

A Security Model for Reconfigurable Microcomputers

Richard Neil Pittman, Alessandro Forin

Microsoft Research

August 2008

Technical Report

MSR-TR-2008-121

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

A Security Model for Reconfigurable Microcomputers
Richard Neil Pittman

Microsoft Research
One Microsoft Way

Redmond WA, 98052
(425) 706 4155

pittman@microsoft.com

Alessandro Forin
Microsoft Research
One Microsoft Way

Redmond WA, 98052
(425) 706 1841

sandrof@microsoft.com

ABSTRACT

We define a security model for FPGAs that provides virtualization

and sharing of the reconfigurable fabric. The approach is to

encapsulate the reconfigurable fabric within the context of a

standard OS process, separated from the security-sensitive

resources iff the process is a user-mode one. The key elements of

the model are the software application loader and the physical

interface between the processor and reconfigurable fabric. The

basic approach is to virtualize the reconfigurable fabric by

encapsulating it within the virtual memory confines of the

application process(es) that uses it.

A fabric configuration file must pass a number of security checks

before it gains the trust of the system software. The system loader

only loads images signed by a locally recognized entity and

applies standard tamper detection tests to the executable images

and to the fabric configuration files. Before the fabric is loaded,

the interconnection points in the configuration file are checked for

location, direction, and routing of the signals that cross the

interface to the processor. System software applies functional tests

before enabling a minimal set of signals and the full interface only

after the file passes additional tests. Privileged signals are only

available for certified privileged-mode fabric configurations.

We implemented the model in the eMIPS dynamically extensible

processor [25]. A standard MIPS ISA operates in conjunction with

one or more reconfigurable Extension slots. Applications of

eMIPS include zero-overhead online software verification,

application-specific hardware accelerators, a secure and extensible

software debugger, and loadable I/O peripherals and bus

interfaces. The new functionality supports additional security

defenses. Two instances include debugging support and intrusion

detection.

1. INTRODUCTION
Application specific hardware acceleration can increase the

performance of software applications by several orders of

magnitude over traditional microprocessor execution. These

accelerators take various forms including specialized functional

units, coprocessors, GPUs and FPGAs. FPGAs are especially

suited for application specific acceleration, but currently there

exists no security model for a general purpose, multi-user

application environment that supports reconfigurable fabrics. This

is a serious deficiency because many of the attacks addressed by

modern security models exploit system vulnerabilities by injecting

code or data into trusted applications without the knowledge of

the user or system administrator. Examples include viruses,

worms, malware, and spyware. Programmable hardware

accelerators are just as vulnerable to malicious code and data

injections as their host microprocessors. If used naively in a multi-

user environment they provide attackers with entirely new vectors

for old and new exploits. The eMIPS processor, depicted in

Figure 1, manages these risks while exploiting the opportunities

reconfigurable fabric provides for augmenting system

performance and security.

The physical interface between the reconfigurable fabric and the

base processor is especially relevant for the system's security.

Some of the security requirements include guaranteeing that the

application’s logic can only access the intended hardware

resources and that the application’s logic cannot physically

damage the system. Some signals intended for operating system

extensions (such as I/O peripherals) are privileged. Privileged

signals should only be enabled for privileged-mode fabric

configurations.

The reconfigurable fabric can support the operating system to

realize additional safeguards. Special support for debugging is

often the culprit for security breaches because it provides non-

standard and less-carefully scrutinized interfaces to the system.

For instance, a JTAG interface can be used not just to debug

software but also to take control and arbitrarily alter a deployed

system. Reconfigurable architectures may forego the built-in

debugging solution for one implemented securely in the

reconfigurable fabric and then removed from the deployed

system.

A reconfigurable fabric tightly coupled to a microprocessor can

transparently watch the processor and prevent known malicious

operations, such as return-address modifications via buffer

overflows. This type of monitoring is performed with zero timing

overhead [4], which is a required property for real-time programs.

Monitoring with zero timing overhead also has the added

Ex.

(ALU) MA WB

Soft

Fabric

IF ID

Hard Fabric:

TISA

Inter Pipeline Traffic

CP0

(Exception

Handler)

Memory

(MMU, Cache) Registers

Peripheral Ext. 2

Execution

Blocks Ext. 1
Ext. 1

ID

Ext. 2

ID Extensions

Figure 1. eMIPS block diagram. The Soft Fabric can be

reconfigured at run time to extend the capabilities of the

processor.

advantage of rendering the monitor invisible to application code.

Other potential uses include code obfuscation, virus signature

detection and generation, software integrity verification via

Oblivious Hashing [5] and Integrity Checking Expressions[6], and

information flow control [7][8].

This paper describes the specific strategy implemented by the

eMIPS processor to enhance system performance and security

through integration of processor and reconfigurable fabric. The

issues encountered in the eMIPS processor are similar to those

encountered by other hardware acceleration architectures and the

solutions are therefore more generally applicable.

The rest of the paper is organized as follows. Section 2 provides

some pre-requisite information on the reconfigurable fabric

properties and the basic architecture of the microprocessor.

Section 3 defines the threat model for the architecture. Section 4

comprises the majority of the paper. It describes how the system is

implemented and how the loader enforces the threat model in both

software and hardware. Section 5 describes how the system

software enforces the model in the presence of interrupts and

exceptions. Section 6 describes how to leverage the architecture in

new security mechanisms. Section 7 presents our results to date

and the current project status. Section 8 surveys the related work

and Section 9 presents our conclusions.

2. BACKGROUND
The eMIPS processor system provides a MIPS [1] RISC data path

tightly integrated with a configurable logic fabric. The eMIPS

processor prototype is implemented using a Xilinx Virtex 4 FPGA

[9] [10]. The Partial Reconfiguration feature (PR) of this FPGA

[11] allows the processor to dynamically change subsets of its

own logic, e.g. to partially reconfigure itself, while the rest of the

processor logic remains active. The fine-grained coupling between

processor and fabric provides maximum flexibility for hardware

acceleration. The eMIPS fabric applications include accelerating

application execution time, implementing plug and play on-chip

peripherals and bus interfaces, monitoring and model-checking

applications, and debugging of application software during

development. Uses of the eMIPS fabric are termed Extensions.

During the design phase of the PR tool flow, the hardware design

is partitioned and split into a static region and one or more

reconfigurable regions. The static and reconfigurable regions can

only connect at fixed physical locations in the FPGA fabric using

modules called Bus Macros. In the eMIPS case, the static region

implements the base processor and includes the Trusted ISA, or

TISA, the memory interface and the static peripherals. In a

product, this section would be realized in tamper-proof, non-

reconfigurable logic (such as in ASIC technology). The

reconfigurable regions are further subdivided into a number of

slots, called Extension slots. System software dynamically

allocates these Extension slots to implement application and

system modules called Extensions. In a product, they would be

realized in reconfigurable logic, such as in Embedded FPGA

technology. The actual PR process consists of writing a

configuration data file to the reconfiguration port, which is an 8-

bit or 32-bit parallel port included in the TISA design. The file is

the product of the PR tool flow. It contains a standard preamble,

commands to address specific locations in the FPGA fabric,

configuration data, and routing data. A simplified model for the

FPGA reconfiguration data plane is to view it as RAM, readable

and writeable only via the reconfiguration port.

Figure 1 is a logical block diagram of the eMIPS processor. The

Extension slots allow for acceleration of software applications by

replacing blocks of instructions that occur frequently within the

execution history of the application with specialized hardware that

can perform the same task more efficiently. In addition to

accelerating software, eMIPS Extensions provide capability for

transparently monitoring software [4] and for debugging [3].

Section 6 provides additional details on these features.

The eMIPS processor adds registers to the system coprocessor of

the MIPS ISA to allow software to control the state of the

interfaces between the TISA and each Extension slot. Controls are

both global (effecting all Extensions) and per-Extension. Using

these parameters, the system software may restrict an Extension to

user or kernel mode and disable/re-enable individual Extensions

when the system context switches between processes. MMLite,

the embedded RTOS for eMIPS [2] integrates these controls into

its application loader and scheduler. The basic approach is to

virtualize the reconfigurable fabric by encapsulating it within the

virtual memory confines of the application process(es) that uses it.

To guarantee system backward compatibility and function,

applications are developed in such a way as to continue to

function even if they do not receive an Extension slot.

3. THREAT MODEL
The model considers a hardware or software component

trustworthy iff the system software has determined to the best of

its ability that the component poses no threat to the physical

system or its data. First, the component must come from a safe

source. Second, especially in the case of hardware components,

the component must not cause damage to the system or its data.

Finally, the component must not access resources it is not entitled

to or gather any unintended information.

When using hardware accelerators in a multi-user environment we

must guard system resources such as registers and memory from

corruption or access by malicious or malfunctioning accelerators.

In case the corruption is not preventable, mechanisms must be

available to system software to detect and recover from the

corruption. The eMIPS prototype is implemented as a soft-core on

an FPGA, and the processor data path and the hardware

accelerator reside on the same device. This configuration requires

additional care to protect the configurable fabric of the TISA

against tampering, as well as to prevent the creation of dangerous

circuits such as shorts (Figure 2a, 2b) and collisions (Figure 2d).

Each implementation of the eMIPS processor will have a floor

plan that defines the locations, sizes, shapes, and connection

points of the Bus Macros as shown in Figure 2. A design rules

checker (DRC) must determine if the fabric image fits within

these parameters. If a hardware image arbitrarily configures

frames outside the Extension slot (Figure 2e), it could change or

damage the functionality of the TISA in unpredictable ways. If

some required connection points do not route to the Bus Macros

(Figure 2c), the Extension will not function correctly. There are

attack vectors even inside the Extension. For instance, an attacker

could create a short by connecting a power line directly to ground,

thereby over-heating and eventually damaging the chip. The DRC

must catch these cases by scanning for circuit patterns in the

configuration bits before it is loaded onto the FPGA.

An Extension operating in User mode must not be able to access

privileged resources, or resources that belong to a different

process. Extensions can be restricted to a specific process or a

thread within a specific process. Being able to control on a per-

thread basis provides valuable extra flexibility in some cases. The

operating system software running on the TISA must be able to

seamlessly modify the access parameters of each active Extension

in the eMIPS processor, without revealing global execution

patterns (the PCs of other threads) or system-wide parameters

(frequency of context switches and other scheduling parameters).

An Extension that recognizes an instruction opcode as its own

takes control of the execution, potentially stalling the TISA while

accessing registers and memory. An interrupt or exception can

occur while the Extension is stalling the TISA and before it has

completed its task. The system must recognize an interrupt in a

timely manner, which means that the Extension should be able to

clean up its state before returning control to the TISA. The system

must obfuscate the reason for the interruption to prevent snooping

of system-wide parameters. There exist established methods for

checking the trustworthiness of software application images,

usually by means of certified digests. We must extend those

methods to hardware application images as well. In some

instances, we must be able to defend against an attack that occurs

after software has validated the image.

Table 1: Summary of security checks.

Check Classification Section

Image Format, Security Signature, Software Checks 4.3

Compatibility, Dangerous Circuits,
Configuration Boundaries

Hardware Checks 4.4

User or Kernel Mode, Per thread,

process or global

Mode and Scope 4.5

Sanity, Functional Discovery and

Verification

Functional

Verification

4.6

A number of attack vectors are specific to the application logic

and are presently too hard to detect in an online system, at least in

an efficient manner. A temperature-dependent oscillator [31] can

detect the load of a system and create a form of power-based

attack. An antenna-shaped circuit can send and/or receive an FM

signal. The signal goes outside the chip, but also potentially inside

the chip to a second Extension operating in a different security

context. Detecting the presence of these and/or similar circuits is

prohibitively complex. The synthesis tools complicate matters by

injecting a large degree of randomness in the appearance of the

configuration bit-streams. Simulated annealing is the preferred

method for place-and-route, with the result that a simple

recompilation of a design produces a potentially very different

(but still correct) result. This defies the use of virus-signatures e.g.

checksums and similar ways to uniquely identify a known

malicious file. The approach we take here is to use security

signatures to positively identify valid images, and we refuse to

accept non-signed or tampered images.

4. RTOS APPLICATION LOADER
The RTOS is easily customizable and developers may adjust the

strictness of the security model enforced by the system according

to the needs of the target system. For the purpose of this paper, we

assume the strictest level of security. This section describes the

steps performed by the loader during secure image activation.

Table 1 summarizes the steps taken by the loader and the relevant

checks performed in the various loading phases. To the best of our

knowledge, this is the first secure loader for reconfigurable

hardware.

4.1 Secure Executable Images
Application images on eMIPS can include both software and

hardware components. Figure 3 shows the Secure Executable (SE)

image format supported by the RTOS application loader. SE

images consist of four parts, which are ordered as follows:

software image (application code and data), hardware image

(Extension), security signature, and SE header. It is possible to

have an SE image with only a software or hardware image or

neither. The SE format does not specify what the format of the

software or hardware images is. The software image format of the

eMIPS processor is ELF. We currently generate software images

using a standard GCC compiler, targeted for a generic MIPS32

processor. Locating the SE header and other elements at the end

of the file provides backward-compatibility with the existing tools

that handle ELF images.

The hardware image format for an eMIPS Extension is currently

the Xilinx ACE file format. Included in the ACE file image are

the configuration bits for setting up the Extension hardware for

the desired function as well as the commands to write these bits to

the FPGA. The SE security signature varies according to the

desired security level; the SE image header indicates the type of

signature. Some possible options include a simple checksum, a

MD5 hash, SHA-1 hash, or SHA-256 hash. Security digests must

cover the entire file, including the SE image header. The digest is

independent of the format of the software or hardware images. At

the end of the SE image is the SE header. The SE header contains

a list of the images that precede it, the system configuration bits

for the Extension included in the SE image, and references to

other libraries that the application uses. The header lists the

properties of each Extension, which are only applicable after

reaching the appropriate level of trust. An Extension can be an

application accelerator, a user or kernel module, a local or global

module, a peripheral, or it needs privileged resources.

Figure 3. Format of the Secure Executable image file.

Figure 2. The Design Rule Checker tests an Extension before

it is loaded detect signals that are either (a,b) shorted (c)

unconnected (d) with a wrong direction or (e) do not connect

to a Bus Macro.

SE images containing only software images have an advantage

over the ELF image alone. The SE image’s security signature is a

format independent authentication mechanism that can be used to

verify the source of the SE image and is the first line of security

against malicious attacks. SE images are produced using a simple

set of tools included in the RTOS distribution. Image signing

might require a public-key infrastructure and related tools.

When loading an SE image the application loader performs

checks on the images therein to verify the security digest and to

assess its level of trustworthiness. Before the loader configures an

Extension slot with an image it verifies the resource availability

(slot number and location), system compatibility (versioning), and

the safety of the image. Only after all these checks pass does the

application loader configure the Extension slot using the hardware

image. Note that the Extension is loaded but not immediately

enabled. After the hardware image is loaded, the application

loader tests it for minimal functionality against each configuration

parameter asserted for the Extension. If any of these tests fail, the

application loader removes the Extension and loading of the

application potentially fails. In the case of application and system

accelerators, the application will still work even without the

Extension, because the code the accelerator optimizes is still

present in the software image.

4.2 Initial State
The power-up state of the system is precisely defined both for the

eMIPS prototype FPGA implementation and for a product level

implementation. To simplify the present exposition, we will

assume that the loader operates under the following initial

conditions: The TISA and any external peripherals have been

initialized, the RTOS has booted, it has initialized itself, and it is

ready to load the initial application. Proper serialization

guarantees that identical conditions apply if the user interface or

some other module requests image activation during normal

system operation. The configuration fabric of any unused

Extension slot (all of them at power-up time) is in an unknown

state. The states of signals from this region are unknown and

therefore the system cannot trust them. Therefore, all signals

between the empty Extension slots and the TISA are initially

gated off to prevent negative interference with the TISA. All

parameters for the Extension slot are initially de-asserted.

The RTOS receives a command to start an application from

permanent storage, which could be an embedded FLASH-based

file system, a compact-FLASH or a system disc, or a remote file

system over some communication medium. The RTOS invokes

the application loader and passes it the file location. The

application loader reads the entire file image into memory and

checks the file format. If the file image is not an SE image, the

application loader fails and returns an error. Since we are using a

high security setting for this model, the application loader would

also fail on an image that lacks a proper security signature.

4.3 Software Checks
The application loader checks the security signature for validity

and source. The application loader ensures that the security

signature is valid and that the signature comes from a trusted

source. If the source of the SE image is not trusted or unknown to

the system, the loader fails and returns an error. After determining

the trustworthiness of the source of the application image, the

loader checks the contents of the image for potential tampering,

using the security digest. If none of the images in the SE file

requires special privileges the loader is satisfied and proceeds to

the next step. We describe special cases in Sections 4.8 and 4.9.

4.4 Hardware Checks
eMIPS can work with many of the different FPGA devices that

are available on the market, but the properties of the Extension

slots on one device are most likely quite different from those on a

different device. Even on the same device, there can be different

implementations or revisions of the eMIPS architecture, with

different geometry and/or interface specifications. Before a

hardware image for an Extension is loaded, the application loader

must verify that the hardware image is compatible with the FPGA

used in the target system. Preliminary checks include the device

type, stepping, and system versioning data.

Even after the preliminary tests pass, the system still does not trust

that the hardware image is safe to use. As indicated in Section 3,

the hardware images configure the routing and logic of the FPGA

fabric, and there exist known configurations that can damage it or

produce unpredictable results. The loader uses a design rules

checker (DRC) to scan the hardware image and to detect such

damaging configurations. The configuration data for of the

hardware image is a binary file that represents the functions of

logic elements and the routing between them.

Searching for binary patterns or signatures in the image is a

common method for detecting malicious code such as viruses in

software. This method is not as effective for hardware images.

Compilation of software images from source code is mostly a

deterministic process, whereas hardware synthesis is not.

Hardware images are synthesized into logical netlists, mapped to

the functional units available and signals routed between the

functional units. This process is NP-hard and thus performed

using heuristic algorithms. Typically, simulated annealing

algorithms place and route the mapped logic and minimize

parameters such as speed and area. Simulated annealing

incorporates random moves to prevent the process from settling

into valleys along the optimization space. The process is therefore

not deterministic and the results vary from run to run. For this

reason, the binary encoding of a circuit can vary widely, and

searching for an instance of a dangerous circuit in a hardware

image is a computationally expensive problem.

One efficient way to search hardware images for dangerous

circuits is to use a higher level of abstraction. Software can

extract the logic and routing information from the hardware

configuration image. Using this information we can reconstruct a

circuit graph equivalent to the synthesized net lists originally used

to implement the hardware image. Using the circuit graph, the

DRC traces the hardware image for sub graphs that match patterns

in a database stored on the system, If at any time the DRC detects

a sub graph that is identified as dangerous the application loader

throws a violation and exits the application. Potentially dangerous

circuits that the DRC could encounter and are easy to detect

include but are not limited to output connected to output

(collision), input connected to input (floating signal), and power

signals connected directly to ground (short).

Implementations of the eMIPS processor have a specific floor

plan that fixes the locations, sizes, shapes, and connection points

through the Bus Macros. The DRC uses this geometry information

to determine the compatibility of the hardware to the target

system. The DRC scans the configuration frame addresses and

verifies that the configuration image only modifies the region of

the targeted Extension slot (i.e. no frames outside the Extension

slot are modified). Using the circuit graph again, the DRC checks

that the connection points can only route via the Bus Macros. If

the DRC detects any violation of the geometric constraints, the

application loader will not load the hardware image but this is not

a fatal error. If the software images passes the remaining checks,

the application will still be loaded, but without hardware support.

4.5 Mode and Scope of an Extension
The current state of the Extension interface is defined by the

privilege mode (User versus Kernel) and scope (Local to a process

or Global) and by the current mode and process executing on the

TISA. From these we can derive four accelerator classes: Local

User (LU), Global User (GU), Local Kernel (LK), and Global

Kernel (GK). Both LU and GU Extensions can only operate while

the processor is in user mode. LU is further restricted to a given

thread or process while GU is active across all user processes and

threads. LK and GK are restricted to kernel mode, LK is restricted

to specific kernel mode threads or processes and GK is not.

LU Extensions are application specific Extensions shipped with

the application and loaded when the application is loaded on the

target machine. GU Extensions are shared libraries of general-

purpose operations that any user application can invoke to

accelerate performance. Likewise, LK Extensions are Extensions

included as part of a specific kernel services such as a network

stack accelerator. GK Extensions support the base OS services

such as interrupt service routines or scheduling. The plug-and-

play on-chip peripherals are GK class Extensions and are further

discussed in Section 4.8. A SE image that requests any Kernel or

Global privilege will only load successfully if the security

signature warrants that assignment. In practice, most Extensions

will be LU type Extensions.

4.6 Functional Verification
Once the Extension passes all static tests, the application loader

streams the configuration and command bits to the FPGA

configuration port. Note that there exist devices on the market that

will perform tamper-detection of the configuration stream in

hardware, using AES signatures and/or encryption. These devices

will defeat attacks timed at this stage of the loading process. After

it sent the last byte of the configuration stream, the application

loader must wait a small number of cycles for the FPGA to

complete the re-configuration process. The application loader

enables the clock to the target slot and a single wire, called the

PRESENT signal, connecting the slot to a lock module. The state

of the signals that cross the TISA/Extension interface is as

depicted in “Slot 1” in Figure 4. The application loader sets the

key to the lock and the lock listens to the wire from the Extension.

The Extension must demonstrate its viability by modulating the

signal according to the required key. If the lock does not report a

match by the deadline, the Extension must be malfunctioning. A

malfunctioning Extension is immediately unloaded.

If it finds a match, the lock notifies the application loader through

an interrupt from a system peripheral called the Extension

Controller. The Extension Controller module acts as an

intermediary between system software and the active but not-yet

trusted Extension; it is described with more details elsewhere [12].

Extensions contain an interface to permit interrogation by the

system software through the Extension Controller. During this

stage of application loading, connections to the memory bus by

the Extension continue to be gated off except when it is

communicating to system software through the Extension

Controller. The control signals that interface the Extension to the

memory controller and the Extension Controller are depicted in

Figure 5. One Extension Controller configures all the Extensions,

using multiple sets of such control signals.

Each Extension declares its functionality and its resource

requirements via a set of standard registers, accessible only via the

Extension Controller. When software tries to read this information

from the Extension, the Extension Controller raises the

BAT_Enable signal, allowing the Extension to temporarily “see”

the request on the memory bus and respond to it. The Extension

Controller removes the BAT_Enable signal once the Extension

places the data on the memory bus and raises the Done signal. A

timeout can override the Done signal to prevent the memory bus

from locking-out when there is no Extension present, or in case a

malicious or misbehaving Extension tries to obtain and retain

control of the bus. The same procedure applies when software

writes to the Extensions registers to assign resources. Therefore,

during the entire configuration, only the Extension Controller can

grant access to the memory bus to the Extension, and for a single

transaction. The Extension itself is not able to take control of the

bus.

The Extensions can be in one of the four states shown in the state

machine of Figure 6. The application loader sets the initial state of

the Extension; other system software such as a device driver can

modify it later on, but only via the Extension Controller. The

states are as follows:

Absent: The Extension is not present. This means that the

Extension was never loaded or that it was removed. In the latter

case, the Extension might still be present in the Extension slot. An

Extension in the absent state will not respond to any interface

Figure 5. Extension interfaces to the memory controller and to

the extension controller

Figure 4. The interface signals between TISA and Extension

are selectively enabled, according to the current level of trust

and the required functionality.

except the Extension Controller interface. The Extension

Controller returns this value when an Extension does not respond

(Done signal) before the timeout expires. If an Extension times

out during interrogation, the Extension Controller interrupts the

processor to indicate that the Extension is malfunctioning.

Config: This state indicates that the Extension is in the process of

being configured. When an Extension is first loaded, it is in the

Config state. System software can also bring an Extension from

Running to the Config state in order to change its resource

assignments. No interface other than the discovery interface is

enabled and the Extension can access the memory bus only

through the Extension Controller, using the BAT_Enable signal.

Running: Once the Extension is verified and configured, the

application loader updates its state to Running. This is the normal

operating state of the Extension. In this state, all the requested

resources and interfaces are enabled.

Suspended: While the Extension is running, system software can

temporarily put it in the suspended mode to save power or for

other reasons. In this state, the Extension suspends its normal

operation and waits to return to the running state.

The lock module raises the PRESENT signal when there is a key

match. This indicates to the Extension Controller that a functional

Extension is now present in the slot. The Extension enters the

Config state and waits for the application loader. The application

loader interrogates the Extension hardware to verify the

Extension’s functionality and resource requirements against what

the SE header indicates (privilege, interrupts, peripheral). There

exists a security violation if anything is inconsistent between the

SE header and the actual Extension registers. In such case, the

Extension is unloaded and the application loader reports failure.

The Extension keeps modulating the Present signal to the lock

module while it is loaded. The Extension only lowers the Present

signal when it enters the Absent state. On the falling edge of the

Present signal (out of the lock), the Extension Controller issues an

interrupt to the processor in much the same way as during the load

event and indicates that the Extension slot is now free.

4.7 Application Accelerators
An Extension should not be able to see the execution trace of

threads that are not supposed to use it, even though the Extension

is enabled for the overall process. System software can control the

execution status on a per-thread basis, using the extension control

registers. Enabling the execution path of the Extension enables the

instruction decode interface of the Extension, allowing it to see

the PCs and instructions as they enter the instruction decode phase

of the pipeline. When an Extension detects one of its own

Extension instructions in the pipeline, the Extension petitions the

pipeline arbiter for permission to execute its function. If the

pipeline arbiter gives it permission to execute, the Extension may

access registers and memory. While the Extension accesses

pipeline resources, the Extension may have to stall the TISA for

operations that takes more than the minimal number of cycles

(three currently).

The accelerator enters the Config state after it has been loaded.

The SE header has already indicated that this Extension is an

application accelerator and an execution path is included in this

Extension. Using the Extension Controller, the application loader

interrogates the Extension to confirm the information in the SE

header. If the test passes, the Extension will be able to recognize

its own instructions within its assigned scope, and after receiving

the permission of the pipeline arbiter. Otherwise, the Extension is

unloaded and the application loader returns an error.

4.8 Extension Peripherals
Extensions can also implement loadable on-chip peripherals [12].

Peripherals need to interface for more than just discovery and

verification because they must answer to read/write operations to

specific physical addresses. Peripherals might also need access to

I/O pins that interface to external chips or busses. This peripheral

interface thus requires high privilege level. Other useful

peripherals might be developer aids such as system-wide tracers

and profilers.

Extensions that function as peripheral devices are severe security

risks because they are persistent in all contexts, and they have

access to the physical memory bus. For this reason, an Extension

peripheral can only be loaded from a SE image that originates

from a trusted source and that explicitly declares the requirement

for this privileged access. The application loader decides whether

to grant access based on its analysis of the SE header and security

digest. This was described previously in Section 4.1. Normally

an Extension can only see and use virtual addresses, which are

translated by the MMU inside the TISA. This confines the

Extension within the process’ user address space.

If the SE header indicates that this is a peripheral, the application

loader checks an additional wire that communicates to the

Extension Controller whether the peripheral requests its own

interrupt line. The application loader will only allocate the

interrupt if the SE header also requests it. If not, the discrepancy is

a security violation; the Extension is unloaded and the application

loader throws an error. Each Extension slot has a corresponding

interrupt line to the interrupt controller. If the peripheral requires

an interrupt, the interrupt line is enabled. The interrupt however

remains masked in the interrupt controller for later use by the

software device driver. If the peripheral requests access to

external pins, permission for those resources is again determined

by checking the SE header and the security signature. If the test

passes, the I/O pins of the Extension slot connect through a

general-purpose I/O module to the external pins.

The tight integration between Extensions and the TISA makes it

possible to realize different communication models between

software and peripheral devices. Extension peripherals may

appear on the TISA’s memory I/O subsystem just as the other

static peripherals included in the TISA. Extension peripherals may

also execute special I/O instructions; in the same manner as

application, accelerators do (see Section 4.7). Implementing

special I/O instructions has some advantages over other

approaches. For instance, the Extensions can perform multiple

Figure 6. Extension configuration state machine

register and memory operations before returning control of the

data path to the TISA. Consequently, an Extension can execute

atomic operations involving several registers or memory

addresses without disabling interrupts and without exposing the

physical memory bus.

Table 2: Peripheral Base Address Translation Table.

Size (bytes) Starting Address Address Valid

Size 1 Address 1 1

Size 2 Address 2 0

… … …

Size n Address n 0

If the Extension peripheral interfaces to software via the memory

bus, the Extension requires insertion into the I/O memory map.

For Extension Peripherals, the registers used in the discovery

phase of the application loader include the Base Address

Translation (BAT) table shown in Table 2. Each BAT entry

contains a base address and a size that defines a range of

addresses reserved for the Extension in the physical memory map,

and a valid flag. Each peripheral on the memory map has at least

one entry for a control region. Interfaces such as a SRAM

controller indicate two ranges: a 32-byte range for the control

region and a separate range for the SRAM proper. The size is

read-only; it provides the memory space requirement during

configuration. The application loader selects a free range and

writes the Start Address in the BAT entry.

When the Extension is active, the memory bus interface is enabled

and the Extension watches the addresses on the memory bus and

compares them to its BAT entries. If there is a match, the

Extension completes the read/write transaction.

Interfacing peripherals via the memory bus has the advantage of

allowing for better software reuse because existing device drivers

can more easily port to the new peripheral. Additionally, the

memory-mapped interface does not entail the cost of allocating

opcodes to an Extension with global scope, thereby reducing the

number of available opcodes.

4.9 Extensions as Shared Libraries
Many software image formats support shared libraries; they

represent in one form or another external dependencies, e.g.

dependencies on software modules that are provided separately.

We extend this concept to hardware Extensions, using the idea of

treating the full SE image in the same way software treats an ELF

image. In other words, the dependent shared library is in turn an

SE image, with or without Extension images in it. The loader

loops through the tree of dependents. If any fails to load the

application as a whole fails to load. Actual sharing of Extensions

across processes however does create potential security risks.

Only stateless Extensions can safely be shared in this way. Since a

DRC checker cannot verify this rule, we have to rely on the

security signature alone. An Extension that is intended for sharing

must be marked safe at the highest security level, even though it

might operate in User mode only.

Once all dependents are loaded and activated the application is

ready to start executing. The application loader creates a new

thread, with the appropriate values for the extension control

registers. When the scheduler activates the thread, its state is

loaded and at the first RFE instruction, the extension control bits

take effect, bringing the context in effect. While the Extension is

in scope, the state of the signals that cross the TISA/Extension

interface are as depicted in “Slot 2” or “Slot 3” in Figure 4,

depending on the Extension type. The scheduler enables and

disables these interfaces as the Extension enters and exists scope.

5. EXCEPTIONS AND EXTENSIONS
In the eMIPS processor, the active state of the Extension slots is

treated in the same way as interrupts are handled in a traditional

MIPS processor. It may be necessary to disable all user

Extensions very quickly, such as when the processor switches

from user mode to kernel mode upon an interrupt or exception.

These Extensions are re-enabled when the processor returns to

user mode after software has serviced the interrupt or exception.

Kernel Extensions become active when the processor is in kernel

mode and disabled when the processor enters user mode unless

the Global parameter is set (i.e. a GK Extension).

An interrupt or exception might stop an Extension in the middle

of an operation. When this occurs, the Extension has a limited

opportunity to complete any pending write-backs to the register

file and to report its virtual location in the basic block it is

accelerating, before the TISA forcibly resumes control. After a

maximum number of cycles expires, all user mode Extensions are

deactivated, the mode is changed in the processor status register,

kernel Extensions are activated, and the processor restarts

execution at the proper exception vector. See [32] for more

details.

Allowing Extension hardware to stall the processor and then force

it to release it on interrupts and exceptions creates a possible

secondary attack vector. An application can include an Extension

that stalls the pipeline whenever it enters its process and only

releases it when an interrupt context switches the processor.

Counting the cycles spent in the Extension can reveal the

frequency of interrupts. From that information, the attacker can

deduce other critical data, such as keystrokes on a keyboard.

The frequency of interrupts can be obfuscated using random

intervals to generate spurious interrupts. This cancels Extension

operations just as a real interrupt would, but context switches back

to the same process. In this way, a malicious Extension spying on

the system cannot be sure if the cancelation was a real interrupt or

a random cancel. If the minimum interval is sufficiently large, it

will have little impact on most legitimate Extensions.

6. AUGMENTED SECURITY
Reconfigurable microprocessors such as eMIPS and Stretch [13]

provide new opportunities to improve security. In this section, we

describe two ideas that we have implemented on eMIPS, and

indicate other future work.

6.1 eBug: a Reconfigurable, On-Demand, Per

Process Debugger
Most embedded microprocessors ship with some type of

embedded hardware debugging support. Often this consists of a

serial interface such as JTAG that links to a debugger such as

GDB or other UI. This debugging is important to system

developers for identifying and correcting software defects before

the release of the system, but it also provides to an attacker a

wealth of information about the system behavior and parameters.

Embedded hardware debuggers are global debuggers, meaning

that all threads, processes, and modes are visible. They can

arbitrarily access memory and other system resources and

therefore create a security hole. A JTAG debugger is also a

physical threat in a shipping product. An attacker only has to

connect a JTAG cable to gain complete control of the system.

The eMIPS processor differs from other processors in that it ships

with no embedded hardware debugging support. That is not to say

it does not have a debugger. Included with the eMIPS processor

release is a debugging Extension, eBug [3]. eBug can be loaded

into an Extension slot during application debugging and then

removed when the system is ready for release. In a released

system, the physical pins used by the debugger are left floating,

and an attacker will gain nothing by gaining physical access to

them. eBug is not signed and can only be loaded on an RTOS with

a low security setting. Therefore, an attacker that wants to use the

debugger to gather information surreptitiously must overcome

first the application loader.

Another advantage provided by eBug is that it is a per-process

debugger, with a user-local scope. This means that even if an

attacker loads eBug, the debugger only sees local information

about the process connected to it and nothing else. The RTOS

hides all the other processes by disabling eBug whenever it de-

schedules the process, and enabling it again when it reschedules it.

By restricting the debugger to a single process context, eMIPS

eliminates the risk of using the embedded debugger as an attack

vector.

6.2 P2V: Security through Zero-Overhead

Assertion Checking
The P2V compiler [4] generates hardware Extensions for the

eMIPS processor useful for assertion-based verification of

application software. The Extensions monitor passively the

internal register and memory busses, looking for violations to the

given assertions. The monitors operate strictly within the scope of

their process and do not interfere with the running application.

They do not change the execution flow in any case, and do not

even change the timing behavior in any case of practical interest.

The software running on the eMIPS processor is not aware of the

monitor; P2V requires no changes to it. When the monitor detects

a violation, it can throw an exception to launch a debugger, or to

terminate the application. Other behaviors are possible.

Many of the assertions used to detect bugs in an application are

useful to detect security attacks on the system. System developers

can ship a security monitor generated from assertions targeted at

known attacks. The monitor is loaded at system boot time and

never unloaded. Then as analysts identify new threats, developers

can release a new version of the monitor along with their system

patches and updates.

Using P2V, we have developed monitors to detect stack-smashing

attacks, as shown in Figure 8. In the experiment, we deployed a

simple but erroneous program on the eMIPS. The program reads

data from the console and copies it to an array on the program

stack, without bounds checking. As the user continues to type, the

array pointer goes outside the bounds of the array and eventually

overwrites the return address stored on the stack. The monitor

loaded in the Extension slot checks the PSL assertion

"never($writing == $return)", which states that the return address

of a function should never be overwritten. When the program

eventually does overwrite the return address, the monitor detects

the violation and throws an exception.

Also of interest is the stealthy manner in which these monitors

operate. Because they do not affect the timings of the application

and execute in an isolated hardware unit, they are not detectable

by an attacker e.g. via timing attacks. The monitors can also be

used to trace the source of the security violation to a specific

process or thread.

6.3 Other Opportunities
Additional applications of the eMIPS architecture to security

include, but are not limited to, code obfuscation, virus signature

detection and generation, software integrity verification via

Oblivious Hashing [5] or Integrity Checking Expressions[6], and

information flow control [7][8]. The use of extension instructions

can aid in code obfuscation since the extension opcodes are

undefined and they have different meanings in different

applications, possibly even for different threads in the same

process. The Extension can randomly choose to recognize the

instruction or not to make reverse engineering even more difficult.

Virus signatures currently rely on static code sequences alone. An

Extension can additionally rely on dynamic code sequences and

on specific data values in registers. A stack-smashing detector can

save, for instance, the last few instructions executed to create or

recognize this virus's dynamic signature, with zero-overhead and

completely stealthy behavior. It can also check and modify the

arguments to a call to a memory copy function to detect and

prevent buffer overflows. Software integrity checking as in

Oblivious Hashing, Integrity Checking Expressions, and related

techniques prevents code tampering by verifying code integrity

during execution. This usually involves two software parties

periodically checking each other's integrity and generating a

degraded system behavior when they detect a violation. The two

parties of a challenge-response based scheme could be

implemented one in software (the TISA) and one in hardware (the

Extension), with the added benefit that the hardware component

can be neither detected nor altered by the attacker. In information

flow control, an Extension can help by isolating the tags attached

with data and make them tamper-proof.

7. STATUS AND RESULTS
The baseline eMIPS processor has been available since December

2007 on the Microsoft Research Embedded and Reconfigurable

Systems Group website [25]. The release includes full source and

is free for academic and non-commercial use.

Figure 8. The FPGA fabric can perform intrusion detection.

A Monitor watches the CPU transactions and detects

attempts to over-write the return address.

Table 3: Resource Utilization by Extensions

 LX25 SX35

EXT Total % EXT Total %

SLICES 1,536 10,752 14.3 4,864 15,360 31.6

DSP48 2 48 0.5 64 192 33.3

BRAMS 3 72 0.5 64 192 33.3

The application loader is integrated into the MMLite embedded

operating system [2], which is also available on the group website.

The release on the MMLite OS is accompanied with utilities for

generating SE file images from ELF binaries and Xilinx ACE

files. The MMLite scheduler handles the state of the Extension

interfaces as the processes and threads context switch in and out

of scope.

Table 4: TISA Resource Utilization

Resources 1 Extension 2 Extensions % Increase

Slice 7862 9180 14.4

BRAMs 8 8 0

DSPs 40 40 0

The December release supports the ML401 and Virtex 4 LX25

devices. We have recently ported eMIPS to the ML402 and Virtex

4 SX35. Using the additional resources provided by the SX35,

the processor now includes two Extension slots as opposed to only

one in the LX25. Work continues in both implementations to

further optimize the design for speed and area. In the Virtex 4

SX35, we are able to increase the area allocated to the Extensions

by over three times compared with the LX25. The availability of

functional units such as BRAMs and DSPs will vary with the

location and shape of the extension slots. Table 3 provides a

breakdown of the resources available for Extension

implementations in the two chips.

The Extension area may be subdivided in any number of slots, but

in practice, there are limiting factors. There is a minimum area

required to implement the Extension interface inside the slot, and

the region perimeter must be of sufficient length to place all the

required Bus Macros. Replicating the Extension interface logic

for multiple Extensions incurs some additional overhead as well.

The size of the TISA grows by about 15 percent as shown in

Table 4. Here we compare two designs for the same target SX35

device. The first uses one slot, the second two slots.

We have implemented and tested multiple stack-smashing

detectors, using the P2V compiler. To assess the scalability of the

approach, we have included multiple stack-smashing monitors

into a single Extension and evaluated the resulting area

consumption. As illustrated in Figure 9, the Extension grows

linearly with respect to the number of monitors (N). Also marked

on the vertical axis is the number of total slices available on the

Virtex 4 LX25, and on the largest of the Virtex 4 devices, the

LX220.

8. RELATED WORK
Reconfigurable logic has been used to improve application

performance but not in a usable and safe multi-user system. One

difficult point is to address the security risk posed by the

potentially tamperable FPGA execution engine [14]. In our model,

we address many of those risks using a design rule checker and

only allow security-signed executable images and configuration

files. Bossuet et al. [15] looked at FPGA security in the sense of

securing the reconfiguration bit file and protecting the IP

contained therein. These techniques are usable in our model to

secure the channel into the configuration plane, in case it is

vulnerable to physical attacks. That would be the case if we used

an external JTAG port, for instance. A number of FPGA-based

“accelerator” products [16] [17] [18] restrict the use of the

accelerator to a single process. This conservative approach still

fails to secure other users from a virus injected into the one

process that uses the accelerator, or by over-writing the

configuration files on disk. Garcia [19] simulated a single-chip

architecture similar to eMIPS, but with a wider separation

between processor and reconfigurable fabric. A hardware MMU

interposes between the fabric and the cache, software-controlled

by the main processor. While less susceptible to virus injection,

this approach is still limited to single-process use of the fabric.

Dales [20] simulates a system that can leverage the FPGA in a

general-purpose workstation environment, switching the device

among many applications. The FPGA interfaces as a coprocessor;

the system was not actually implemented and security issues are

not really addressed. Many other projects have simulated similar

systems [21] [22] [23], ours is the first attempt to actually build a

FPGA-based extensible processor and a workstation that is safe

for general, multi-user application loads. McLean [24] describes a

concerted effort between NSA and Xilinx to create Secure Bus

Macros for securing FPGA chips for Red/Black embedded

systems. The hardware approach is similar to eMIPS in the use of

Bus Macros, but the goal is only to ensure isolation of data among

contexts. It is not meant for use as a general-purpose computing

device. It might be vulnerable to radio-based attacks.

9. CONCLUSIONS
To the best of our knowledge, the eMIPS project is the first to

realize a safe and secure multi-user computer system using a

reconfigurable fabric as a hardware accelerator. The first release

of the eMIPS microprocessor system is available on the

Embedded and Reconfigurable Systems website at Microsoft

Research [25]. The design of the system is based on simple and

well-known principles of virtualization and isolation, but the

Figure 9. Area Consumption of Extension containing N stack

smashing monitors.

practical realization of those principles has been anything but

simple. Ensuring that hardware images are safe to use is a difficult

proposition, which required the use of a design rule checker at

runtime and careful, gradual exposure of the hardware signals

during image activation.

We have experimented with a number of different scenarios, from

application acceleration to loadable on-chip peripherals, from

loadable hardware debugging support to zero-overhead online

model checking. In all cases, we were able to exploit the

reconfigurable fabric without compromising security. In fact, we

were able to identify a number of new ways in which the

architecture can improve the overall security of the system. Of

special interest is the ability to insert stealthy monitors for

intrusion detection, such as stack-smashing detectors, to run on

the reconfigurable fabric to monitor the execution of the base

processor.

ACKNOWLEDGEMENT

The authors would like to thank the members of the security

research group at MSR and the anonymous referees for their help

in improving this paper. Special thanks to J. Carver for his work

on the DRC and the SX35 devices.

10. REFERENCES
[1] Kane, G., Heinrich, J. 1992. MIPS RISC Architecture.

Prentice Hall, Upper Saddle River, NJ.

[2] Download at http://research.microsoft.com/invisible/

[3] Busonera, G., Forin, A., Pittman, R., N. 2008. Exploiting

partial reconfiguration for flexible software debugging.

SAMOS-VIII.

[4] Lu, H. and Forin, A. 2008. Automatic Processor

Customization for Zero-Overhead Online Software

Verification. To Appear on Transactions on VLSI,

November 2008.

[5] Chen, Y., et al. 2002. Oblivious Hashing: A Stealthy

Software Integrity Verification Primitive. 5th International

Workshop on Information Hiding, LNCS 2578, pp. 400-414.

[6] Jakubowski, M. et al. 2007. Software integrity checking

expressions (ICEs) for robust tamper detection. Information

Hiding '07, Saint Malo, France.

[7] Dalton, M., Kannan, H., Kozyrakis, C. 2007. Raksha: a

flexible information flow architecture for software security.

SIGARCH News, Vol 35.2, May 2007, pp. 482-493.

[8] Zeldovich, N. et al. 2006. Making Information Flow Explicit

in HiStar. Usenix Symposium on Operating System Design

and Implementation.

[9] Xilinx Virtex 4 Family Overview. Xilinx Inc., June 2005.

Available at

http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[10] Xilinx. Virtex-4 Development Boards. Xilinx Inc., 2005. At

http://www.xilinx.com/products/silicon_solutions/fpgas/virte

x/virtex4/index.htm

[11] Xilinx Development System Reference Guide, Chapter 5,

Partial Reconfiguration. Xilinx Inc., December 2005, pp.

113-140, Available at

http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.

pdf

[12] Bharat, S., Forin, A., Pittman, R. N. 2008. Extensible On-

Chip Peripherals. SASP’08, Symposium on Application

Specific Processors, Anaheim CA.

[13] Stretch, Inc.2006. http://www.stretchinc.com

[14] Hadžić, I., Udani, S., Smith, J. M. 1999. FPGA Viruses.

FPLA’99, pp. 291-300.

[15] Bossuet, L., Gogniat, G., Burleson, W. 2006. Dynamically

Configurable Security for SRAM FPGA Bitstreams.

International Journal of Embedded Systems.

[16] Mitrionics, Inc. 2001. http://www.mitrionics.com

[17] SRC Computers Inc.1996. http://www.srccomp.com

[18] Tarari, Inc. 2002. http://www.tarari.com

[19] Garcia, P. and Compton, K. 2007. A Reconfigurable

Hardware Interface for a Modern Computing System.

FCCM’07, Napa Ca. pp.73-84.

[20] Dales, M. 2003. Managing a Reconfigurable Processor in a

General Purpose Workstation Environment. DATE ’03.

[21] Hauser, J. R., Wawrzynek, J. 1997. Garp: A MIPS Processor

with a Reconfigurable Coprocessor. FCCM’97 pp. 12-21.

[22] Lysecky, R., Stitt, G., Vahid, F. 2006. Warp Processors.

DAES Transactions, pp. 659-681.

[23] Wittig, R. D., Chow, P. 1996. OneChip: An FPGA Processor

with Reconfigurable Logic. FCCM’96, pp. 126-135.

[24] McLean, M. and Moore, J. 2007. FPGA-Based Single Chip

Cryptographic Solution. In Military Embedded Systems,

March 2007.

[25] Download at

http://research.microsoft.com/research/EmbeddedSystems/e

MIPS/emips.aspx

[26] Athanas, P., Silverman, H. 1993. Processor Reconfiguration

through Instruction-Set Metamorphosis. Computer Vol. 26,

March 1993, pp. 11-18.

[27] Davidson, J. 1993. FPGA Implementation of a

reconfigurable microprocessor. CICC’93.

[28] Lau, D., Pritchard, O., Molson, P. 2006. Automated

Generation of Hardware Accelerators with Direct Memory

Access from ANSI/ISO Standard C Functions. FCCM’06,

pp. 45-54.

[29] Kelm, J., H. and Lumetta, S., S. 2008. HybridOS: Runtime

Support for Reconfigurable Accelerators. FPGA ’08,

Monterey CA. pp. 212-221.

[30] Rowen, C, Maydan, D. 2001. Automated Processor

Generation for System-on-Chip. ESSCIRC’01.

[31] Lopez-Buedo, S, Garrido, J., Boemo, E. I. Dynamically

inserting, operating, and eliminating thermal sensors of

FPGA-based systems. IEEE Transactions on Components

and Packaging Technologies, Volume 25, Dec 2002, pp. 561-

566.

[32] Sekar, A. and Forin, A. 2008. Automatic Generation of

Interrupt-Aware Hardware Accelerators with the M2V

Compiler. Microsoft Research Technical Report MSR-TR-

2008-110, August 2008.

