EXT Total % 

SLICES 1,536 10,752 14.3 4,864 15,360 31.6 

DSP48 2 48 0.5 64 192 33.3 

BRAMS 3 72 0.5 64 192 33.3 

The application loader is integrated into the MMLite embedded 

operating system [2], which is also available on the group website.  

The release on the MMLite OS is accompanied with utilities for 

generating SE file images from ELF binaries and Xilinx ACE 

files.  The MMLite scheduler handles the state of the Extension 

interfaces as the processes and threads context switch in and out 

of scope. 

Table 4: TISA Resource Utilization  

Resources 1 Extension 2 Extensions % Increase 

Slice 7862 9180 14.4 

BRAMs 8 8 0 

DSPs 40 40 0 

The December release supports the ML401 and Virtex 4 LX25 

devices. We have recently ported eMIPS to the ML402 and Virtex 

4 SX35.  Using the additional resources provided by the SX35, 

the processor now includes two Extension slots as opposed to only 

one in the LX25.  Work continues in both implementations to 

further optimize the design for speed and area. In the Virtex 4 

SX35, we are able to increase the area allocated to the Extensions 

by over three times compared with the LX25.  The availability of 

functional units such as BRAMs and DSPs will vary with the 

location and shape of the extension slots. Table 3 provides a 

breakdown of the resources available for Extension 

implementations in the two chips. 

 

 

The Extension area may be subdivided in any number of slots, but 

in practice, there are limiting factors. There is a minimum area 

required to implement the Extension interface inside the slot, and 

the region perimeter must be of sufficient length to place all the 

required Bus Macros.  Replicating the Extension interface logic 

for multiple Extensions incurs some additional overhead as well.  

The size of the TISA grows by about 15 percent as shown in 

Table 4. Here we compare two designs for the same target SX35 

device. The first uses one slot, the second two slots. 

We have implemented and tested multiple stack-smashing 

detectors, using the P2V compiler.  To assess the scalability of the 

approach, we have included multiple stack-smashing monitors 

into a single Extension and evaluated the resulting area 

consumption. As illustrated in Figure 9, the Extension grows 

linearly with respect to the number of monitors (N). Also marked 

on the vertical axis is the number of total slices available on the 

Virtex 4 LX25, and on the largest of the Virtex 4 devices, the 

LX220. 

8. RELATED WORK 
Reconfigurable logic has been used to improve application 

performance but not in a usable and safe multi-user system. One 

difficult point is to address the security risk posed by the 

potentially tamperable FPGA execution engine [14]. In our model, 

we address many of those risks using a design rule checker and 

only allow security-signed executable images and configuration 

files. Bossuet et al. [15] looked at FPGA security in the sense of 

securing the reconfiguration bit file and protecting the IP 

contained therein. These techniques are usable in our model to 

secure the channel into the configuration plane, in case it is 

vulnerable to physical attacks. That would be the case if we used 

an external JTAG port, for instance. A number of FPGA-based 

“accelerator” products [16] [17] [18] restrict the use of the 

accelerator to a single process. This conservative approach still 

fails to secure other users from a virus injected into the one 

process that uses the accelerator, or by over-writing the 

configuration files on disk. Garcia [19] simulated a single-chip 

architecture similar to eMIPS, but with a wider separation 

between processor and reconfigurable fabric. A hardware MMU 

interposes between the fabric and the cache, software-controlled 

by the main processor. While less susceptible to virus injection, 

this approach is still limited to single-process use of the fabric. 

Dales [20] simulates a system that can leverage the FPGA in a 

general-purpose workstation environment, switching the device 

among many applications. The FPGA interfaces as a coprocessor; 

the system was not actually implemented and security issues are 

not really addressed. Many other projects have simulated similar 

systems [21] [22] [23], ours is the first attempt to actually build a 

FPGA-based extensible processor and a workstation that is safe 

for general, multi-user application loads. McLean [24] describes a 

concerted effort between NSA and Xilinx to create Secure Bus 

Macros for securing FPGA chips for Red/Black embedded 

systems. The hardware approach is similar to eMIPS in the use of 

Bus Macros, but the goal is only to ensure isolation of data among 

contexts. It is not meant for use as a general-purpose computing 

device. It might be vulnerable to radio-based attacks. 

9. CONCLUSIONS 
To the best of our knowledge, the eMIPS project is the first to 

realize a safe and secure multi-user computer system using a 

reconfigurable fabric as a hardware accelerator. The first release 

of the eMIPS microprocessor system is available on the 

Embedded and Reconfigurable Systems website at Microsoft 

Research [25]. The design of the system is based on simple and 

well-known principles of virtualization and isolation, but the 

Figure 9. Area Consumption of Extension containing N stack 

smashing monitors. 



practical realization of those principles has been anything but 

simple. Ensuring that hardware images are safe to use is a difficult 

proposition, which required the use of a design rule checker at 

runtime and careful, gradual exposure of the hardware signals 

during image activation.  

We have experimented with a number of different scenarios, from 

application acceleration to loadable on-chip peripherals, from 

loadable hardware debugging support to zero-overhead online 

model checking. In all cases, we were able to exploit the 

reconfigurable fabric without compromising security. In fact, we 

were able to identify a number of new ways in which the 

architecture can improve the overall security of the system. Of 

special interest is the ability to insert stealthy monitors for 

intrusion detection, such as stack-smashing detectors, to run on 

the reconfigurable fabric to monitor the execution of the base 

processor. 
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