
DRAFT – DO NOT REPRODUCE

 Microsoft eMIPS
 Release v1.1
 Winter 2007

 Richard Neil Pittman
 Alessandro Forin
 Microsoft Research

DRAFT – DO NOT REPRODUCE

2 | P a g e

 Version Revision

8/21/2007 0.0 Pre-release to Xilinx

10/08/2007 1.0 First Release to TAMU

12/21/2007 1.1 Added eBug Debugger,
Extension Peripherals,
Software doc. Public release.

DRAFT – DO NOT REPRODUCE

3 | P a g e

Table of Contents

Table of Contents .. 3

Table of Figures ... 6

1 Introduction ... 8

1.1 Motivations .. 8

2 Tool Setup .. 12

2.1 Before You Start .. 12

2.2 Hardware Tools ... 12

2.2.1 Xilinx ISE .. 13

2.2.2 Xilinx ISE Partial Reconfiguration Tools .. 22

2.2.3 Xilinx PlanAhead .. 27

2.3 Software Tools .. 34

2.3.1 Compiler ... 34

2.3.2 The BBTools Package ... 40

2.3.3 Giano ... 43

2.3.4 The RTOS .. 43

3 Building the eMIPS System .. 45

3.1 Common Tasks ... 45

3.1.1 Changing the Environment to Non-PR Xilinx ISE .. 45

3.1.2 Changing the Environment to PR Xilinx ISE .. 47

3.1.3 Set up the Project Directory ... 50

3.1.4 Synthesize the Top Level Module .. 53

3.1.5 Add the Register File Blockram ... 61

3.1.6 Add the Register File Fifo. ... 67

3.1.7 Add the Bootloader Blockram .. 74

DRAFT – DO NOT REPRODUCE

4 | P a g e

3.1.8 Synthesize the Base Design (TISA) .. 79

3.1.9 Synthesize the Reconfigurable Region (Extension) .. 92

3.2 Building the Configuration Design Files and the Bit Files ... 105

3.2.1 Building the PR Version with the PR flow .. 105

3.2.2 Building the NON-PR Version .. 127

3.3 Verifying the Configuration Bit Files. ... 147

3.4 Generating the System ACE Compact Flash Image .. 166

3.5 Testing .. 179

4 Software Procedures .. 197

4.1 Building and running a standalone program ... 197

4.2 Building and running a program under the RTOS .. 199

4.3 Debugging with eBug .. 202

4.4 Rebuilding the boot loader .. 202

4.5 Building an SE image that contains an Extension .. 203

4.6 Using the BBTools to profile a program .. 206

4.7 Adding Extended Instructions to an image ... 207

4.8 Generating Extensions using the M2V compiler ... 208

5 Architecture of the eMIPS System ... 210

5.1 Overview of Xilinx Virtex 4 and ML401 Board .. 211

5.2 Overview of Xilinx Partial Reconfiguration .. 212

5.3 Overview of Xilinx System ACE Configuration Solution ... 214

5.4 Overview of the RISC CPU Organization ... 215

5.5 eMIPS System Components ... 216

5.5.1 Top Level Module .. 216

5.5.2 Clocking and IO Modules ... 217

5.5.3 Trusted ISA (TISA), Static Design Region ... 218

DRAFT – DO NOT REPRODUCE

5 | P a g e

5.5.4 Memory Subsystem Modules .. 222

5.5.5 On-Chip Peripherals .. 223

5.5.6 Extensions, Reconfigurable Design Region .. 225

6 The eMIPS Extension Interface ... 226

6.1 Extension Interface Control ... 226

6.2 HDL Coding of Interfaces .. 228

6.3 Interface Protocols .. 228

6.3.1 Instruction Decode/Arbitration Protocol ... 228

6.3.2 Register File Interface .. 231

6.3.3 Memory Interface ... 233

6.3.4 Program Counter/Instruction Fetch .. 235

6.3.5 Pipeline Re-Entry ... 236

6.4 Design Floor planning ... 239

7 References ... 242

Appendix A: Example eMIPS Extensions ... 247

mmldiv64 .. 247

loadreturn ... 248

timer ... 249

usart ... 249

eBUG HW 2 ... 250

eBUG HW 8 ... 250

Appendix B: Build Scripts ... 251

eMIPS_PR_Top.bat ... 251

eMIPS_PR_TISA.bat ... 251

eMIPS_PR_Extension0_mmldiv64.bat .. 251

eMIPS_PR_Extension0_mmldiv64_merge.bat .. 251

DRAFT – DO NOT REPRODUCE

6 | P a g e

Table of Figures

Figure 1: SE File Format .. 204

Figure 2: Block diagram of the eMIPS architecture. .. 210

Figure 3: Xilinx ML401 Evaluation Board with Virtex 4 LX25[20] .. 212

Figure 4: Examples of partitioning of a Reconfigurable FPGA design. [5][14] 212

Figure 5: Logical connections of signals crossing a region boundary.[5] .. 213

Figure 6: LUT Based Bus Macro.[5] .. 213

Figure 7: System ACE File structure.[12] ... 215

Figure 8: Design Hierarchy of the Top Level Module .. 217

Figure 9: Design Hierarchy of the Trusted ISA .. 218

Figure 10: eMIPS Memory Bus .. 223

Figure 11: Extension Control Register (CP0 register 16) ... 226

Figure 12: Per Extension Slice of the Extension Control Register .. 226

Figure 13: Instruction Decode/Arbitration Protocol .. 229

Figure 14: Resuming the Pipeline .. 230

Figure 15: Instruction Decode/Arbitration Protocol for Passive/Parallel Operation 231

Figure 16: Register Read Interface .. 232

Figure 17: Write Register Interface .. 233

Figure 18: Memory Read Operation .. 234

Figure 19: Memory Write Operation .. 235

Figure 20: Extension PC update .. 236

Figure 21: Reenter TISA Pipeline at Memory Access ... 237

Figure 22: Reenter TISA Pipeline at Writeback ... 238

Figure 23: eMIPS Floor Plan ... 239

file:///E:\FPGA\eMIPS\eMIPS%20Documents\Microsoft%20eMIPS.doc%23_Toc185932997

DRAFT – DO NOT REPRODUCE

7 | P a g e

Figure 24: Close up of eMIPS Floor Plan with Bus Macros ... 240

Figure 25: mmldiv64 shift 128-bit left logical .. 248

DRAFT – DO NOT REPRODUCE

8 | P a g e

1 Introduction
This document is part of the current release of the eMIPS system, and the primary

source of documentation for it. Its target is a researcher or developer that intends to use the
system in a practical setting. It describes how to install and use the hardware and software
tools that are required for developing and extending the system. It contains information about
the architecture and implementation of the system that is required when developing processor
Extensions. Other documents are available online and can be found at the eMIPS web page at
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx.

The document is structured as follows. The rest of this section presents the motivations
for the eMIPS research project and its specific contributions to the state of the art in the field.
Section 2 describes how to procure and install the required hardware and software tools and
packages. Section 3 describes how to build and test a new processor image. Section 4
describes how to create, debug and optimize software applications for the eMIPS processor, to
run either standalone or under the provided RTOS. Section 5 describes the modules and
interfaces that constitute the implementation of eMIPS, as provided in the release. Section 6
describes in more details the interface between the fixed portion of the processor and the
dynamically changeable parts. Section 7 references the research that is most closely related to
eMIPS. Appendix A describes the example Extensions that are provided in the release to help
developers get started.

1.1 Motivations

Most of the modern microprocessors implement the Reduced Instruction Set Computer
architecture, or RISC, which is based on fixed instruction sets. Many different types of RISC
microprocessors populate the market based on these different sets of instructions including,
MIPS, ARM and PowerPC to name some of the more popular. These microprocessors are
realized in the form of application specific integrated circuits, or ASIC, made up of logic fixed at
design time that cannot be altered after the chip fabrication process is complete. When
designing instruction sets, computer engineers attempt to capture all the instructions
necessary to cover the largest space of potential applications, while keeping in mind factors
such as size, cost and power. This set of instructions forms the blue print for the instruction
set architecture, or ISA, to be implemented on the new microprocessor.
 Despite all efforts, the quest for the „optimal fixed instruction set architecture‟ is an
impossible one because the space of applications to which the designers apply general
purpose processors evolves constantly. In addition, the trends that govern this evolution shift
periodically in response to changes in consumer lifestyles and demands. For example, the
need to process more audio and video data has led to extensions for all of the above RISC
architectures. Therefore, the selection of instructions for a „general purpose‟ microprocessor
designed to meet the demands of today‟s market place may be ill equipped to handle the
applications of future markets. We can also argue that the quest for the „optimal general
purpose‟ microprocessor for today‟s market does not make sense anymore, especially in the
embedded market place.
 In the embedded market, system designers work within the strictest constraints of size,
cost and power. The systems they design apply to a specialized and significantly reduced
space of potential applications. In this context, a „general purpose‟ microprocessor is

http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx

DRAFT – DO NOT REPRODUCE

9 | P a g e

inefficient and under-utilized when the majority of applications never use a large subset of the
capabilities it provides. For instance, many embedded systems rarely if ever use floating point
operations but most „general purpose‟ microprocessors include them. For these applications,
a popular solution is to use custom microprocessors with reduced instruction sets but with
customized instructions added specifically for the intended application space. This requires
redesigning the microprocessor architecture and fabricating custom microprocessors for each
of the desired application domains; still they suffer from the inflexibility previously discussed.
Therefore, manufacturers cannot offset the cost in design and fabrication of the new custom
chip if the market for the given application is not large enough. As demonstrated in this
discussion, the problem of this inflexible „general purpose‟ microprocessor architecture
becomes a severe hindrance. What is needed in the embedded application space and
potentially in all areas of microprocessor hardware design is a new technology that can provide
for flexibility and customization, allowing the microprocessors to evolve with their target
markets at all stages of their life cycle.
 The Field Programmable Gate Array, or FPGA, is a digital semiconductor device often
used for prototyping. Developers use FPGAs in prototyping for the ability to configure or
program their electrical interconnects to realize an expansive space of applications from glue
logic to application coprocessors. As the name indicates, developers are free to apply
modifications to the design implemented on the FPGA in the field, after deployment.
Developers synthesize the configurations from a hardware description language, like Verilog or
VHDL, for the targeted FPGA device. Eventually, the configuration file downloads to the chip
through an interface such as JTAG. This flexibility comes with a price. The configurable logic
of the FPGA experiences significantly lower performance than the modern ASIC. FPGAs,
currently are clocking at frequencies barely higher than 500 MHz, while ASICs are currently
clocking at frequencies over 3 GHz. Despite this limitation, FPGA technology has evolved to
the point where developers can implement fixed logic microprocessors with performance levels
competitive with their ASIC counterparts, especially in the embedded market. These future
microprocessors will have the advantage that they can be dynamically updated after
deployment to meet new demands. This approach to microprocessor design leads to a new
class of microprocessors termed the “dynamically extensible processor”.
 Using modern FPGAs it is possible to partition the FPGA into multiple sections that can
reconfigure independently of each other. We can implement the dynamically extensible
processor using a section containing a standard fixed logic processor core with interconnects
to other sections, termed „Extensions‟ that contain customized instructions and functionality
that loads, modifies and enables while the fixed logic continues to function without interruption.
In this way, the dynamically extensible processor, using a library of Extensions from which it
can draw, adapts to the changing application needs in the field. By using these dynamically
extensible processor cores, a “reconfigurable central processing unit” becomes possible. The
eMIPS project described in this document argues that such a device is feasible today and
proves this thesis by means of an example prototype implementation.
 The standard RISC architecture lacks the infrastructure to allow for the kind of flexibility
and extensibility possible through the use of FPGAs. This new extensible instruction set
computer architecture provides this infrastructure. The FPGA is partitioned into fixed and
reconfigurable regions. The fixed logic region constitutes the base functionality of the
processor including security sensitive resources such as the system coprocessor and the
systems used by the microprocessor to control its configuration. The Extensions to the base

DRAFT – DO NOT REPRODUCE

10 | P a g e

processor make up the reconfigurable region of the FPGA. Alternatively, the fixed logic region
can be implemented using ASIC technology and only the reconfigurable region as an FPGA or
CPLD, with the added benefits of extra security, speed and reduced area. The eMIPS
architecture therefore provides the flexibility and adaptability lacking in the RISC architecture.
 Extensions can take the form of new instructions developed to meet the changing
computing needs of the market. The Extensions can be thought of similarly to firmware
updates in other devices that load when applications requiring those updated instructions are
loaded or of added optional features such as floating point operations. In addition, Extensions
can implement optimized instructions that can take the place of blocks of code with the same
semantics. In the case of the optimized instructions, these instructions are added to the
software binaries immediately before the blocks they replace. If the „Extension‟ associated
with that instruction has been configured to one of the available extension slots in the
reconfigurable region of the FPGA, the Extension executes the optimized instruction and the
block it replaced is skipped. Otherwise, the data path contained within the fixed region of the
FPGA interprets the optimized instruction as a NOP and the original block that is still in the
software binary executes normally. The Extension‟s custom logic implements the block‟s
functionality more efficiently than a sequence of instructions that reuses the same execution
units to perform the block‟s function step by step. For this reason, the Extension executing the
same function as the block completes the operation faster. If the block constitutes a large
enough percentage of the execution count of the application software the overall performance
on this microprocessor is significantly improved. The inclusion of these new instructions
requires minimal changes to software binaries, as little as adding the instructions immediately
before the blocks they replace.
 The eMIPS architecture also addresses the waste associated with including functionality
in systems where they are never used. The Extensions of the eMIPS architecture do not load
when the microprocessor powers up. The fixed logic system only includes the minimum
functionality (system management, reconfiguration support, load, store, arithmetic and logical
functions), the Extensions provide any additional functions required by the applications running
on the microprocessor. For instance, the floating point co-processor or the media or vector co-
processors can be loaded only if and when software applications use them. When applications
do not require these functions the Extensions are not loaded, providing for potentially large
power savings because the unused Extension slots may have their clocking resources and
power disabled to reduce the power consumption. Area savings are also possible because not
all Extensions need to be present at all times, as is the case instead for an ASIC
implementation. This waste reduction may increase by dynamically loading and unloading not
only the co-processors but also the on-chip peripherals that are part of an embedded
microcomputer. Rather than including all possible peripherals in the ASIC we can load them on
an extensible processor as Extensions, again with power and area reductions.
 Through the use of FPGA configuration technology, the eMIPS architecture addresses
the inflexibility, performance growth and waste of the modern RISC architecture. We have
realized the architecture in a working prototype, exposing the five stages of the base pipeline
to the dynamically loaded Extensions. We have implemented the dynamic loading of
Extensions leveraging the Partial Reconfiguration tools and processes provided with the
manufacturer‟s synthesis tools. The flexibility and performance benefits of the architecture
have been demonstrated by patching the binaries of a number of software applications and
measuring the resulting speedups. We used several software systems, ranging from an object

DRAFT – DO NOT REPRODUCE

11 | P a g e

oriented real-time operating system for embedded applications, video games, and the
SPEC2000 benchmarks. We find that even very simple Extensions can easily achieve
speedups factors of 2x-3x over the original application binaries, using a very small number of
Extended Instructions per application.
 The eMIPS system makes the following specific contributions to the state of the art.
eMIPS is the first realized workstation based entirely on a dynamically extensible processor
that is safe for general purpose, multi-user applications. By exposing the individual stages of
the data path, eMIPS allows optimizations not previously possible. This includes permitting
safe and coherent accesses to memory from within an Extension, optimizing multi-branched
blocks, and throwing precise and restartable exceptions from within an Extension.

DRAFT – DO NOT REPRODUCE

12 | P a g e

2 Tool Setup

 Development for the eMIPS microprocessor system requires both hardware and
software tools due to its configuration capabilities. All the tools mentioned in this section are
available for download or purchase from their respective vendors. For hardware extension
development, the Xilinx ISE is used to synthesize and build the design for a target Xilinx
FPGA. This use of Xilinx FPGA tools and FPGAs is in no way an endorsement of these
product lines. The selection has been made based on the availability of the partial
reconfiguration feature in Xilinx FPGAs, which is required for the dynamic extension of the
eMIPS microprocessor system. Before you attempt to use the eMIPS microprocessor system
it is recommended that you familiarize yourself with the Partial Reconfiguration design flow
available for Xilinx FPGAs. In addition to the ISE, Xilinx PlanAhead is recommended for floor
planning but not required. Creating software to run on the eMIPS is the combination of a GCC
cross compiler for the MIPS instruction set, and of a set of additional tools specifically
developed for the eMIPS microprocessor and included in this release. Microsoft Giano is used
for identifying candidate basic blocks for hardware acceleration, and to estimate the theoretical
application performance improvements of potential extensions.

2.1 Before You Start

 We will assume in the following that your development machine meets a few basic
requirements. You should have plenty of disk space available as some of the tools will require
quite a bit of it. If you install all of the tools you might need about 15GB, which is approximately
6 GB per install of the Xilinx ISE tools plus enough space for the other tools and project files.
We recommend that you use a state-of-the-art fast processor, because many of the tasks are
CPU-intensive. We recommend that you have at least 2 GB of fast RAM and preferably more;
you do not want the Xilinx place-and-route tools to start paging to disk.
 The instructions assume that you will use the Windows XP operating system on your
development machine, preferably with the latest service pack installed. We have successfully
used both the Pro and the Server versions of Windows XP. Both the 32 bit and the 64 bit
versions worked for us. Previous versions of Windows (e.g. Win2k) might work but are
untested. The Xilinx tools are known not to work on Windows Vista, and we therefore
discourage you from trying to use it. Non-Windows operating systems might work, but are not
supported by the tool binaries provided in this distribution.
 The eMIPS system as distributed in this release runs on the Xilinx ML401 development
board. You should be able to obtain one from your Xilinx representative or directly from the
Xilinx website (http://www.xilinx.com/onlinestore/index.htm). We assume that your board is
fully tested and operational.

2.2 Hardware Tools

 The Xilinx ISE is the integrated development environment for the Xilinx FPGAs and
configurable logic products. At the time of this publication, Xilinx had release version 9.2i of
the ISE however, this version does not support partial reconfiguration. Support for this feature
is expected to return in future updates to version 9.2i. The most recent version that supports
partial reconfiguration is version 8.2i. For this reason it is recommend that all eMIPS users
select version 8.2i until Xilinx release a new, partial reconfiguration compatible version of the

DRAFT – DO NOT REPRODUCE

13 | P a g e

tools. Configuration files for the base system and some example extensions are provided in
the release and can be used as-is, without need for the ISE tools. However, to design, build
and use your own extensions with the eMIPS system you will require access to these tools.
 A fully floor planned constraint file is provided in the release, but in some cases your
design needs might require that you change the initial floor planning. The constraint file can be
edited using a text editor to change the area and LOC constraints of the reconfigurable
regions, IO and clock resources. Due to the rigid constraints imposed by the Partial
Reconfiguration design flow, it is recommended using Xilinx PlanAhead over text editing of the
constraint file. Xilinx PlanAhead also provides additional features such as DRC checking of
your floor plans and area estimation of the reconfigurable regions.
 Development of designs using the eMIPS system architecture requires that you have at
least one and preferably two installations of the Xilinx ISE installed on your workstation. The
first install is a standard install of the Xilinx ISE 8.2i with the latest service packs and updates.
This install is used for initial system development and debugging. The second install is the
Xilinx ISE 8.2i, upgraded with service pack 1 and with the Partial Reconfiguration Tool overlay
installed. This second install is used to build any partial reconfiguration design, both for the
base processor and for the extensions. It is recommended that you first create non partial
reconfiguration versions of your designs, using the standard install, to explore and debug your
design. While the eMIPS project stresses the dynamic configurability feature, it is certainly
possible to stop here and to build non partial reconfigurable versions of the eMIPS system, e.g.
with fixed extensions included. Do not attempt to build non partial reconfiguration designs with
the install with the PR overlay applied. The install with the overlay has been specially setup for
partial reconfiguration and non partial reconfiguration design built with it cannot be guaranteed
to be correct.
 In order for users to build a full eMIPS system including the partial reconfiguration
capability, they will require the Xilinx ISE 8.2i with the PR tools. The Xilinx ISE 8.2i with the PR
tools is also required to modify the eMIPS system. In order to modify the floor plan of the
eMIPS system, you modify the constraint file by hand in the Xilinx ISE text editor; however this
can be difficult and prone to error. For modifying the eMIPS floor plan it is recommended that
users install the Xilinx PlanAhead tool. For users that are not interested in the partial
reconfiguration feature and instead prefer a fully static implementation, the latest version of the
Xilinx ISE tools and service pack are the recommend choice. The latest version used in our
group is Xilinx ISE 8.2i service pack 3.

2.2.1 Xilinx ISE

 The following instructions are for installing the Xilinx ISE 8.2i from the full version DVD.
If you use a different means of installing the tools (evaluation download, DVD, CD, server, etc)
your experience may differ. This procedure is for a standard version of the Xilinx ISE tools
without modification. This toolset is recommended for development of static designs that do
not utilize the partial reconfiguration feature. With this toolset it is possible to implement and
build eMIPS configurations that include static Extensions.

1. Insert the Xilinx ISE 8.2i DVD into the DVD drive tray
2. In a moment the following welcome screen should appear.

DRAFT – DO NOT REPRODUCE

14 | P a g e

3. Click „Next‟.
4. The next screens you should see are the License Agreement screens.
5. Please read carefully the License Agreements. If you feel the terms of the ISE License

Agreement are acceptable to you and your organization, check the checkbox labeled “I
accept the terms of this software license” and click „Next‟ for each.

6. The next screen you should see is the Registration ID Screen.

7. Please enter your Registration ID in the fields provided. If you do not have a

Registration ID, you will need to obtain one from Xilinx before you can proceed.
8. When you are done entering the ID, please click „Next‟.
9. The next screen you should see is the destination directory screen.

DRAFT – DO NOT REPRODUCE

15 | P a g e

10. Since you will be installing multiple installs of the Xilinx ISE for running both the

standard and partial reconfiguration design flows, it is recommended that you use a
unique directory name for each install. For this example we will be using “c:\Xilinx_std”.
Your selection may vary.

11. After you have selected the destination directory for your Xilinx ISE install, please click
„Next‟.

12. The next screen you should see is the installation options screen.

DRAFT – DO NOT REPRODUCE

16 | P a g e

13. It is recommended that you leave all the items in the list checked. After you reviewed

the options please click „Next‟.
14. The next screen you should see is the update environment screen.

15. This screen will help you setup the environment setting you require for running the Xilinx

ISE tools. It is recommended that you leave all of the items checked. After you have
reviewed the environment settings please click „Next‟.

16. The next screen you should see is the begin installation screen

DRAFT – DO NOT REPRODUCE

17 | P a g e

17. You should see a listing of all the options you selected in the previous screens. Please

review these options to ensure they are correct. After you have reviewed the options
listed please click „Install‟. If something is in error click „Back‟ to return to the
appropriate screen and correct the option.

18. The next screen you should see is the installation progress screen. This may take
some time depending on your system, between 30 to 90 minutes.

19. Wait for the installation to complete. Advertisements may vary.
20. A window labeled „set up‟ will pop up momentarily.
21. A window labeled „Xilinx 8.2i Setup‟ will appear

DRAFT – DO NOT REPRODUCE

18 | P a g e

22. Please click „OK‟ and the window will close.
23. If you selected to install the download cable driver, a window labeled „Query‟ should

appear. Otherwise skip to step 26.

24. If you are ready to update your system please click „Yes‟. Otherwise remember to

restart you system before using the Xilinx ISE.
25. Restart your system.
26. Obtain the latest service pack available for Xilinx ISE 8.2i from the Xilinx Download

Website (http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp). At the time of this
publication the latest service pack for Xilinx ISE 8.2i was service pack 3.

27. Double click on the Service Pack installation file. (8_2_03i_win.exe for Xilinx ISE 8.2i

Service Pack 3) Your filenames may vary.
28. If you are running Windows XP, the following window may appear.

http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp

DRAFT – DO NOT REPRODUCE

19 | P a g e

29. It is safe to click „Run‟ and continue installing the service pack. Please click „Run‟ to

continue the service pack installation.
30. The service pack will begin extracting files needed for the update. Depending on your

system this may take several minutes.

31. The next screen you should see is the destination directory screen. The destination

directory listed by default should be the destination directory you previously used in
steps 13 through 15. In our case it is “c:\Xilinx_std”.

DRAFT – DO NOT REPRODUCE

20 | P a g e

32. Note that the directory listed here must match the directory of the Xilinx ISE 8.2i install
you wish to apply the service pack to.

33. It is recommended to uncheck the “Create Backup before installing update” checkbox in
order to conserve disk space. If you feel it necessary to revert back to the previous
version of the Xilinx ISE tools, you may uninstall it and perform a fresh install.

34. Review the destination directory and the “Create Backup before installing update”
checkbox and when they are both correct please click „Next‟.

35. The next screen you should see is the begin installation screen.

36. You should see a listing of all the options you selected in the previous screens. Please

review these options to ensure they are correct. After you have reviewed the options
listed please click „Install‟. If something is in error click „Back‟ to return to the
appropriate screen and correct the option.

37. The next screen you should see is the installation progress screen. This may take
some time depending on your system, between 30 to 90 minutes.

DRAFT – DO NOT REPRODUCE

21 | P a g e

38. Wait for the installation to complete. Advertisements may vary.
39. A window labeled „set up‟ will pop up momentarily.
40. A window labeled „Xilinx 8.2i Setup‟ will appear

41. Please click „OK‟ and the window will close.
42. Confirm the update finished correctly; launch the Xilinx ISE install you just updated.
43. Click Help->About.
44. An „About Project Navigator‟ window should appear.

45. Confirm the Application Version matches what you expect.
46. You may now begin using the Xilinx ISE 8.2i with the latest service pack for system

development and debugging on Xilinx FPGAs.

DRAFT – DO NOT REPRODUCE

22 | P a g e

2.2.1.1 Potential Errors

 Between steps 24 and 25 if you have a previous install of the Xilinx ISE tools, it is
possible for the following window to appear. If your previous install of the Xilinx ISE is older
than the Xilinx ISE 8.2i, it is recommended that you overwrite the driver. Click the appropriate
button and the installation process should resume.

2.2.2 Xilinx ISE Partial Reconfiguration Tools

 The following are the instructions for installing the Xilinx ISE for performing the Xilinx
Partial Reconfiguration Design Flow. These instructions are supplementary to those provided
by Xilinx at the Xilinx Partial Reconfiguration Early Access Lounge
(http://www.xilinx.com/support/prealounge/protected/index.htm). Please refer to the Xilinx

Documentation for any further assistance. This toolset is required to fully utilize all of the
features of the eMIPS system. This toolset is the Xilinx ISE updated to Service Pack 1 with
additional changes to all for use of the partial reconfiguration feature.

1. Obtain the Xilinx Partial Reconfiguration Tools overlay from the Xilinx Partial
Reconfiguration Early Access Lounge.

2. Follow steps 1 through 29 of Xilinx ISE to create a new install of the Xilinx ISE 8.2i in a
new destination directory. For this example use “c:\Xilinx_pr”. Your destination
directory may vary.

3. Obtain Service Pack 1 for Xilinx ISE 8.2i from the Xilinx Partial Reconfiguration Early
Access Lounge.

4. Follow steps 31 through 45 of Xilinx ISE to install Service Pack 1 (8_2_01i_win.exe).
Your filenames may vary.

http://www.xilinx.com/support/prealounge/protected/index.htm

DRAFT – DO NOT REPRODUCE

23 | P a g e

5. If you are running Windows XP, Right-click on the Xilinx Partial Reconfiguration Tools

overlay zip file and select „Extract all‟.
6. The Extraction Wizard window should appear.

7. Please click „Next‟ to continue.
8. The next screen you should see is the destination selection screen. By default it will

have your current directory selected.

DRAFT – DO NOT REPRODUCE

24 | P a g e

9. Click „Next‟ to continue.

10. You should see the progress bar begin to fill. This may take some time depending on

your system, between 10 to 15 minutes.
11. The next screen you should see is the extraction complete screen

DRAFT – DO NOT REPRODUCE

25 | P a g e

12. Please click „Finish‟ to complete the application of the Xilinx Partial Reconfiguration

Tools
13. A folder containing this install of the Xilinx ISE should appear.
14. Open a command prompt to this new directory.

15. Run the install script

a. Type: xilperl PRinstall.pl PRfiles.txt

DRAFT – DO NOT REPRODUCE

26 | P a g e

b. Press Enter.

c. Wait for the process to complete. You may disregard the warnings.

16. Confirm the update finished correctly; launch the Xilinx ISE install you just created.
17. Click Help->About.
18. An „About Project Navigator‟ window should appear.

DRAFT – DO NOT REPRODUCE

27 | P a g e

19. Confirm the Application Version matches what you expect.
20. You may now begin using the Xlinx ISE 8.2i with the Partial Reconfiguration Tools for

building Partial Reconfiguration enabled designs on Xilinx FPGAs.

2.2.3 Xilinx PlanAhead

 The following are the instructions for installing Xilinx PlanAhead, using the Evaluation
Version obtained with a download from the appropriate Xilinx PlanAhead website
(http://www.xilinx.com/ise/optional_prod/planahead.htm). If you use a different means of
installing the tools (DVD, CD, server, etc) your experience may differ. PlanAhead is a tool
used for floor planning and for performing design checking of partially reconfigurable designs.
If you do not plan to modify the floorplan of the eMIPS system you will not be required to have
PlanAhead installed. We provide a fully floorplanned constraint file for use in the build
process.

1. Obtain the Xilinx PlanAhead Evaluation Version software from Xilinx website
(http://www.xilinx.com/ise/optional_prod/planahead.htm).

http://www.xilinx.com/ise/optional_prod/planahead.htm
http://www.xilinx.com/ise/optional_prod/planahead.htm

DRAFT – DO NOT REPRODUCE

28 | P a g e

2. Double-click on the Xilinx PlanAhead installation file (planahead-9.1.3-win32.exe).
3. If you are running Windows XP, the following window may appear.

4. It is safe to click „Run‟ and continue installing the software. Please click „Run‟ to

continue the software installation.
5. In a moment the following welcome screen should appear

6. Please click „Next‟ to continue.
7. The next screen you should see is the End User License Agreement Screen.

DRAFT – DO NOT REPRODUCE

29 | P a g e

8. Please read the End User License Agreement. If you feel the terms of the End User

License Agreement are acceptable to you and your organization, check the checkbox
labeled “I accept the terms of this software license” and click „Next‟.

9. The next screen you should see is the destination directory screen.

DRAFT – DO NOT REPRODUCE

30 | P a g e

10. You may use the default directory for this install. After reviewing the destination

directory please click „Next‟ to continue.
11. The next screen you should see is the option summary screen

12. Review the options listed and if they are correct, please click „Next‟ to continue.

Otherwise click „Back‟ to return to the previous screens and correct the errors.
13. The next screen you should see is the progress screen. This may take some time

depending on your system, between 15 to 30 minutes.

DRAFT – DO NOT REPRODUCE

31 | P a g e

14. Wait for the installation to complete.
15. The next screen you should see is the completion screen.

16. If you have a license for Xilinx PlanAhead already you may check the checkbox labeled

„Run License Wizard Now?‟.
17. If you have not already obtained a Xilinx PlanAhead license you may obtain one at the

Xilinx PlanAhead website (http://www.xilinx.com/ise/optional_prod/planahead.htm).

http://www.xilinx.com/ise/optional_prod/planahead.htm

DRAFT – DO NOT REPRODUCE

32 | P a g e

18. After you have reviewed these options please click „Next‟ to finish the software

installation.
19. The Xilinx PlanAhead FLEXIm License Wizard window should appear.

20. Please click „Next‟ to continue.
21. The next screen you should see is the create license file screen.

DRAFT – DO NOT REPRODUCE

33 | P a g e

22. Your license should have come in the form of an email message. Please copy and

paste your email into the text box provided and click „Next‟.
23. The next screen you should see is the server start up screen

24. Please select „yes‟ on both items listed.
25. After reviewing your selections please click „Finish‟ to complete the license setup.
26. The Xilinx PlanAhead FLEXIm License Wizard window will close and the next screen

you should see is the installation summary screen.

DRAFT – DO NOT REPRODUCE

34 | P a g e

27. Please click „Finish‟ to complete the software installation
28. The installation window will close.
29. You may now begin using the Xlinx PlanAhead for floor planning Partial Reconfiguration

enabled designs on Xilinx FPGAs.

2.3 Software Tools

The amount of software tools required for developing programs for the eMIPS systems
depends on the complexity of the application. For simple programs and tests that exercise the
hardware extensions it suffices to use just the compiler toolset. All the eMIPS software test
binaries in this distribution were created using the standard GCC v4.2.0 distribution, plus the
Binutils package v2.17 and GDB v6.6. The BBTools package, provided in this distribution, is
useful for analyzing applications in more details, to patch binaries and to automatically
generate an Extension starting from a basic block of MIPS binary code. The Giano full-system
simulator is useful for profiling applications, and for developing and debugging Extensions
especially when used in concert with Modelsim. If you do not have an ML401 board you can
still develop and run your software using the Giano simulation of that board. The Microsoft
Invisible Computing RTOS is useful for developing more complex applications, especially
those that require real-time interactions with the environment, or access to file systems and
networking facilities.

2.3.1 Compiler

The eMIPS basic data path implements the MIPS-1 instruction set [10]. Any compiler
capable of targeting this ISA, for any programming language, is usable with eMIPS. The test
programs provided in this distribution are written in C and have been compiled using GCC. In
this section we show how to recreate this set of compiler tools. The instructions are for specific
versions of the tools. This does not mean they are better or worse than others, just that they
worked for us. The following instructions are for installing on Windows XP. There is a pre-built
set of GCC tools for eMIPS at http://xoomer.alice.it/giovanni_busonera/eMIPS/eMIPS.htm.

http://xoomer.alice.it/giovanni_busonera/eMIPS/eMIPS.htm

DRAFT – DO NOT REPRODUCE

35 | P a g e

2.3.1.1 Cygwin

The simplest way to compile GNU software is to create a Unix environment. There are
many that work under Windows, one that is easy to get and use is the Cygwin one. The site for
these tools is http://www.cygwin.com. We used version 1.5.24, but it should be ok to just use
the most recent one. When we tried to install on a Win64 machine it did not work, but we did
not investigate this problem. To get started, download and run the Setup.exe application from
http://www.cygwin.com/setup.exe. Create a new directory for it, such as c:/cygwin. Download
setup.exe in there and start it. This application is also used to get updates if you need them,
which is why you want to keep a copy locally. The following screen should popup, hit Next.

The next screen is for the installation options, select the recommended ones and hit

Next.

The next few screens are for various installation options such as the location of

downloaded programs, proxy settings to connect to the Internet, and the choice of a download
site. Select the options that work for you. Eventually you should get to the following package
selection screen.

http://www.cygwin.com/
http://www.cygwin.com/setup.exe

DRAFT – DO NOT REPRODUCE

36 | P a g e

The list is fairly large and your selection can vary. The following list of packages is non-

minimal, but it is known to work.

DRAFT – DO NOT REPRODUCE

37 | P a g e

DRAFT – DO NOT REPRODUCE

38 | P a g e

Once all packages are downloaded and installed you should be able to start the bash
shell, which will create a window similar to the following.

2.3.1.2 GCC

The reference site for GCC is http://gcc.gnu.org. You can download a compressed
archive file of the sources from the site ftp://ftp.gnu.org/, or one of its mirror sites (e.g. chose
the one closest to your location). Move to the gnu/gcc/gcc-4.2.0 sub-directory and retrieve the
file gcc-4.2.0.tar.bz2. Uncompress this file using the BZIP2 utility, the command is “bzip2 –d
gcc-4.2.0.tar.bz2”.

Use the TAR utility to extract the files, the command is “tar xf gcc-4.2.0.tar”. This will take

some time, there are many files. Eventually the sources should be in the newly created
directory gcc-4.2.0.

Detailed installation instructions for GCC are at http://gcc.gnu.org/install/ and we will not

repeat them here. You want to target a generic MIPS ELF machine, e.g. configure GCC with
arguments like the following:

 configure --prefix=/emips --with-divide=breaks --enable-languages=c,c++ --target=mips-
elf

http://gcc.gnu.org/
ftp://ftp.gnu.org/
http://gcc.gnu.org/install/

DRAFT – DO NOT REPRODUCE

39 | P a g e

The most recent versions of the configure utility are capable of configuring multiple
packages at once. You might want to first retrieve Binutils and GDB before you run it. After you
have configured all packages, a single make command should build everything for you.

2.3.1.3 Binutils

You can download a compressed archive file of the Binutils package from the site

ftp://ftp.gnu.org/, or one of its mirror sites (e.g. chose the one closest to your location). Move to

the binutils sub-directory and retrieve the file binutils-2.17.tar.bz2. Uncompress and unpack

this file as before, using BZIP2 and TAR. Notice that you want to move to the gcc-4.2.0

directory above before you unpack.

2.3.1.4 GDB

You can download a compressed archive file of the GDB debugger from the site

ftp://ftp.gnu.org/, or one of its mirror sites (e.g. chose the one closest to your location). Move to

the gdb sub-directory and retrieve the file gdb-6.6.tar.bz2. Uncompress and unpack this file as

before, using BZIP2 and TAR. Notice that you want to move to the gcc-4.2.0 directory above

before you unpack.

 There is one source change that is necessary before you build GDB. For some reason,
the default release assumes that the MIPS processor has hardware support for breakpoints,
which is not (entirely) true for eMIPS. To reinstate software breakpoints edit the file gdb/mips-
tdep.c and add the following statement at line 5154:

 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);

There might be better ways to achieve this effect, but we did not investigate them. If you

use eBug with watchpoints enabled you might not need to apply this change.

Once you are done building everything you should have the following binaries:

addr2line.exe
ar.exe
as.exe
cc1.exe
cc1plus.exe
collect-ld.exe
collect2.exe
cpp.exe
cxxfilt.exe
g++.exe
gcc.exe
gcov-dump.exe
gcov.exe

ftp://ftp.gnu.org/
ftp://ftp.gnu.org/

DRAFT – DO NOT REPRODUCE

40 | P a g e

gdb.exe
ld.exe
nm.exe
objcopy.exe
objdump.exe
ranlib.exe
readelf.exe
size.exe
strings.exe
strip.exe

You can install them in other places, but the script for building the hardware tests assume
that you have them in your MMLITE_SDK directory, under the tools sub-directory, as follows:

The cyg*.dll files come from the cygwin package, they are needed to run these binaries

from within the regular Windows environment (e.g. in a CMD window). The emips.x link script
file is included in this release.

2.3.2 The BBTools Package

The Basic Block Tools, or BBTools, are included in this distribution, in the archive file
bbtools.zip. You should install these binaries in a location where they will be reachable from a
CMD or Visual Studio command shell. This can be a directory (that you can write to) that is
already on your PATH environment variable, or modify that variable to add your new directory
(see section 3.1.1 for how to modify environment variables under Windows). The tools have
been compiled with VC8.

DRAFT – DO NOT REPRODUCE

41 | P a g e

1. Extract the files from the archive. Right-click on the “bbtools.zip” zip file and select
„Extract all‟.

2. The Extraction Wizard window should appear.

3. Please click „Next‟ to continue.
4. The next screen you should see is the destination selection screen. By default it will

have your current directory selected. Change it to some other location; we will use the
folder “c:\eMIPS_Tests” in these instructions.

5. Click „Next‟ to continue.

DRAFT – DO NOT REPRODUCE

42 | P a g e

6. You should see the progress bar begin to fill.
7. The next screen you should see is the extraction complete screen

8. Please click „Finish‟ to complete the extraction of the BBTools files.
9. The Folder containing the test programs should appear. It should contain twenty-four

files, as follows:

DRAFT – DO NOT REPRODUCE

43 | P a g e

2.3.3 Giano

The latest release of the Giano simulator can be downloaded from the project‟s web page
at http://research.microsoft.com/research/EmbeddedSystems/Giano/giano.aspx. The same
page contains the installation and test instructions, which we will not repeat here. In the tests
directory of the distribution there is a platform configuration file for the ML401 board. This is the
file you want to use for software simulations of eMIPS.

2.3.4 The RTOS

The latest release of the Microsoft Invisible Computing RTOS can be found at
http://research.microsoft.com/invisible, along with the installation and build instructions, which
we will not repeat here. You want a release with build number 112 or later. When building it,
you do not need to build for all processors (e.g. using the mkall script). You may build the x86-
release, at least for getting the most recent version of servers like SERPLEXD. You must build
the mips_gnu-release to get the eMIPS images. The command is

nmake –nologo TARGETCPU=mips TARGETTYPE=release TOOLS=gnu

You may build the debug version, using TARGETTYPE=debug. At the end of the build
process, you will find the new images in the build\mips_gnu\release\bin directory (or debug).
The image of the base RTOS for eMIPS on the ML401 board is called Ml.bin. Refer to section
3.5.1.3 for instructions on how to download it, flash it and test it.

http://research.microsoft.com/research/EmbeddedSystems/Giano/giano.aspx
http://research.microsoft.com/invisible/

DRAFT – DO NOT REPRODUCE

44 | P a g e

To test the newly built RTOS it is advisable to run the program alltests.exe. This program in
turn runs a number of minimal regression tests. There are a few additional tests that are
specific to the ML401 board in the tests\ml40x directory.

DRAFT – DO NOT REPRODUCE

45 | P a g e

3 Building the eMIPS System

 There two ways the eMIPS microprocessor system can be built, using the tools installed
according to the instructions in the previous sections of this document. First, one can use the
standard Xilinx ISE to build a non partial reconfiguration version with a static Extension
instantiated. This is recommended for system development and debugging. The second is to
use the Xilinx Partial Reconfiguration tools to build a partially reconfigurable version of the
design with configurations for multiple Extensions. We will describe both procedures in the
following sections.

3.1 Common Tasks

The build procedures include some tasks that are common to all builds. The
corresponding procedures are described in this section and later referenced.

3.1.1 Changing the Environment to Non-PR Xilinx ISE

1. Right-click on „My Computer‟ and select „Properties‟.
2. The System Properties window will appear.

3. Select the „Advanced‟ Tab.

DRAFT – DO NOT REPRODUCE

46 | P a g e

4. Click „Environment Variables‟.
5. The environment variables window will appear.

6. Locate the „XILINX‟ variable and click „Edit‟.

DRAFT – DO NOT REPRODUCE

47 | P a g e

7. The variable edit window will appear.

8. Change the value of the variable to the location of the standard non-pr version of the

Xilinx ISE on your system. For this example, we will use “c:\Xilinx_std”

9. After you have reviewed the variable value and the desired directory, please click „OK‟.

The edit window will close.
10. Click „OK‟ on the environment variable window. The environment variable window will

close.
11. Click „OK‟ on the system properties window. The system properties window will close.
12. Some systems may require you to restart before continuing for the changes in the

variables to take effect. If that is required please do that now.

3.1.2 Changing the Environment to PR Xilinx ISE

1. Right-click on „My Computer‟ and select „Properties‟.
2. The System Properties window will appear.

DRAFT – DO NOT REPRODUCE

48 | P a g e

3. Select the „Advanced‟ Tab.

4. Click „Environment Variables‟.
5. The environment variables window will appear.

DRAFT – DO NOT REPRODUCE

49 | P a g e

6. Locate the „XILINX‟ variable and click „Edit‟.

7. The variable edit window will appear.

8. Change the value of the variable to the location of the standard pr version of the Xilinx

ISE on your system. For this example, we will use “c:\Xilinx_pr”

DRAFT – DO NOT REPRODUCE

50 | P a g e

9. After you have reviewed the variable value and the desired directory, click „OK‟. The

edit window will close.
10. Click „OK‟ on the environment variable window. The environment variable window will

close.
11. Click „OK‟ on the system properties window. The system properties window will close.
12. Some systems may require you to restart before continuing for the changes in the

variables to take effect. If that is required please do that now.

3.1.3 Set up the Project Directory

1. Download the file package from the Microsoft eMIPS website at

http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx.
2. Unzip the file package.
3. Create a project directory in a location with 200 MB or more of available space.

4. Create a „Sources‟ folder inside this project directory.

DRAFT – DO NOT REPRODUCE

51 | P a g e

5. Place all the source files from the file package in the „Sources‟ folder in the project

directory.

6. Create a folder in the project directory called „Xilinx_PR_Bus_Macros‟ for the Bus Macro

files.

DRAFT – DO NOT REPRODUCE

52 | P a g e

7. Obtain the Bus Macro files from the Xilinx Partial Reconfiguration Early Access Lounge

and place them in the „Xilinx_PR_Bus_Macros‟ folder inside the project directory.

8. Create a „Synthesis‟ folder in the project directory

9. Within the „Synthesis‟ folder, create three subdirectories: Top, TISA and Extension0.

DRAFT – DO NOT REPRODUCE

53 | P a g e

3.1.4 Synthesize the Top Level Module

1. Start the install of the Xilinx ISE with the Xilinx Partial Reconfiguration Tools Overlay.

2. Create a new ISE project.

a. Click File->New Project in the Menu.
b. The „New Project Wizard‟ dialog window will appear.

DRAFT – DO NOT REPRODUCE

54 | P a g e

c. Select the Top Level Synthesis folder as the project location and name the

project „Top‟. Make sure the location corresponds to the folder created above.

d. After you have reviewed the entries in the window, click „Next‟ continue.
e. The „Device Properties‟ screen should appear.

DRAFT – DO NOT REPRODUCE

55 | P a g e

f. Enter the appropriate settings for your board setup in these fields. For the Xilinx

ML401 board, please use the settings in the table below. You may use other
synthesis tools other than the XST (Xilinx default) if you chose. However, be
aware all of our experiments have used this tool and we cannot vouch for the
outcome of another tool.

Property Name Value

Product Category All

Family Virtex4

Device XC4VLX25

Package FF668

Speed -10

Top-Level Source Type HDL

Synthesis Tool XST (VHDL/Verilog)

Simulator NA

Enable Enhanced Design Summary NA

Enable Message Filtering NA

Display Incremental Messages NA

g. After you have reviewed the entries in the window, click „Next‟ to continue.
h. The „Create New Source‟ screen should appear.

DRAFT – DO NOT REPRODUCE

56 | P a g e

i. Since you will not be creating any new sources at this time, click „Next‟ to

continue.
j. The „Add Existing Source‟ screen should appear.

k. Click the „Add Source‟ Button.
l. The „Select one or more files to add‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

57 | P a g e

m. Navigate the dialog window to the eMIPS Top source directory.

n. Select the files listed in the table below to be added to the project. There are

eight files total.

extension0_black_box.v Iobuf4.v Iobuf16.v

Iobuf32.v MIPSPL_FPGA3.v top_dcm.v

bus_macros_pr.v TISA_black_box.v

o. When you are done click „Open‟.
p. The files you selected should be listed in the „Add Existing Source‟ screen.

DRAFT – DO NOT REPRODUCE

58 | P a g e

q. Uncheck the „Copy to Project‟ checkbox for each file.

r. After you have reviewed the entries in the window, click „Next‟ continue.
s. The „Project Summary‟ screen should appear.

DRAFT – DO NOT REPRODUCE

59 | P a g e

t. Click finish to complete the project setup.
u. The „New Project Wizard‟ will close and a moment later the „Adding Source Files‟

dialog should appear.

v. Click „OK‟ to continue.
w. The new project will open in the Xilinx ISE Project Navigator.

DRAFT – DO NOT REPRODUCE

60 | P a g e

3. The module‟ MIPSPL_FPGA3‟ should be set as the top module in the „Sources‟ pane. If

not set it as the top module by right-clicking MIPSPL_FPGA3 and selecting ‟Set as Top
Module‟.

4. In the „Sources‟ Pane, select „MIPSPL_FPGA3‟. Then select „Synthesize - XST‟ in the
„Processes‟ pane.

5. You may double-click on „Synthesize - XST‟ or you may right click and select „Run‟ to

start the synthesis process.

DRAFT – DO NOT REPRODUCE

61 | P a g e

6. You should see a blue spinning icon appear by the „Synthesize - XST‟. As the process

is performed some warnings and info messages will be displayed. Most of these are
expected.

7. Wait for the process to complete.

3.1.5 Add the Register File Blockram

1. Start inside your current Xilinx ISE Project.

2. In the „Sources‟ pane, right-click and select „New Source‟.

3. The „New Source Wizard‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

62 | P a g e

4. Select „IP (Corgen & Architecture Wizard)‟ from the pane on the left and enter the file

name „regfileblock‟. The Location box should indicate the location of your Xilinx ISE

Project. In this example it is in the TISA synthesis folder of the eMIPS Project Directory.

5. After you have reviewed the entries in the window, click „Next‟ to continue.

6. The „Select IP‟ screen should appear.

DRAFT – DO NOT REPRODUCE

63 | P a g e

7. Select „Memories & Storage Elements\RAMs & ROMs\Dual Port Block Memory vX.X‟.

8. Click „Next‟ to continue.

9. The „Summary‟ screen should appear. Click „Finish‟ to continue.

DRAFT – DO NOT REPRODUCE

64 | P a g e

10. The „Dual Port Block Memory‟ configuration dialog should appear. This can take some

time.

11. Enter the properties in the table below into the window.

Component Name Regfileblock

Memory Size

Width A 32

Width B 32

Depth A 32

Depth B 32

Port A Options

Configuration Read Only

DRAFT – DO NOT REPRODUCE

65 | P a g e

Write Mode NA

Port B Options

Configuration Read And Write

Write Mode Read Before Write

12. After you have reviewed the entries in the window, click „Next‟ to continue.

13. The next screen in the configuration dialog should appear.

14. Enter the properties in the table below into the window.

Port A Design Options – Output Register Options

SINIT pin (sync. Initialization of output registers) Yes

DRAFT – DO NOT REPRODUCE

66 | P a g e

15. After you have reviewed the entries in the window, click „Next‟ to continue.

16. The next screen in the configuration dialog should appear.

17. Enter the properties in the table below into the window.

Port B Design Options – Output Register Options

SINIT pin (sync. Initialization of output registers) Yes

DRAFT – DO NOT REPRODUCE

67 | P a g e

18. After you have reviewed the entries in the window, click „Next‟ to continue.

19. The next screen in the configuration dialog should appear.

20. Click „Generate‟ to finish building the core.

3.1.6 Add the Register File Fifo.

1. Start inside a Xilinx ISE Project.

2. In the „Sources‟ pane, right-click and select „New Source‟.

3. The „New Source Wizard‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

68 | P a g e

4. Select „IP (Corgen & Architecture Wizard)‟ from the pane on the left and enter the file

name „wrregfifo_fg‟. The Location box should indicate the location of your Xilinx ISE

Project. In this example it is in the TISA synthesis folder of the eMIPS Project Directory.

5. After you have reviewed the entries in the window, click „Next‟ to continue.

6. The „Select IP‟ screen should appear.

DRAFT – DO NOT REPRODUCE

69 | P a g e

7. Select „Memories & Storage Elements\FIFOs\Fifo Generator vX.X‟.

8. Click „Next‟ to continue.

9. The „Summary‟ screen should appear. Click „Finish‟ to continue.

DRAFT – DO NOT REPRODUCE

70 | P a g e

10. The „Fifo Generator‟ configuration dialog should appear. This may take some time.

11. Enter the properties in the table below into the window.

Component Name wrregfifo_fg

FIFO Implementation

Read/Write Clock Domains Independent Clocks

Memory Type Block RAM

DRAFT – DO NOT REPRODUCE

71 | P a g e

12. After you have reviewed the entries in the window, click „Next‟ to continue.

13. The next screen in the configuration dialog should appear.

14. Enter the properties in the table below into the window.

Read Mode Standard FIFO

Data Port Parameters

Write Width 84

Write Depth 16

Read Width 42

Read Depth 32

DRAFT – DO NOT REPRODUCE

72 | P a g e

15. After you have reviewed the entries in the window, click „Next‟ to continue.

16. The next screen in the configuration dialog should appear.

17. Click „Next‟ to Continue.

18. The next screen in the configuration dialog will appear.

DRAFT – DO NOT REPRODUCE

73 | P a g e

19. Click „Next‟ to Continue.

20. The next screen in the configuration dialog will appear.

21. Click „Next‟ to Continue.

22. The next screen in the configuration dialog should appear.

DRAFT – DO NOT REPRODUCE

74 | P a g e

23. Click „Finish‟ to complete generating the core.

3.1.7 Add the Bootloader Blockram

1. Start inside a Xilinx ISE Project.

2. In the „Sources‟ pane, right-click and select „New Source‟.

3. The „New Source Wizard‟ dialog window should appear.

4. Select „IP (Corgen & Architecture Wizard)‟ from the pane on the left and enter the file

name „blockram_br‟. The Location box should indicate the location of your Xilinx ISE

Project. In this example it is in the TISA synthesis folder of the eMIPS Project Directory.

DRAFT – DO NOT REPRODUCE

75 | P a g e

5. After you have reviewed the entries in the window, click „Next‟ to continue.

6. The „Select IP‟ screen should appear.

7. Select „Memories & Storage Elements\RAMs & ROMs\Single Port Block Memory vX.X‟.

DRAFT – DO NOT REPRODUCE

76 | P a g e

8. Click „Next‟ to continue.

9. The „Summary‟ screen should appear. Click „Finish‟ to continue.

10. The „Single Port Block Memory‟ configuration dialog should appear.

DRAFT – DO NOT REPRODUCE

77 | P a g e

11. Enter the properties in the table below into the window.

Component Name blockram_br

Memory Size

Width 32

Depth 128

Write Mode Read Before Write

12. After you have reviewed the entries in the window, click „Next‟ to continue.

13. The next screen in the configuration dialog should appear.

DRAFT – DO NOT REPRODUCE

78 | P a g e

14. Click „Next‟ to continue.

15. The next screen in the configuration dialog should appear.

16. Click „Next‟ to continue.

17. The next screen in the configuration dialog should appear.

DRAFT – DO NOT REPRODUCE

79 | P a g e

18. Enter the properties in the table below into the window.

Initial Contents

Load Init File Yes

 <location of sources>\bram2.coe

19. After you have reviewed the entries in the window, click „Generate‟ to complete

generating the core.

3.1.8 Synthesize the Base Design (TISA)

1. Start the install of the Xilinx ISE with the Xilinx Partial Reconfiguration Tools Overlay.

DRAFT – DO NOT REPRODUCE

80 | P a g e

2. Create a new ISE project.

a. Click File->New Project in the Menu.
b. The „New Project Wizard‟ dialog window will appear.

c. Select the TISA Synthesis folder as the project location and name the project

„TISA‟. Make sure the “Project Location” property is as intended.

DRAFT – DO NOT REPRODUCE

81 | P a g e

d. After you have reviewed the entries in the window, click „Next‟ continue.
e. The „Device Properties‟ screen should appear.

f. Enter the appropriate settings for your board setup in these fields. For the Xilinx

ML401 board, please use the settings in the table below. You may use other
synthesis tools other than the XST (Xilinx default) if you chose. However, be
aware all of our experiments have used this tool and we cannot vouch for the
outcome of another tool.

Property Name Value

Product Category All

Family Virtex4

Device XC4VLX25

Package FF668

Speed -10

DRAFT – DO NOT REPRODUCE

82 | P a g e

Top-Level Source Type HDL

Synthesis Tool XST (VHDL/Verilog)

Simulator NA

Enable Enhanced Design Summary NA

Enable Message Filtering NA

Display Incremental Messages NA

g. After you have reviewed the entries in the window, click „Next‟ continue.
h. The „Create New Source‟ screen should appear.

i. Since you will not be creating any new sources at this time, click „Next‟ to

continue.
j. The „Add Existing Source‟ screen should appear.

k. Click the „Add Source‟ Button.
l. The „Select one or more files to add‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

83 | P a g e

m. Navigate the dialog window to the eMIPS TISA source directory.

n. Select the files listed in the table below to be added to the project. There are a

total of sixty-nine files.

adder.v address_translation.v alu.v

alu_full.v and.v blockram_controller.v

bsmux.v bytesel2.v clockmaster.v

coprocessor0_sim.v data_align.v dataforward.v

datapathcontrol.v decode.v endianflip.v

equals.v execute.v fifo.v

flash_bridge.v flash_controller.v flash_interface.v

gpio_controller.v greaterthan.v hazard.v

instruction_decode.v instruction_fetch.v interrupt_controller.v

lessthan.v memory_access.v memory_arbiter.v

memory_bus_front.v memory_controller.v memory_interface3.v

multiplier.v mux.v or.v

DRAFT – DO NOT REPRODUCE

84 | P a g e

pipeline_arbiter.v power_management_controller.v registerblock.v

registerfile4.v shift2.v shift.v

signextend16_32.v sram_bridge.v sram_controller.v

sram_interface.v sysace_bridge.v sysace_controller.v

sysace_interface.v timer_controller.v TISA.v

tocp0.v todf.v toex.v

toext.v tohz.v toid.v

toif.v toma.v tomem.v

topa.v torg.v towb.v

usart_controller.v write_back.v xor.v

lock.v memory_management_unit.v extension_controller.v

o. When you are done click „Open‟.
p. The files you selected should be listed in the „Add Existing Source‟ screen.

q. Uncheck the „Copy to Project‟ checkbox for each file.

r. After you have reviewed the entries in the window, click „Next‟ continue.

DRAFT – DO NOT REPRODUCE

85 | P a g e

s. The „Project Summary‟ screen should appear.

t. Click finish to complete the project setup.
u. The „New Project Wizard‟ will close and a moment later the „Adding Source Files‟

dialog should appear.

v. Click „OK‟ to continue.
w. The new project will open in the Xilinx ISE Project Navigator.

DRAFT – DO NOT REPRODUCE

86 | P a g e

3. The module ‟TISA‟ should be set as the top module in the „Sources‟ pane. If not set it

as the top module by right-clicking TISA and selecting ‟Set as Top Module‟.
4. Add the IP Core Modules

a. Add the Register File Blockram (see section 3.1.5).

b. Add the Register File Fifo (see section 3.1.6).

DRAFT – DO NOT REPRODUCE

87 | P a g e

c. Add the Bootloader Blockram (see section 3.1.7).

5. Set Synthesis Options

a. In the „Sources‟ pane, select „TISA‟. Then select „Synthesize - XST‟ in the
„Processes‟ pane. Make sure to select the module and not the project icons.

DRAFT – DO NOT REPRODUCE

88 | P a g e

b. Right-click on „Synthesize - XST‟ and select „Properties‟.
c. The „Synthesis Options‟ dialog window should appear.

d. Set the values in the table below to the properties in this window.

Property Name Value

Optimization Goal Speed

Optimization Effort High

Use Synthesis Constraints File Yes

Synthesis Constraints File <location of sources>\mips_base.xcf

DRAFT – DO NOT REPRODUCE

89 | P a g e

e. After you have reviewed the entries in the window, click „HDL Options‟ in the

„Category‟ pane.
f. The „HDL Options‟ dialog window should appear.

g. Set the values in the table below to the properties in this window.

Property Name Value

FSM Encoding Algorithm Gray

DRAFT – DO NOT REPRODUCE

90 | P a g e

h. After you have reviewed the entries in the window, click „Xilinx Specific Options‟

in the „Category‟ pane.
i. The „Xilinx Specific Options‟ dialog window should appear.

j. Set the values in the table below to the properties in this window.

Property Name Value

Add I/O Buffers No

DRAFT – DO NOT REPRODUCE

91 | P a g e

k. After you have reviewed the entries in the window, click „OK‟ to continue.

6. In the „Sources‟ pane, select „TISA‟. Then select „Synthesize - XST‟ in the „Processes‟
pane.

7. You may double-click on „Synthesize - XST‟ or you may right click and select „Run‟ to

start the synthesis process. This may take some time depending on your system,
between 30 to 90 minutes.

DRAFT – DO NOT REPRODUCE

92 | P a g e

8. You should see a blue spinning icon appear by the „Synthesize - XST‟. As the process

is performed some warnings and info messages will be displayed. Most of these are
expected.

9. Wait for the process to complete.

3.1.9 Synthesize the Reconfigurable Region (Extension)

1. In the „Extension0‟ synthesis folder, create a folder with the name of your Extension.

For the purposes of this example, we will use „mmldiv64‟. Every time you create a new
Extension you will repeat this procedure.

DRAFT – DO NOT REPRODUCE

93 | P a g e

2. Start the install of the Xilinx ISE with the Xilinx Partial Reconfiguration Tools Overlay.

3. Create a new ISE project.

a. Click File->New Project in the Menu.
b. The „New Project Wizard‟ dialog window will appear.

DRAFT – DO NOT REPRODUCE

94 | P a g e

c. Select the synthesis folder you created for your Extension as the project location

and name the project after your Extension. (Ex. mmldiv64). Make sure the
“Project Location” property is as intended.

a. After you have reviewed the entries in the window, click „Next‟ continue.
b. The „Device Properties‟ screen should appear.

DRAFT – DO NOT REPRODUCE

95 | P a g e

c. Enter the appropriate settings for your board setup in these fields. For the Xilinx

ML401 board, please use the settings in the table below. You may use other
synthesis tools other than the XST (Xilinx default) if you chose. However, be
aware all of our experiments have used this tool and we cannot vouch for the
outcome of another tool.

Property Name Value

Product Category All

Family Virtex4

Device XC4VLX25

Package FF668

Speed -10

Top-Level Source Type HDL

Synthesis Tool XST (VHDL/Verilog)

Simulator NA

Enable Enhanced Design Summary NA

Enable Message Filtering NA

Display Incremental Messages NA

d. After you have reviewed the entries in the window, click „Next‟ continue.
e. The „Create New Source‟ screen should appear.

DRAFT – DO NOT REPRODUCE

96 | P a g e

f. Since you will not be creating any new sources at this time, click „Next‟ to

continue.
g. The „Add Existing Source‟ screen should appear.

h. Click the „Add Source‟ Button.
i. The „Select one or more files to add‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

97 | P a g e

j. Navigate the dialog window to the eMIPS mmldiv64 source directory.

k. Select the files listed in the table below to be added to the project.

extension0_mmlite_div64.v mmlite_div64.v decode.v

l. When you are done click „Open‟.
m. The files you selected should be listed in the „Add Existing Source‟ screen.

DRAFT – DO NOT REPRODUCE

98 | P a g e

n. Uncheck the „Copy to Project‟ checkbox for each file.

o. After you have reviewed the entries in the window, click „Next‟ continue.
p. The „Project Summary‟ screen should appear.

DRAFT – DO NOT REPRODUCE

99 | P a g e

q. Click finish to complete the project setup.
r. The „New Project Wizard‟ will close and a moment later the „Adding Source Files‟

dialog should appear.

s. Click „OK‟ to continue.
t. The new project will open in the Xilinx ISE Project Navigator.

DRAFT – DO NOT REPRODUCE

100 | P a g e

4. The module‟extension0‟ should be set as the top module in the „Sources‟ pane. If not

set it as the top module by right-clicking „extension0‟ and selecting ‟Set as Top Module‟.
5. If your Extension includes IP Cores, Add the necessary IP Core Modules. In the case of

this example we have no IP Cores and no other module is needed.
6. Set Synthesis Options

a. In the „Sources‟ pane, select „extension0‟. Then select „Synthesize - XST‟ in the
„Processes‟ pane.

b. Right-click on „Synthesize - XST‟ and select „Properties‟.
c. The „Synthesis Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

101 | P a g e

d. Set the values in the table below to the properties in this window.

Property Name Value

Optimization Goal Speed

Optimization Effort High

Use Synthesis Constraints File NA

Synthesis Constraints File NA

e. After you have reviewed the entries in the window, click „HDL Options‟ in the

„Category‟ pane.
f. The „HDL Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

102 | P a g e

g. Set the values in the table below to the properties in this window.

Property Name Value

FSM Encoding Algorithm Gray

h. After you have reviewed the entries in the window, click „Xilinx Specific Options‟

in the „Category‟ pane.
i. The „Xilinx Specific Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

103 | P a g e

j. Set the values in the table below to the properties in this window.

Property Name Value

Add I/O Buffers No

k. After you have reviewed the entries in the window, click „OK‟ to continue.

7. In the „Sources‟ pane, select „extension0‟. Then select „Synthesize - XST‟ in the
„Processes‟ pane.

DRAFT – DO NOT REPRODUCE

104 | P a g e

8. You may double-click on „Synthesize - XST‟ or you may right click and select „Run‟ to

start the synthesis process. This may take some time depending on your system,
between 30 to 90 minutes.

9. You should see a blue spinning icon appear by the „Synthesize - XST‟. As the process

is performed some warnings and info messages will be displayed. Most of these are
expected.

10. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

105 | P a g e

3.2 Building the Configuration Design Files and the Bit Files

3.2.1 Building the PR Version with the PR flow

 The following instructions are for building the eMIPS microprocessor system using the
Xilinx Partial Reconfiguration tools. Any changes in the system sources will require all parts of
this process to be carried out for the system to work and the changes to be applied. This is the
final deliverable for a partially reconfigurable design. Out of this process will be both the full
and partial bit files for initializing the system at start up and for modifying it during run time.

1. If the Project is not yet made, Set up the Project Directory (see 3.1.3)
2. If not already done, Change Environment to PR Xilinx ISE (see 3.1.2)
3. Synthesize the Top Level Module (see 3.1.4)
4. Synthesize the Base Design (TISA) (see 3.1.8)
5. Synthesize the Reconfigurable Region (Extension) (see 3.1.9)
6. Create a build folder, called “eMIPS_PR”, in the project directory.

DRAFT – DO NOT REPRODUCE

106 | P a g e

7. Build the Top Level Module

a. Inside the „eMIPS_PR‟ build folder create a „Top‟ folder.

b. Open a command prompt within this folder

DRAFT – DO NOT REPRODUCE

107 | P a g e

c. Generate the Top Level Netlist.

i. Type the command: “ngdbuild -uc ..<floorplanned ucf file> -sd ..<location
of Bus Macro files> -modular initial ..<Top Level Netlist>”. In our case:

“ngdbuild -uc ..\..\Sources\Contraints\mips_fp.ucf -sd
..\..\Xilinx_PR_Bus_Macros\V4\NMC -modular initial
..\..\Synthesis\Top\MIPSPL_FPGA3.ngc”

ii. Press Enter. Some warnings and info messages will appear. Most of

them are expected.

DRAFT – DO NOT REPRODUCE

108 | P a g e

iii. Wait for the process to complete.

8. Build the Base Design (TISA)

a. Inside the „eMIPS_PR‟ build folder create a „TISA‟ folder

DRAFT – DO NOT REPRODUCE

109 | P a g e

b. Open a command prompt within this folder.

c. Generate the Base Netlist (TISA)

i. Make sure the constraint file „mips_fp.ucf‟ is not „READ ONLY‟ before you
begin this step. If it is, it will result in an error.

ii. Type the command: “ngdbuild -uc <floorplanned ucf file> -sd ..<location of
Bus Macro files> -sd <location of TISA synthesis files> -modular initial
<Top Level Netlist>”. In our case:

“ngdbuild -uc ..\..\Sources\Contraints\mips_fp.ucf -sd
..\..\Xilinx_PR_Bus_Macros\V4\NMC -sd ..\..\Synthesis\TISA -modular initial
..\..\Synthesis\Top\MIPSPL_FPGA3.ngc”.

DRAFT – DO NOT REPRODUCE

110 | P a g e

iii. Press Enter. Some warnings and info messages will appear. Most of

them are expected.

iv. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

111 | P a g e

d. Place/Map Base (TISA) Logic to FPGA hardware.

i. Type the following: “map -uc ..<floorplanned ucf file> -ol high -pr b -timing
-xe c <input file>”. In out case:

“map -uc ..\..\Sources\Contraints\mips_fp.ucf -ol high -pr b -timing -xe c
MIPSPL_FPGA3.ngd”.

ii. Press Enter. Some warnings and info messages will appear. Most of

them are expected. This may take some time depending on your system,
between 30 to 90 minutes.

DRAFT – DO NOT REPRODUCE

112 | P a g e

iii. Wait for the process to complete.

e. Route the Base (TISA) Logic on the FPGA Hardware

i. Type the command: “par -w -uc <floorplanned ucf file> -ol high -pl high -rl
high -xe c <input file> <output file>” In our case:

“par -w -uc ..\..\Sources\Contraints\mips_fp.ucf -ol high -pl high -rl high -xe c
MIPSPL_FPGA3.ncd MIPSPL_FPGA3_BASE_ROUTED.ncd”

DRAFT – DO NOT REPRODUCE

113 | P a g e

ii. Press Enter. Some warnings and info messages will appear. Most of

them are expected. This may take some time depending on your system,
between 30 to 90 minutes.

iii. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

114 | P a g e

9. Build the Reconfigurable Region (Extension)

a. Inside the „eMIPS_PR‟ build folder create an „Extension0‟ folder

b. Inside the „Extension0‟ folder create a folder with the same name as your

Extension. For this example we will use „mmldiv64‟.

DRAFT – DO NOT REPRODUCE

115 | P a g e

c. Open a command prompt within this folder.

d. Copy the routing database from the Base Design Build.

i. Type the command: “copy ..\..\TISA\static.used arcs.exclude”

DRAFT – DO NOT REPRODUCE

116 | P a g e

ii. Press Enter.
iii. Wait for the process to complete

e. Generate the Reconfigurable Region Netlist (Extension)

i. Type the command: “ngdbuild -uc <floorplanned ucf file> -sd <location of
Bus Macro files> -sd <location of Extension synthesis files> -modular
module -active extension0 <input file>”. In our case:

“ngdbuild -uc ..\..\..\Sources\Contraints\mips_fp.ucf -sd ..\..\..\Xilinx_PR_Bus_Macros\V4\NMC
-sd ..\..\..\Synthesis\Extension0\mmldiv64 -modular module -active extension0
..\..\..\Synthesis\Top\MIPSPL_FPGA3.ngc”

DRAFT – DO NOT REPRODUCE

117 | P a g e

ii. Press Enter. Some warnings and info messages will appear. Most of

them are expected.

iii. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

118 | P a g e

f. Place/Map the Reconfigurable Region (Extension) Logic to the FPGA hardware.

i. Type the command: “map -uc <floorplanned ucf file> -ol high -pr b -timing
-xe c <input file>”. In our case:

“map -uc ..\..\..\Sources\Contraints\mips_fp.ucf -ol high -pr b -timing -xe c
MIPSPL_FPGA3.ngd”

ii. Press Enter. Some warnings and info messages will appear. Most of

them are expected. This may take some time depending on your system,
between 30 to 90 minutes.

DRAFT – DO NOT REPRODUCE

119 | P a g e

iii. Wait for the process to complete.

g. Route the Reconfigurable Region (Extension) Logic on the FPGA hardware.

i. Type the command: “par -w -uc <floorplanned ucf file> -ol high -pl high -rl
high -xe c <input file> <output file>”. In our case:

“par -w -uc ..\..\..\Sources\Contraints\mips_fp.ucf -ol high -pl high -rl high -xe c
MIPSPL_FPGA3.ncd MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd”

DRAFT – DO NOT REPRODUCE

120 | P a g e

ii. Press Enter. Some warnings and info messages will appear. Most of

them are expected. This may take some time depending on your system,
between 30 to 90 minutes.

iii. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

121 | P a g e

h. Repeat steps 9.b though 9.g for any additional Extensions you wish to implement

for the Extension0 slot.
10. Merge Base and Reconfigurable Region (TISA + Extension)

a. Inside the „eMIPS_PR‟ build folder create a „Merges‟ folder.

b. Inside the „Merges‟ folder create a folder with the same name as you Extension.

For this example we will use „mmldiv64‟.

DRAFT – DO NOT REPRODUCE

122 | P a g e

c. Open a command prompt within this folder.

d. Copy the Routed Base Design (TISA) to the Extension merge folder.

i. Type the command: “copy <Routed Base Design> <Routed Base
Design>”. In our case:

copy ..\..\TISA\MIPSPL_FPGA3_BASE_ROUTED.ncd MIPSPL_FPGA3_BASE_ROUTED.ncd

DRAFT – DO NOT REPRODUCE

123 | P a g e

ii. Press Enter.
iii. Wait for the process to complete.

e. Copy the Routed Reconfigurable Region (Extension) to the Extension merge

folder.
i. Type the command: “copy <Routed Reconfigurable Region> <Routed

Reconfigurable Region>”. In our case:
“copy ..\..\Extension0\mmldiv64\MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd
MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd”

DRAFT – DO NOT REPRODUCE

124 | P a g e

ii. Press Enter.
iii. Wait for the process to complete.

f. Run the Verify Design Script.

i. Type the command: “PR_VERIFYDESIGN <Routed Base Design> <
Routed Reconfigurable Region>”. In our case:

PR_VERIFYDESIGN MIPSPL_FPGA3_BASE_ROUTED.ncd MIPSPL_FPGA3_EXT0_MMLDI
V64_ROUTED.ncd

DRAFT – DO NOT REPRODUCE

125 | P a g e

ii. Press Enter. This may take some time depending on your system,

between 15 to 30 minutes.

iii. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

126 | P a g e

g. Run the Assemble Script.

i. Type the command: “PR_ASSEMBLE <Routed Base Design> <Routed
Reconfigurable Region>”. In our case:

PR_ASSEMBLE MIPSPL_FPGA3_BASE_ROUTED.ncd MIPSPL_FPGA3_EXT0_MMLDIV
64_ROUTED.ncd

ii. Press Enter. This may take some time depending on your system,

between 15 to 30 minutes.

DRAFT – DO NOT REPRODUCE

127 | P a g e

iii. Wait for the process to complete.

h. Repeat steps 10.b though 10.g for any additional Extensions you wish to

implement for the Extension0 slot.
11. Get Configuration Bit Files.
12. Follow the „Verifying the Configuration Bit Files‟ procedure (see 3.3) to determine if the

Extension has built correctly.

3.2.2 Building the NON-PR Version

 The following are the instructions for building the eMIPS microprocessor system without
the partial reconfiguration feature, using the Xilinx ISE. By doing this you will not be able to
use partial bit files to modify this design during runtime and the Extension instantiated will be
static. This build is good for preliminary design and testing without the added complication of
the PR flow. It is also recommend if you do not plan to use the PR feature at all and just want
a static processor design.

DRAFT – DO NOT REPRODUCE

128 | P a g e

1. If the Project is not yet made, Set up the Project Directory (see 3.1.3)
2. If not already done, Change the Environment to NON-PR Xilinx ISE (see 3.1.1)
3. Create a build folder, „eMIPS_NONPR‟, in the project directory.

4. Start the NON-PR install of the Xilinx ISE of choice.

5. Create a new ISE project.

a. Click File->New Project in the Menu.
b. The „New Project Wizard‟ dialog window will appear.

DRAFT – DO NOT REPRODUCE

129 | P a g e

c. Select the eMIPS_NONPR folder as the project location and name the project

„eMIPS_NONPR‟. Make sure the “Project Location” is as intended.

d. After you have reviewed the entries in the window, click „Next‟ to continue.
e. The „Device Properties‟ screen should appear.

DRAFT – DO NOT REPRODUCE

130 | P a g e

f. Enter the appropriate settings for your board setup in these fields. For the Xilinx

ML401 board, please use the settings in the table below. You may use other
synthesis tools other than the XST (Xilinx default) if you chose. However, be
aware all of our experiments have used this tool and we cannot vouch for the
outcome of another tool.

Property Name Value

Product Category All

Family Virtex4

Device XC4VLX25

Package FF668

Speed -10

Top-Level Source Type HDL

Synthesis Tool XST (VHDL/Verilog)

Simulator NA

Enable Enhanced Design Summary NA

Enable Message Filtering NA

Display Incremental Messages NA

g. After you have reviewed the entries in the window, click „Next‟ continue.
h. The „Create New Source‟ screen should appear.

DRAFT – DO NOT REPRODUCE

131 | P a g e

i. Since you will not be creating any new sources at this time, click „Next‟ to

continue.
j. The „Add Existing Source‟ screen should appear.

k. Click the „Add Source‟ Button.
l. The „Select one or more files to add‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

132 | P a g e

m. Navigate the dialog window to the eMIPS source directory.

n. Select the files listed in the table below to be added to the project. There are a

total of seventy-eight files.

extension0_mmlite_div64.v Iobuf4.v Iobuf16.v

Iobuf32.v MIPSPL_FPGA3.v top_dcm.v

bus_macros_nonpr.v TISA.v mmlite_div64.v

adder.v address_translation.v alu.v

alu_full.v and.v blockram_controller.v

bsmux.v bytesel2.v clockmaster.v

coprocessor0_sim.v data_align.v dataforward.v

datapathcontrol.v decode.v endianflip.v

equals.v execute.v fifo.v

flash_bridge.v flash_controller.v flash_interface.v

gpio_controller.v greaterthan.v hazard.v

instruction_decode.v instruction_fetch.v interrupt_controller.v

DRAFT – DO NOT REPRODUCE

133 | P a g e

lessthan.v memory_access.v memory_arbiter.v

memory_bus_front.v memory_controller.v memory_interface3.v

multiplier.v mux.v or.v

pipeline_arbiter.v power_management_controller.v registerblock.v

registerfile4.v shift2.v shift.v

signextend16_32.v sram_bridge.v sram_controller.v

sram_interface.v sysace_bridge.v sysace_controller.v

sysace_interface.v timer_controller.v toex.v

tocp0.v todf.v toid.v

toext.v tohz.v tomem.v

toif.v toma.v towb.v

topa.v torg.v xor.v

usart_controller.v write_back.v mips.ucf

lock.v memory_management_unit.v extension_controller.v

o. When you are done click „Open‟.
p. The files you selected should be listed in the „Add Existing Source‟ screen.

q. Uncheck the „Copy to Project‟ checkbox for each file.

DRAFT – DO NOT REPRODUCE

134 | P a g e

r. After you have reviewed the entries in the window, click „Next‟ continue.
s. The „Project Summary‟ screen should appear.

t. Click finish to complete the project setup.
u. The „New Project Wizard‟ will close and a moment later the „Adding Source Files‟

dialog should appear.

DRAFT – DO NOT REPRODUCE

135 | P a g e

v. Click „OK‟ to continue.
w. The new project will open in the Xilinx ISE Project Navigator.

6. The module ‟MIPSPL_FPGA3‟ should be set as the top module in the „Sources‟ pane. If

not set it as the top module by right-clicking MIPSPL_FPGA3 and selecting ‟Set as Top
Module‟.

7. Add the IP Core Modules
a. Add the Register File Blockram (see 3.1.5)

DRAFT – DO NOT REPRODUCE

136 | P a g e

b. Add the Register File Fifo (see 3.1.6).

c. Add the Bootloader Blockram (see 3.1.7).

DRAFT – DO NOT REPRODUCE

137 | P a g e

8. Set Synthesis Options

a. In the „Sources‟ pane, select „MIPSPL_FPGA3‟. Then select „Synthesize - XST‟
in the „Processes‟ pane. Make sure to select the module and not the project
icons.

b. Right-click on „Synthesize - XST‟ and select „Properties‟.
c. The „Synthesis Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

138 | P a g e

d. Set the values in the table below to the properties in this window.

Property Name Value

Optimization Goal Speed

Optimization Effort High

Use Synthesis Constraints File Yes

Synthesis Constraints File <location of sources>\mips.xcf

e. After you have reviewed the entries in the window, click „HDL Options‟ in the

„Category‟ pane.
f. The „HDL Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

139 | P a g e

g. Set the values in the table below to the properties in this window.

Property Name Value

FSM Encoding Algorithm Gray

h. After you have reviewed the entries in the window, click „Xilinx Specific Options‟

in the „Category‟ pane.
i. The „Xilinx Specific Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

140 | P a g e

j. Set the values in the table below to the properties in this window.

Property Name Value

Pack I/O Registers into IOBs Yes

k. After you have reviewed the entries in the window, click „OK‟ to continue.

9. Set Implementation Options
a. In the „Sources‟ pane, select „MIPSPL_FPGA3‟. Then select „Implement Design‟

in the „Processes‟ pane. Make sure to select the module and not the project

icons.

DRAFT – DO NOT REPRODUCE

141 | P a g e

b. Right-click on „Implement Design‟ and select „Properties‟.

c. The „Implementation Options‟ dialog window should appear.

d. Click „Map Properties‟ in the „Category‟ pane.

e. The „Map Properties‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

142 | P a g e

f. Set the values in the table below to the properties in this window.

Property Name Value

Perform Timing-Driven Packing and

Placement

Yes

Map Effort Level High

Extra Effort Continue on Impossible

g. Click „Place & Route Properties‟ in the „Category‟ pane.

h. The „Place & Route Properties‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

143 | P a g e

i. Set the values in the table below to the properties in this window.

Property Name Value

Place & Route Effort Level (Overall) High

Placer Effort Level (Overrides Overall Level) High

Router Effort Level (Overrides Overall Level) High

Extra Effort (Highest PAR level only) Continue on Impossible

j. After you have reviewed the entries in the window, click „OK‟ to continue.

10. Set Programming Options
a. In the „Sources‟ pane, select „MIPSPL_FPGA3‟. Then select „Generate Program

File‟ in the „Processes‟ pane. Make sure to select the module and not the project
icons.

DRAFT – DO NOT REPRODUCE

144 | P a g e

b. Right-click on „Generate Program Files‟ and select „Properties‟.
c. The „Program Options‟ dialog window should appear.

d. Click „Startup Options‟ in the „Category‟ pane.
e. The „Startup Options‟ dialog window should appear.

DRAFT – DO NOT REPRODUCE

145 | P a g e

f. Set the values in the table below to the properties in this window.

Property Name Value

FPGA Start-Up Clock JTAG Clock

g. After you have reviewed the entries in the window, click „OK‟ to continue.

11. In the „Sources‟ pane, select „MIPSPL_FPGA3‟. Then select „Generate Program File‟ in
the „Processes‟ pane.

DRAFT – DO NOT REPRODUCE

146 | P a g e

12. You may double-click on „Generate Program File‟ or you may right click and select „Run‟

to start the build process. This may take some time depending on your system,
between 30 to 90 minutes.

13. You should see a blue spinning icon appear by the „Generate Program File‟. As the

process is performed some warnings and info messages will be displayed. Most of
these are expected.

14. Wait for the process to complete.

DRAFT – DO NOT REPRODUCE

147 | P a g e

3.3 Verifying the Configuration Bit Files.

The following are the instructions for running a simple test and determine if eMIPS loaded with
the mmldiv64 extension is working correctly, and it is performing the configuration functions
correctly using the configuration bit files produced.

1. Open a command prompt in the location of your test files.

2. Open the serplexd console to the eMIPS board by typing: “serplexd.exe –n –s –r”. We

are assuming that the serial cable to the ML401 “UART Host” port is working properly
and connected to the COM1 port on your PC. If you are using a different port specify it
explicitly to serplexd, e.g. “serplexd –n –s –r com3:”.

DRAFT – DO NOT REPRODUCE

148 | P a g e

3. Press Enter.

4. Turn on your ML401 board.
5. Flip the switches 1 and 2 on the GPIO DIP switches to the down position
6. Open the Xilinx IMPACT from the version of the Xilinx ISE with the PR Tools. You can

verify that you are using the correct version by looking at the version number on the
load splash screen.

7. The Xilinx „IMPACT Project‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

149 | P a g e

8. Select „create a new project (.ipf)‟

9. Click „OK‟ to continue.
10. The „Welcome to IMPACT‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

150 | P a g e

11. Click „Finish‟ to continue.
12. The „sysace‟ object in the JTAG chain window should be highlighted in green, and the

„Assign New Configuration File‟ dialog should appear.

13. Click „Bypass‟ to continue.
14. The „xcf32p‟ object in the JTAG chain window should be highlighted in green, and the

„Assign New Configuration File‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

151 | P a g e

15. Click „Bypass‟ to continue.
16. The „xc4vlx25‟ object in the JTAG chain window should be highlighted in green, and the

„Assign New Configuration File‟ dialog should appear.

17. Navigate to the location of your bit files.

DRAFT – DO NOT REPRODUCE

152 | P a g e

18. Select „mipspl_fpga3_base_routed_full.bit‟.

19. Click „Open‟ to continue.
20. A „Warning‟ dialog will appear notifying you that the IMPACT has converted the bit file to

a JtagClk bitfile from the original configuration clock.

21. Click „OK‟ to continue.
22. The „xc95144xl‟ object in the JTAG chain window should be highlighted in green, and

the „Assign New Configuration File‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

153 | P a g e

23. Click „Bypass‟ to continue.
24. The „Assign New Configuration File‟ dialog will close and the IMPACT tool is initialized.

25. Right-click on the „xc4vlx25‟ object and select „Program‟
26. The „Programming Properties‟ dialog should appear.

DRAFT – DO NOT REPRODUCE

154 | P a g e

27. Click „OK‟ to continue.
28. The „Programming Properties‟ will close and you should see the „Progress Dialog‟.

29. When the configuration the is successful you should see the blue „Program Succeeded‟

message.

DRAFT – DO NOT REPRODUCE

155 | P a g e

30. Look at the serplexd console and you should see an „l‟ on the console. This is the
download leader byte, it is printed by the bootloader program to indicate it is ready for a
download over the serial line.

31. Close the serplexd console (hit ^C).

32. Type the following command: “download.exe com1: mmldiv64_test2.bin &&

serplexd.exe –n –s –r”. Potential errors: One user reported that under his VisualStudio
Command Prompt the pipe above did not work, whereas splitting the commands in two
command lines did work. Using the regular Windows CMD.EXE also fixed the problem.

DRAFT – DO NOT REPRODUCE

156 | P a g e

33. Press Enter.

34. The Program will begin to download over the serial line.
35. After the download is complete the serplexd console will launch allowing you to see the

output of the program.

DRAFT – DO NOT REPRODUCE

157 | P a g e

DRAFT – DO NOT REPRODUCE

158 | P a g e

36. This represents that the Extension architecture loaded with the mmldiv64 extension has
completed the hardware test successfully. The accelerated code shows a factor of two
speed-up.

37. Right-click on the „xc4vlx25‟ object and select „Assign New Configuration File‟.
38. The „xc4vlx25‟ object in the JTAG chain window should be highlighted in green, and the

„Assign New Configuration File‟ dialog should appear.

39. Select „pblock_ext0_blank.bit‟.

40. Click „Open‟ to continue.
41. The „Assign New Configuration File‟ dialog will close.

DRAFT – DO NOT REPRODUCE

159 | P a g e

42. Right-click on the „xc4vlx25‟ object and select „Program‟
43. The „Programming Properties‟ dialog should appear.

44. Click „OK‟ to continue.
45. The „Programming Properties‟ will close and you should see the „Progress Dialog‟.

DRAFT – DO NOT REPRODUCE

160 | P a g e

46. When the configuration is successful you should see the blue „Program Succeeded‟
message.

47. Look at the serplexd console and you should see a few more „l‟s on the console. These

may be ignored.
48. Close the serplexd console and run the previous command again (see step 32).

49. After the download is complete the serplexd console will launch allowing you to see the

output of the program. You should see a crash.

DRAFT – DO NOT REPRODUCE

161 | P a g e

DRAFT – DO NOT REPRODUCE

162 | P a g e

50. Right-click on the „xc4vlx25‟ object and select „Assign New Configuration File‟
51. The „xc4vlx25‟ object in the JTAG chain window should be highlighted in green, and the

„Assign New Configuration File‟ dialog should appear.

52. Select „mipspl_fpga3_ext0_mmldiv64_routed_partial.bit‟.

53. Click „Open‟ to continue.
54. The „Assign New Configuration File‟ dialog will close.

DRAFT – DO NOT REPRODUCE

163 | P a g e

55. Right-click on the „xc4vlx25‟ object and select „Program‟
56. The „Programming Properties‟ dialog should appear.

57. Click „OK‟ to continue.
58. The „Programming Properties‟ will close and you should see the „Progress Dialog‟.

DRAFT – DO NOT REPRODUCE

164 | P a g e

59. When the configuration is successful you should see the blue „Program Succeeded‟
message.

60. Look at the serplexd console and you should see a few more „l‟s on the console. These

may be ignored.
61. Close the serplexd console and run the previous command again (see step 32).

62. After the download is complete the serplexd console will launch allowing you to see the

output of the program. The program should not crash and the correct results should be
displayed again.

DRAFT – DO NOT REPRODUCE

165 | P a g e

DRAFT – DO NOT REPRODUCE

166 | P a g e

3.4 Generating the System ACE Compact Flash Image

1. In your PR build directory create a new folder called „SystemACE‟ for your compact

flash image.

2. Start the Xilinx IMPACT from the PR tools install of the Xilinx ISE
3. The Xilinx IMPACT project dialog window should appear.

4. Select the „create a new project (.ipf)‟ option and save it to the „SystemACE‟ folder in

your PR build directory. Name your project „emips_cf‟.

DRAFT – DO NOT REPRODUCE

167 | P a g e

5. After you have reviewed the window click „OK‟ to continue.
6. The Xilinx IMPACT Welcome dialog should appear.

7. Select „Prepare a System ACE file‟ from the options available.

DRAFT – DO NOT REPRODUCE

168 | P a g e

8. After reviewing your selection click „Next‟ to continue.
9. The Prepare System ACE Files dialog should appear.

10. Click „Next‟ to continue.
11. The System ACE Compact Flash Size dialog should appear.

DRAFT – DO NOT REPRODUCE

169 | P a g e

12. Click „Next‟ to continue.
13. The System ACE Name And Location dialog should appear.

14. Name the image „emips_cf‟.

DRAFT – DO NOT REPRODUCE

170 | P a g e

15. After you have reviewed your entry, click „Next‟ to continue.
16. The System ACE Configuration Address And Design dialog should appear.

17. Check each configuration address you wish to use and label them.

DRAFT – DO NOT REPRODUCE

171 | P a g e

18. After you have reviewed your entries, click „Next‟ to continue.
19. The System ACE File Generation summary will appear.

20. Click „Finish‟ to continue.
21. The Add Device dialog will appear.

22. Click „OK‟ to continue.
23. The Add Device File dialog will appear.

DRAFT – DO NOT REPRODUCE

172 | P a g e

24. Navigate to the install directory of your Xilinx ISE with the PR tools.

25. Select the „xcfp‟ directory and Navigate to the data subdirectory.

DRAFT – DO NOT REPRODUCE

173 | P a g e

26. Select the „xcf32p.bsd‟ file.

27. Click „Open‟ to continue.
28. The Add Device dialog will appear.

29. Click „Yes‟ to continue.

DRAFT – DO NOT REPRODUCE

174 | P a g e

30. Navigate to the location of the bit files you wish to include in this compact flash image.

31. Select the desired bit file.

DRAFT – DO NOT REPRODUCE

175 | P a g e

32. Click „Open‟ to continue.
33. The Warning dialog will appear.

34. Click „OK‟ to continue.
35. The Add Device dialog will appear.

36. Click „Yes‟ to continue.

DRAFT – DO NOT REPRODUCE

176 | P a g e

37. Navigate to the install directory of your Xilinx ISE with the PR tools.

38. Select the „xc9500xl‟ directory and Navigate to the data subdirectory.

DRAFT – DO NOT REPRODUCE

177 | P a g e

39. Select the „xc95144xl_tq100.bsd‟ file.

40. Click „Open‟ to continue.
41. The Add Device dialog will appear.

42. Click „No‟ to continue.
43. The Config Address dialog should appear.

DRAFT – DO NOT REPRODUCE

178 | P a g e

44. Repeat steps 22 through 43 for each bit file to be added to the compact flash image.

45. After you have reviewed your configurations. Right click on the compact flash icon on

the screen and select „Generate File‟
46. The ACE File Generation Option dialog should appear.

47. Click „OK‟ to continue.

DRAFT – DO NOT REPRODUCE

179 | P a g e

48. The Xilinx IMPACT has generated a directory for your compact flash.

49. Copy the contents of this directory to a compact flash card no larger than 32MB.

3.5 Testing

 In addition to the minimal testing described above, this distribution provides a number of
other software images to test the build of the eMIPS system. These tests are classified in two
classes: (a) the stand-alone tests that can be downloaded and executed in RAM using the boot
loader and (b) the tests and programs that run under the Microsoft Invisible Computing
operating system, which are installed on the ML401 on-board linear FLASH chip.
Both sets of tests are contained in the archive file “eMIPS Tests.zip”. The following are the
instructions on how to unpack and execute both sets of tests.

1. Extract the files from the archive. Right-click on the “eMIPS Tests.zip” zip file and select
„Extract all‟.

DRAFT – DO NOT REPRODUCE

180 | P a g e

2. The Extraction Wizard window should appear.

3. Please click „Next‟ to continue.
10. The next screen you should see is the destination selection screen. By default it will

have your current directory selected. Change it to some other location; we will use the
folder “c:\eMIPS_Tests” in these instructions.

11. Click „Next‟ to continue.

DRAFT – DO NOT REPRODUCE

181 | P a g e

12. You should see the progress bar begin to fill. This may take some time depending on

your system, between 5 to 10 minutes.
13. The next screen you should see is the extraction complete screen

14. Please click „Finish‟ to complete the extraction of the test files.
15. The Folder containing the test programs should appear. You can now run either the

stand-alone tests or the OS tests.

DRAFT – DO NOT REPRODUCE

182 | P a g e

3.5.1.1 Running the stand-alone tests

 Each of the stand-alone tests will run and at the end of the execution will display one of
two strings: “TEST PASSED SUCCESSFULLY” for a successful completion or “TEST FAILED”
in case of failure. Each stand-alone test can be run individually, using the two provided utilities
DOWNLOAD.EXE and SERPLEXD.EXE. The tests can also be run in sequence, using the
provided utility WIN_TESTIT.EXE. The section “Verifying the Configuration Bit Files” shows
how to run an individual stand-alone test, in that case the test mmldiv64_test2.bin. The
following stand-alone programs are provided and can be run in isolation:

ctimer.bin ctint.bin ext_test.bin

jf.bin mmldiv64_test2.bin mneg.bin

neg1.bin pmt.bin shift.bin

snake.bin tdiv.bin tdiv2.bin

tdown.bin techo.bin tflash.bin

tgpio.bin thfs.bin thfs1.bin

thfs2.bin tint.bin tprintf.bin

treset.bin treturn.bin tsb.bin

tsysace.bin tth1.bin tthreads.bin

tusart.bin tusart1.bin

 We will first run in isolation the test PMT.BIN, which looks at the I/O map of the eMIPS
system. We will assume, for illustration purposes, that the serial line link to the ML401 board is
now on “com3:” rather than “com1:” as previously assumed, to make clear where this optional
argument is used.

1. Open a command prompt in the test folder above

2. Type the command: “download com3: pmt.bin && serplexd –n –r –s com3:”
3. The test is downloaded and executed, the output should be as follows:

DRAFT – DO NOT REPRODUCE

183 | P a g e

DRAFT – DO NOT REPRODUCE

184 | P a g e

3.5.1.2 Running all the stand-alone tests

 The stand-alone tests can be run in sequence using the provided utility
WIN_TESTIT.EXE. This program contains a list of tests and their arguments, that are used by
the eMIPS developers to verify a new bitfile before running the OS tests.

1. Open a command prompt in the test folder

2. Type the command: “win_testit com3:”
3. The program runs and downloads each of the tests in sequence, the initial output

should be as follows:

4. The tests will take some time to execute, between 10 and 15 minutes. The final output

should be as follows:

DRAFT – DO NOT REPRODUCE

185 | P a g e

DRAFT – DO NOT REPRODUCE

186 | P a g e

3.5.1.3 Running the OS tests

 The OS-level tests require the flashing of the bootable image ML.BIN and of the file
system image MLFS.FLP into the ML401 linear FLASH. The following sequence of procedures
will boot the OS via the boot loader, execute the provided utility STRATAFLASH.EXE to flash
those images, reboot the OS from flash and run a simple test.

1. Open a command prompt in the test folder

2. Make sure the switches 1 and 2 on the GPIO DIP switches of the ML401 board are still

in the down position.
3. Type the command: “download com3: ml.bin && serplexd –n –s com3:”. Notice the

absence of the “-r” switch in the serplexd arguments.

4. The OS image is downloaded and starts to run, loading the first application program

(make sure the file TZK.COB has not been removed from the test folder). Once
initialization is complete the output should be as follows:

5. Type a few simple commands to verify the command shell is working properly.

DRAFT – DO NOT REPRODUCE

187 | P a g e

6. At this point we want to flash the OS image to flash. Type the following command to the

shell: “strataflash.exe f0000000 fs\ml.bin 0 TWINCHIPS BUFFERED”. Please note that
the arguments are case-sensitive. After the program has been loaded over the serial
line the output is as follows:

7. Answer “y” to continue. The file is downloaded and flashed, progress is marked by

hash marks. When flashing is complete the output is as follows:

8. At this point the base OS image is flashed. Now we want to flash the file system image.

Type the following command: “strataflash.exe f0000000 fs\mlfs.flp 80000 TWINCHIPS
BUFFERED”. Please note that the arguments are case-sensitive. After the program
has been loaded over the serial line the output is as follows:

DRAFT – DO NOT REPRODUCE

188 | P a g e

9. Answer “y” to continue. The file is downloaded and flashed; progress is marked by

hash marks. This process should take between 5 and 10 minutes. When complete the
output is as follows:

10. At this point both the OS image and the file system images have been flashed. To test

them please flip the switches 1 and 2 on the GPIO DIP switches of the ML401 board to
the UP position. Then hit the “CPU Reset” button of the ML401 board. The output is as
follows:

11. You can type a few simple commands to test the basic functionality:

DRAFT – DO NOT REPRODUCE

189 | P a g e

This concludes the basic OS level tests and the board is operational under the eMIPS
system.

The use of the DIP switches in software is as follows:

DRAFT – DO NOT REPRODUCE

190 | P a g e

1. Used by the eMIPS built-in bootloader. If read as “0” (DOWN position) the
bootloader downloads an image from the serial line into SRAM, then jumps to it.
You should use the DOWNLOAD.EXE utility to communicate with the bootloader.
If read as “1” (UP position) the bootloader jumps directly to the linear FLASH.

2. Used by the OS. If read as “0” (DOWN position) it uses the serial line exclusively
to communicate with the SERPLEXD.EXE utility and to access all executable
images and data remotely, over the serial line. If read as “1” (UP position) it looks
first at the linear FLASH for a filesystem image. The OS still enables the serial
line file system (“hostfs” protocol) using the name “srfs”.

3.5.1.4 Running the Web Server

This demo has the following pre-requisites:
A. The OS image and the file system image should have been written to the linear

FLASH. See previous section for detailed instructions.
B. The VirtualPC NIC driver must have been installed on the Windows host

machine. You can either use the VirtualPC product from
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
(recommended) or use just the virtual NIC driver from the Microsoft Invisible
Computing distribution at http://research.microsoft.com/invisible/ Look under
Source:src:drivers:net:packet:lib:i386: VMNetSrv.msi

C. Your network must be running a DHCP server capable of assigning IP addresses
to a previously unknown Ethernet address.

1. Open a command prompt in the test folder

2. Make sure the switches 1 and 2 on the GPIO DIP switches of the ML401 board are in

the up position, as they were left for instance by the previous test. Start the
SERPLEXD.EXE utility with the following command: “serplexd –s com3:”. Note that we
do not use either the “-r” nor the “-n” command arguments. You might optionally hit the
“CPU Reset” button to get a clean start. The output is as follows:

http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
http://research.microsoft.com/invisible/
http://research.microsoft.com/invisible/src/drivers/net/packet/lib/i386/VMNetSrv.msi.htm

DRAFT – DO NOT REPRODUCE

191 | P a g e

3. A possible warning about an unexpected version of the driver can be ignored. Type the

following command: “source fs\net.tzk”. This might take some time, depending on the
traffic on your network. Your DHCP server should assign an IP address to the board
and the output is similar to this:

4. In our case, the board was assigned the IP address 172.31.41.212. Next we start the

http server, type the following command: “http.cob”. The output is as follows:

5. The http server is now operational. To test it, open a browser windows and point it to the

URL http://<board IP address> which in our case is http://172.31.41.212. The output
from the browser is as follows:

http://172.31.41.212/

DRAFT – DO NOT REPRODUCE

192 | P a g e

3.5.1.5 Testing the CompactFlash card

 This test assumes that a properly formatted CompactFlash card is inserted in the CF
connector on the ML401 board. The test is non-destructive; you can safely use the Xilinx CF
card that came with your board.

1. Open a command prompt in the test folder

2. Make sure the switches 1 and 2 on the GPIO DIP switches of the ML401 board are in

the up position, as they were left for instance by the previous test. Start the
SERPLEXD.EXE utility with the following command: “serplexd –s –n com3:”. Note that
we do not use the “-r” command argument. You might optionally hit the “CPU Reset”
button to get a clean start. The output is as follows:

DRAFT – DO NOT REPRODUCE

193 | P a g e

3. Type the following command: “start fatfstest.exe fat sysace”. The output is as follows:

4. Test that the “fat” filesystem is present and look at the CF Card content. Type the

following commands in sequence: “ls” and “ll.exe fat\”. The output should be something
like the following:

You can add files to the CF card; in our case we have added a few files for a simple web site.
Repeating the previous procedure we start the http server, and then we can look at the web

DRAFT – DO NOT REPRODUCE

194 | P a g e

site using the URL “http:/ /172.31.41.212/fat/default.htm”. The output from the browser might
be something like this:

3.5.1.6 Testing an Extension using SystemACE

This test assumes that a properly formatted CompactFlash card is inserted in the CF
connector on the ML401 board. It further assumes that the partial bit file
pblock_ext0_blank.ace has been generated using the procedures described in section 3.4, and
located in slot number 4 of the CF card. The test is non-destructive, no file will be modified.

5. Open a command prompt in the test folder

6. Make sure the switches 1 and 2 on the GPIO DIP switches of the ML401 board are in

the UP position, as they were left for instance by the previous test. Start the
SERPLEXD.EXE utility with the following command: “serplexd –s –n com3:”. Note that

DRAFT – DO NOT REPRODUCE

195 | P a g e

we do not use the “-r” command argument. You might optionally hit the “CPU Reset”
button to get a clean start. The output is as follows:

7. Type the following command: “start fatfstest.exe fat sysace”. The output is as follows,

there should be no error messages:

8. Check the content of the Xilinx configuration file on the CF card. Type the following

command: “type fat\xilinx.sys”. The output is something like this:

9. In our case the extension file is in slot number 4 (cfgaddr4), in the directory

ML401\emips_ext_null. Type the following command to ask the SystemACE to load the
ace file for the test: “tsysace.exe config4”. The output is as follows:

DRAFT – DO NOT REPRODUCE

196 | P a g e

10. Check that the red LED marked “Err” on the board is NOT lit. If it is lit there is an error

and the test failed.
11. Otherwise you can proceed to run the software that makes use of your extension, to

verify that your design works.

DRAFT – DO NOT REPRODUCE

197 | P a g e

4 Software Procedures
This section describes a number of procedures and tools that can be useful for software

development under the eMIPS system.

4.1 Building and running a standalone program

A standalone program is a program that is run immediately after the processor comes out

of reset, after the boot loader has initialized some on-chip peripherals. These programs are

usually hardware tests, such as those described in section 3.5.1.1, or an operating system

such as the Microsoft Invisible Computing RTOS.

To understand the exact conditions of the processor at the time the program receives

control it is recommended the user reads and understands the source of the boot loader

program. The source is in the file BramLoader\bram2.s. Generally speaking, the processor will

be in the state of a cold reset and the peripherals will not be initialized. Some exceptions

include the GPIO, which the boot loader uses to decide how to boot (download or jump to

FLASH), the SRAM and FLASH controllers, and possibly the USART if the program has been

downloaded.

Standalone programs can be developed in assembly when necessary; examples are

provided in the tests folder. Most examples in the tests folder are actually written in C, using

the facilities provided in the print.{h,s} support file. Other useful header files are included in the

RTOS source tree, in the include\mips folder. They include the mips_asm.h file that defines

symbolic register names, macros for exported functions and debugging directives for assembly

codes. The file ml40x.h defines the register interfaces of the built-in peripherals and their

preferred locations.

Two simple scripts are provided to help create standalone programs, using the GCC

toolset. The script compile4.cmd is used to create a downloadable image starting from an

assembly source file.

1. Start a CMD or Visual Studio command window.

2. Set the environment variable MMLITE_SDK to point to the location of the RTOS

sources, augmented by the binaries of the GCC toolset (as described in section

2.3.1.4).

3. Run the script with your program name as argument, e.g. if your assembly source file is

MyProgram.s invoke the script with “compile4 MyProgram”.

DRAFT – DO NOT REPRODUCE

198 | P a g e

The script will compile and list the content of the downloadable image. The results of the script

are two files. MyProgram.bin is the stripped image that can be downloaded via the boot loader

(or written to the linear FLASH). The file MyProgram is in the ELF file format and can be given

to other tools, such as the GDB debugger.

The script c_compile4.cmd is used to create a downloadable image starting from a C

source file, and an optional assembly source file.

1. Start a CMD or Visual Studio command window.

2. Set the environment variable MMLITE_SDK to point to the location of the RTOS

sources, augmented by the binaries of the GCC toolset (as described in section

2.3.1.4).

3. Run the script with your program name as argument, e.g. if your C source file is

MyProgram.c invoke the script with “compile4 MyProgram”.

The script will compile and list the content of the downloadable image. The results of the script

are two files. MyProgram.bin is the stripped image that can be downloaded via the boot loader

(or written to the linear FLASH). The file MyProgram is in the ELF file format and can be given

to other tools, such as the GDB debugger.

DRAFT – DO NOT REPRODUCE

199 | P a g e

Additionally, the script will try to run the bbfind tool to create a patched executable image,

using the definitions of Extended Instructions in the file bbtools\patts.bbw. The results are in

the MyProgram.rel.* files. This step is optional and for illustration purposes, if not needed it can

be commented out from the script.

4.2 Building and running a program under the RTOS

Programs for eMIPS under the Microsoft Invisible Computing RTOS are no different than

other programs for the same RTOS on other platforms. Users familiar with other platforms,

such as the ARM EB63 for instance, will notice the only change in the build procedures is in

the specification of the TARGETCPU variable. This section is for users that are not familiar

with the RTOS.

One way to create and build a simple program is to use the RTOS‟ tests folder. This

folder contains a number of programs that can be used as examples for various functions. The

makefile in this directory includes the optional file private.mk that can be used to add to the list

of target programs built in this directory. Let us assume that your program will be in the file

MyProgram.c, and that its content is as follows:

 #include <stdio.h>

 int main(int argc, char **argv)

 {

 printf(“Hi Mom!\n”);

 }

The procedure for building the program is as follows:

1. Start a CMD or Visual Studio command window.

DRAFT – DO NOT REPRODUCE

200 | P a g e

2. Set the environment variable MMLITE_SDK to point to the location of the RTOS

sources, augmented by the binaries of the GCC toolset (as described in section

2.3.1.4).

3. Move to the tests folder in there.

4. Create a file called private.mk, with the following one-line content:

PRIVATE_TESTS=$(SYSTEM_DIR)\MyProgram.exe

5. Build the program with the following command line:

nmake -nologo TARGETCPU=mips TARGETTYPE=release TOOLS=gnu

The resulting file MyProgram.exe is left in the mips_gnu\release\bin folder under the build tree.

One simple way to execute your program is to install the RTOS in the ML401‟s linear FLASH,

using the procedures described in section 3.5.1.3. Assuming the RTOS is installed and

functional on the ML401 board, use the following procedure.

6. Move to the build directory and start the SERPLEXD server to communicate with your

board:

DRAFT – DO NOT REPRODUCE

201 | P a g e

7. The default file system is in FLASH, and it is visible under the “fs” folder. The remote file

system is visible under the “srfs” folder. The RTOS only executes programs from the fs

folder, so we need to rename the two. Type the following commands to the RTOS‟ shell:

a. ln fs flash

b. ln srfs fs

8. Now you can invoke your program, using the full, case-sensitive file name:

To make changes and re-run your program you might want to use two separate windows, one

for building and one for running it. Repeat the steps 1-3 and 5 above to create a new window

DRAFT – DO NOT REPRODUCE

202 | P a g e

and re-compile your program. Move back to the previous window and run your program again.

Hint: the RTOS shell has a minimal command history buffer, you can use the Emacs-style ^P

and ^N keys to navigate it.

4.3 Debugging with eBug

The technical report on eBug [107] describes how to build and use this tool. Section

7.1.2 of the report shows the procedure for debugging with the ML401 board, using a

standalone program. Notice that a standalone program must enable the eBug Extension itself,

there is no RTOS to do it. There is a configuration file in this release that corresponds to the

one used at step 2 of the afore-mentioned procedure. It already contains eBug compiled-in and

you can find it in the eMIPS_Configurations.zip archive file; the version with eight watchpoints

is called mipspl_fpga3_ebughw8_routed_full.bit.

To debug under the RTOS you can use an identical procedure, but instead of

downloading your program you will start it from the command shell. Again, your program will

have to enable the eBug Extension by itself, because the RTOS is not aware of its presence.

A cleaner procedure is to create an SE image that contains your program and the eBug

Extension, as described in section 4.5. In this case the RTOS will be aware of the Extension

and it will enable it for you. Notice that eBug needs priority over the TISA, therefore the

command line for ace2se is

ace2se –PhD MyProgram.se MyProgram.exe eBug_hw8.ace

The “-PhD” option instructs the program to set the properties field of the hardware image to the

hexadecimal value 0xD. This value corresponds to the bits of Figure 12, in the following way:

SE_HW_PRIVILEGED 0x00000001

SE_HW_PERIPHERAL 0x00000002

SE_HW_PRIORITY_MASK 0x0000000c

SE_HW_HIGH_PRIORITY 0x0000000c

4.4 Rebuilding the boot loader

Source and binary for the boot loader are included in this release. Should it become

necessary to rebuild the boot loader, use the following procedure.

1. Start a CMD or Visual Studio command window.

2. Set the environment variable MMLITE_SDK to point to the location of the RTOS

sources, augmented by the binaries of the GCC toolset (as described in section

2.3.1.4).

DRAFT – DO NOT REPRODUCE

203 | P a g e

3. Move to the Software\BramLoader folder in the release tree and compile the bin2coe

utility, if you have not done so already:

4. Use the local script compile4.cmd to rebuild the boot loader, type “compile4 bram2”:

The script creates and disassembles a binary image of the loader, creates and dumps a file

with the symbols for it, and in the last step it creates the coefficient file bram2.coe to be used to

initialize the boot loader‟s blockram (see step 18 in section 3.1.7).

4.5 Building an SE image that contains an Extension

Extensions can be loaded into the Extension slot in a number of ways:

1. Using the Impact utility, which is part of the Xilinx ISE

2. Using the System-ACE via the board‟s DIP switches

3. Using the RTOS‟ test program tsysace.exe

4. Using the RTOS tool ace2se and the RTOS‟ loader

DRAFT – DO NOT REPRODUCE

204 | P a g e

In this section we describe how to use the ace2se tool to create Secure Executable, or SE

images, to be loaded by the RTOS‟ system loader. The file format of an SE loadable image is

depicted in Figure 1.

The first portion of the SE file is the software executable code, in our case for the eMIPS

processor. This is an un-modified ELF executable image, created using the tools and

procedures described in sections 2.3.1 and 4.2. Because it is at the beginning of the file,

existing tools for ELF images will work on an SE file too. The second portion of the file is the

Extension configuration bit file. In our case this is an ACE file, generated following the

procedure of section 3.4. The third and fourth portions of the file are created by the ace2se

tool.

Either of the first two portions could be missing. Even a file with both portions missing is still a

valid SE file, albeit a useless one. An SE file that contains only the Software Image will have

the added advantage, over a simple ELF file for instance, of a format-independent security

signature. Similarly for a file that only contains an Extension Image.

The RTOS‟ loader for eMIPS recognizes and loads both a simple ELF image and an SE

image. If the SE image contains an Extension Image portion, this is loaded into the Extension

slot first. The Extension is however not enabled, not until the Software Image has been loaded.

If the file contains a Software Image portion, this is loaded in RAM and relocated. At this point

a new thread is created, which enables the extension and executes the Software Image.

To create an SE file that contains an Extension you need the Extension‟s ACE file (say

MyExtension.ace) and your software application‟s image file (MyProgram.exe).

1. Start a CMD or Visual Studio command window.

2. Set the environment variable MMLITE_SDK to point to the location of the RTOS

sources, augmented by the binaries of the GCC toolset (as described in section

2.3.1.4).

3. Move to the folder that contains the files MyExtension.ace and MyProgram.exe

Software Image

(e.g. an ELF file)

Extension Image

(e.g. an ACE file)

Security Signature

SE Header

Figure 1: SE File Format

DRAFT – DO NOT REPRODUCE

205 | P a g e

4. Type the following command:

%MMLITE_SDK%\tools\bin\ace2se MyProgram.se MyProgram.exe MyExtension.ace

The resulting file is the SE image MyProgram.se. To omit an image from the SE file you can

just give to ace2se the name of a non-existent file.

DRAFT – DO NOT REPRODUCE

206 | P a g e

4.6 Using the BBTools to profile a program

The BBTools can be used in conjunction with the Giano simulator to obtain accurate and

fine-grained profiling information about your program. The general idea is to first optimize the

program for best performance, using profiling and any other tools available. Once the program

runs at the best performance possible, use this procedure to identify the two-three basic blocks

that are executed most frequently. Then create an Extension that executes those blocks in

hardware and modify the original image inserting Extended Instructions that invoke the

Extension (see section 4.7 for how to do this). Note that the number of times a block is

executed is only one of the factors to take into account when selecting the blocks to optimize in

hardware. Other factors include but are not limited to: possible payoffs from better memory

access patterns, multi-block opportunities (e.g. small function inlining and other global

optimizations), and programs that exhibit distinct phases during execution.

This procedure assumes that your program runs under the RTOS. You also need a build

of Giano with basic block profiling support enabled (e.g. the conditional BBS_SUPPORT in the

mips_cpu.cpp module). Another way is to just build a debug version of Giano and use that.

When the RTOS executes your program, for instance MyProgram.exe, it notifies the

debugger of this. The simulator is able to intercept this notification and therefore is aware of

your program being executed, and at which address it resides in memory. The simulator then

looks for a file called MyProgram.exe.bbs in the current directory. If it is not found it will print a

message to this effect. If it is found, it loads the information in that file and keeps track of

instructions that enter a basic block. When there is a hit, the simulator updates the

corresponding DynamicReplicationCount counter. When the program terminates, the RTOS

sends a second notification. The simulator then writes back the updated counters in the

MyProgram.exe.bbs file. At this point you can use the other BBTools to dump, sort and inspect

the blocks with the highest DynamicReplicationCount values. Note that the simulator rewrites

the BBS file, you will want to keep a copy of the original for multiple experiments, e.g. one with

zeroes in the counters.

1. Start a CMD or Visual Studio command window.

2. Make sure the BBTools binaries are in your PATH environment variable and move to

the directory where your MyProgram.rel image is located. Notice that you need the

image before it is stripped, e.g. the REL file and not the EXE file.

3. Run the BBFIND tool. You might want to also create a file with the symbols from your

program, in this case we called it MyProgram.nm:

bbfind –b MyProgram.exe.bbs –s MyProgram.nm MyProgram.rel

4. Start Giano using the Ml401.plx platform configuration file.

DRAFT – DO NOT REPRODUCE

207 | P a g e

5. Start the SERPLEXD console to talk to the simulation.

6. Run your program. The simulator should notify you that it found the BBS file for your

program at load time, and that it rewrote it when the program terminated.

7. Sort the BBS file according to the DynamicReplicationCount metric:

bbsort –r –dynamic MyProgram.exe.bbs MyProgram.out.bbs

8. Dump the sorted file on a text file, for later inspection with a text editor:

bbdump MyProgram.out.bbs MyProgram.nm

You will need a disassembly of your program, to reconcile the basic blocks with the C code

they came from. You can use the compiler‟s OBJDUMP utility for this, or pass an additional “-v

1” argument to BBFIND at step 3.

If you plan to use the M2V compiler you will want to isolate the individual basic blocks that you

intend to optimize. You can use the BBSELECT tool for this, using the “-hash” option to select

the block of your interest:

 bbselect –hash:X.Y.W.Z MyProgram.out.bbs MyBlock.bbs

You can then use the BBMATCH tool to create a skeleton BBW file for your extension:

bbmatch –c ignore MyBlock.bbs > MyBlock.bbw

The BBW file is also needed if you plan to create Extended Instructions for your Extension, see

section 4.7.

4.7 Adding Extended Instructions to an image

If you want to patch your program image with the Extended Instructions that invoke your

Extension you will need a BBW file that defines them. The BBFIND tool will use the basic block

patterns defined in the file and patch all occurrences of the blocks in the image. One BBW file

can contain multiple blocks, and even blocks for multiple processor architectures. Once you

have the BBW file (say MyBlocks.bbw), use the BBFIND tool to patch your image:

 bbfind –m MyBlocks.bbw –b MyProgram.exe.bbs MyProgram.rel MyProgram.exe

You might have used the procedure at section 4.6 to create a number of separate BBS

files, one per each block of interest. To generate the skeleton BBW file with all your blocks in

it, you can first combine the BBS files into a single BBS file using the BBCAT tool, and then

use the BBMATCH tool on the combined BBS file:

DRAFT – DO NOT REPRODUCE

208 | P a g e

 bbcat Block1.bbs Block2.bbs MyBlocks.bbs

 bbcat MyBlocks.bbs Block3.bbs MyBlocks.bbs

 repeat for all additional blocks

bbmatch –c ignore MyBlock.bbs > MyBlocks.bbw

Remember that you still need to select an opcode and an encoding for your Extended

Instructions, before you attempt to patch images.

4.8 Generating Extensions using the M2V compiler

The technical report on M2V [106] describes the M2V compiler in details. Section 5 of the

report shows how to invoke the tool. To be able to create an Extension with the M2V compiler

you will need to create first a BBW file that describes it. You can do this manually, with a text

editor, once you understand the format of the BBW file.

If your basic block can be found in an image you can use the BBTools instead. The first

step is to create a basic block database file (a BBS file) from your image, using the BBFIND

tool with the “-b” option. Next use the BBMATCH tool to create a BBW file from the BBS file,

using the “-c” option. Then edit the BBW file to isolate the block you want and to select an

encoding for your extended instruction. Finally, give the resulting file to M2V.

9. Start a CMD or Visual Studio command window.

10. Make sure the BBTools binaries are in your PATH environment variable and move to

the directory where your MyProgram.rel image is located. Notice that you need the

image before it is stripped, e.g. the REL file and not the EXE file.

11. Run the BBFIND tool:

bbfind –b MyProgram.exe.bbs MyProgram.rel

12. Run the BBMATCH tool:

bbmatch –c ignore MyProgram.exe.bbs > MyExtension.bbw

13. Edit the file MyExtension.bbw to isolate your basic block and to create an appropriate

encoding for the Extended Instruction for it.

14. Invoke the M2V compiler:

m2v MyExtension.bbw MyExtension.v

DRAFT – DO NOT REPRODUCE

209 | P a g e

Please be aware that the first version of the M2V compiler included in this release has

many and rather severe limitations.

DRAFT – DO NOT REPRODUCE

210 | P a g e

5 Architecture of the eMIPS System

 The eMIPS processor is a „dynamically extensible microprocessor‟ because it is based
on a new, extensible architecture. The architecture is extensible because it allows additional
logic to interface and interact with the basic data path at all stages of the pipeline. The
additional logic, which we term Extensions, can be loaded on-chip dynamically during
execution by the processor itself. The architecture therefore possesses the unique ability to
extend its own ISA at run-time.
 Figure 2 presents a block diagram of the eMIPS processor organization. The pipeline
stages, general purpose register file and memory interface match those of a „classic‟ RISC
CPU and are depicted in lighter color in the diagram. These pipeline stages constitute the
Trusted ISA or TISA, the core portion of the architecture that is required for initial operation
and to provide a base level of trust in the functioning of the processor. These blocks cannot be
removed or disabled and must be present at startup of the system. These blocks constitute
the fixed partition of the architecture and include all resources that are of a security sensitive
nature, such as the system coprocessor. The TISA also includes all the facilities for self-
extension, including instructions for loading, unloading, disabling and controlling the
unallocated Extension blocks in the microprocessor. At a functional level the pipeline blocks
operate similarly to the „classic‟ CPU, except their interconnections with respect to each other
and other blocks differs. Their implementations differ as well and this will be explained later.

Figure 2: Block diagram of the eMIPS architecture.

DRAFT – DO NOT REPRODUCE

211 | P a g e

 Figure 2 shows two sets of blocks labeled “Extensions”. These Extensions distinguish
the processor architecture from the established RISC architecture from which it is derived.
Through the Extensions the processor overcomes two major shortcomings of the RISC
architecture; inflexibility and inability to evolve with changing needs. Using the partial
reconfiguration design flow described in Section 5.2 the processor is partitioned into fixed and
reconfigurable regions. The TISA is included in the fixed region; the Extensions are included in
the reconfigurable regions and are interconnected with the TISA by means of the bus macros
described in Section 5.2. By implementing different Extensions for the reconfigurable regions,
it becomes possible to adapt the functionality of the processor. The processor may apply
these adaptations after deployment, dynamically while the applications continue executing.
 Examples of possible Extensions include but are not limited to FPUs, Digital Signal
Processors, or DSP, Encryption Coprocessors, Vector Processors and the application specific
instructions. Using application execution profiling, engineers identify the Extended Instructions
and implement them as hardware modules synthesized for the target device. More than one
Extended Instruction might be included in a single Extension. A successful implementation of
an Extended Instruction runs in fewer clock cycles than the original instruction sequence it
replaces. If the instruction is executed a sufficient number of times, even a single clock cycle
reduction in execution could significantly improve performance.
 The diagram of Figure 2 depicts two Extension blocks, however the current
implementation of the eMIPS system instantiates only one. Depending on space and other
limitations imposed by the physical chip, additional Extension slots could be made available in
the future.

5.1 Overview of Xilinx Virtex 4 and ML401 Board

 The FPGA selected for the development and experimentation of eMIPS is the Xilinx
Virtex 4 product line. The Virtex series rates among the most powerful FPGA devices in the
market in terms of density, feature set and speeds. These FPGAs clock commonly at
frequencies of 100 MHz but the specifications indicate they could operate at much higher
frequencies, the specifications claim 500 MHz. These frequencies fall significantly short of
modern ASIC frequencies approaching multiple gigahertz but the FPGAs continue to grow in
speed with each new generation. The Virtex 4 high-end FPGAs come in three flavors denoted
by LX, SX and FX. Each flavor includes a set of special features to allow developers to select
an FPGA with the feature set that best fits their application domain. The Virtex 4 LX targets
logic design applications. For this reason, the Virtex 4 LX provides the largest number of
logical blocks for implementation. Given the floor planning requirements of partial
reconfiguration, having more logic area to work with is preferred. Therefore, the
implementation of the eMIPS processor targets the Xilinx ML401 Evaluation board with the
Virtex LX25.[20] Use of the SX line is also an appealing prospect and, for instance, porting to
the corresponding ML402 board should be an easy project.

DRAFT – DO NOT REPRODUCE

212 | P a g e

Figure 3: Xilinx ML401 Evaluation Board with Virtex 4 LX25[20]

5.2 Overview of Xilinx Partial Reconfiguration

 Xilinx has supported partial reconfiguration since its Virtex II chip [14] and that feature

continues in the more modern Virtex 4 and Spartan III. The smallest reconfigurable unit of the
FPGA configuration fabric is called the „frame‟. When partitioning the FPGA into different
independently reconfigurable and static regions the boundaries between these regions must
coincide with the boundaries of these „frames‟. Multiple frames may be grouped together into
a single rectangular region. Regions cannot be smaller than a „frame‟. In the Virtex 4, a
column of sixteen slices makes up the „frame‟. In this way, each column of the Virtex 4
contains multiple frames. In the case of the LX25, which has 192 rows of slices, each column
contains twelve frames. This architecture provides the Virtex 4 the advantage of allowing for
rectangular regions in the form of tiles on the FPGA configuration fabric as opposed to strictly
columns as in the previous architectures.[5]

Figure 4: Examples of partitioning of a Reconfigurable FPGA design. [5][14]

 Hardware designers must also consider the routing of signals crossing the boundaries
of the various regions. Only the region containing the reconfigurable module changes when
reconfiguration occurs. The remaining configuration fabric remains unchanged. Therefore any
inconsistency from one configuration to the next will result in unpredictable results.
 One potential inconsistency can occur when a signal crosses the module boundaries.
Consider for instance the case of a signal that crosses the boundary and in one configuration

DRAFT – DO NOT REPRODUCE

213 | P a g e

the signal routes through row four but the same signal is routed in row five in another
configuration. When the system undergoes reconfiguration, the signal will not line up on the
boundary where the reconfiguration occurred, therefore cutting the signal. To prevent this
inconsistency we can restrict the routing of such signals to fixed locations along the region
boundaries. This is done by routing the signals through a „bus macro‟ or a hard pre-routed
macro positioned on the module boundary and by forcing the router program to route the
signal through a given location in each configuration. For the eMIPS processor, bus-macros
are placed between the interfaces of the fixed instruction set logic and the dynamic
Extensions.

Figure 5: Logical connections of signals crossing a region boundary.[5]

 Xilinx provides LUT based „bus macros‟ for all their products including the partial
reconfiguration feature. Xilinx ISE with the Partial Reconfiguration Tools takes the required
routing consistency a step further by recording the routing of all fixed logic that passes through
reconfigurable regions in a routing database. Xilinx ISE incorporates these routing patterns in
the place-and-route phase of compilation, so that the reconfigurable regions will maintain
consistency.

Figure 6: LUT Based Bus Macro.[5]

 The partial reconfiguration design flow includes four phases as documented by Xilinx.
These phases are Design Entry, Initial Budgeting, Active Module, and Final Assembly. Full
details can be found in [5][13][14]. The following is a brief description of each phase:
1. Design Entry – This phase involves setting up the project by targeting the desired FPGA

device, decide on design partitioning and performing some design planning. Before
PlanAhead, this phase also included manually setting up the project directory structure.

DRAFT – DO NOT REPRODUCE

214 | P a g e

PlanAhead now handles this in project setup. In large projects including multiple
engineers, this phase is usually carried out by the team lead.

2. Initial Budgeting – In this phase the design engineers write the top level module and
implementation constraint files. The constraint files include information such as pin
assignments, area definitions, assignment of modules to areas and clocking constraints.
The top level module defines the ports of the design and instantiates all second level
modules and defines their interfaces to each other and to the system ports. This top level
should be minimal in its contents. There should be as little logic in this layer as possible
and contain only the modules that will be implemented at this layer. Any top level logic that
is present goes through place and route and this data is written to the routing database for
future use. In most cases, a team lead also carries out this phase.

3. Active Module – Design engineers execute this phase of the design flow for each module
instantiated in the top level in parallel. The team lead assigns hardware designers to
implement the different modules using the interface outlined in the top level written in the
previous phase. In the case of reconfigurable modules, hardware designers implement two
or more versions of this module. In some cases, designers write module level constraints
into the implementation constraint file. The PlanAhead tool synthesizes each module
independently of the rest of the design and performs place and route within the region
designated for it while taking the contents of the routing database into account.

4. Final Assembly – This is the final phase of the design flow. In this phase, the team lead
collects the module implementation of each module from the hardware designers and uses
PlanAhead to integrate them together. The team lead creates a floor plan of the system for
each possible configuration or combination of modules. Using these floor plans PlanAhead
completes any additional place and route required and generates configurations files for the
desired default configuration and other files for the reconfigurable regions that change
dynamically.

 For addition information and resources on the Xilinx Partial Reconfiguration Design
Flow refer to following:

 http://www.xilinx.com/support/prealounge/protected/index.htm

 http://www.xilinx.com/ise/optional_prod/planahead.htm

5.3 Overview of Xilinx System ACE Configuration Solution

 The System Advanced Configuration Environment, or System ACE [12], attempts to fill
a niche for pre-engineered configuration solutions of multiple FPGA systems. The system
applies to the eMIPS processor‟s need to control and modify its extensible configuration
architecture. System ACE works through the interaction of four interfaces: JTAG to host PC,
JTAG to FPGA, and Compact Flash & Control from Microprocessor or FPGA. Using the host
JTAG interface a configuration file can be downloaded manually to the system and used to
configure one or multiple FPGAs. This feature is excellent for debugging, it allows the
developer to download test configuration and run code before including the new configuration
in the system. When configuring the system from the host JTAG the System ACE reads the
bits stream on the host interface and transfers it to the system JTAG chain it controls. After
the configuration design completes and the system is ready for deployment, system controlled
configuration can be performed via a microcontroller or FPGA control. In the case of a single
FPGA system, like the eMIPS processor, the microcontroller interface can be integrated in the
FPGA to allow it to control its own configuration. The Compact Flash is a portable, permanent
storage device that stores the configuration files and inserts into a reader integrated with the

http://www.xilinx.com/support/prealounge/protected/index.htm

DRAFT – DO NOT REPRODUCE

215 | P a g e

System ACE. Using the control interface the FPGA or microcontroller can initiate configuration
of the system by selecting a configuration file stored in the Compact Flash that the System
ACE drives on the system JTAG chain. Alternatively, the microcontroller could store the
configuration data in RAM and send it to System ACE itself, using a different set of commands.
The System ACE also provides an interface similar to the IDE disk interface commonly found
on PCs to allow the microcontroller to read and write to the Compact Flash.
 The System ACE controller interface provides a 3-bit configuration selection input to
allow the controller to select one of eight potential configurations. Note that the Compact Flash
can store more than eight configurations, as illustrated in Figure 7. The configurations are
grouped into sets of no more than eight and placed in directories on the Compact Flash. In the
root directory there exists a file called „xilinx.sys‟. This file tells System ACE which directory
containing configuration files should be considered „active‟. The controller can only use
configuration files from the „active‟ directory. The „xilinx.sys‟ file also assigns to each file the
numerical designation zero through seven for the configuration selection. To change which set
of configurations is considered active, one must change the assignment in the „xilinx.sys‟ file.
System software can do this dynamically using the IDE interface to the Compact Flash.[12]

Figure 7: System ACE File structure.[12]

5.4 Overview of the RISC CPU Organization

 The eMIPS microprocessor system is derived from the MIPS RISC architecture and
thus includes most of the same components one would expect to find in a modern RISC
microprocessor. The eMIPS microprocessor is a five stage pipeline including the following
pipeline stages: Instruction Fetch (IF), Instruction Decode (ID), Instruction Execute (IE),
Memory Access (MA) and Writeback (WB). The functions of these stages are as follows:

DRAFT – DO NOT REPRODUCE

216 | P a g e

 Instruction Fetch (IF) – Update the program counter, or PC, and fetch the instruction
located in memory at the address stored in the PC.

 Instruction Decode (ID) – Using wired logic and LUTs, decode the instruction passed
from IF into control signals that control the remainder of the pipeline. Read any data
required by the instruction from the general purpose register file. Test branch
conditions and calculate the memory location of the next instruction to be executed.

 Instruction Execute (IE) – Using an Arithmetic Logic Unit, or ALU, and other special
purpose logic perform operations on data based on the control signals passed from ID.

 Memory Access (MA) – In case of a load or store instruction, the output of IE is used as
the memory location to be read from or written to. Otherwise, the output of IE is passed
through.

 Writeback (WB) – In the event a register in the general purpose register file is modified
by the instruction, the output of MA is written to the desired register.

In addition to this datapath the eMIPS microprocessor‟s Extension provides a parallel
execution path to the one represented by the EX, MA, and WB stages.
 To realize greater throughput at a higher frequency, some microprocessor
implementations have utilized as many as eight pipeline stages. The deeper the pipeline is the
greater the overhead in the event of a branch event, hazards and exceptions on execution. To
further offset this overhead, microprocessor designers have developed a variety of features,
including branch predictors and speculated execution. These features have highly complex
implementations and exist beyond the current scope of the eMIPS project. For this reason, the
architecture of the eMIPS microprocessor omits these features and has just the basic five
pipeline stages.

5.5 eMIPS System Components

 The following describes the different system modules that make up the eMIPS CPU
system implementation. Many of these will be recognizable by those familiar with a RISC CPU
organization. Other modules are new additions necessary to support eMIPS‟ unique features.

5.5.1 Top Level Module

MIPSPL_FPGA (eMIPS)
 MIPSPL_FPGA is the top level module of the eMIPS microprocessor system design. All
other components are sub-modules at some level in the design tree. All input/output pins are
defined here as well as the partitioning of the fixed portion of the design, the TISA, from the
reconfigurable Extensions.

DRAFT – DO NOT REPRODUCE

217 | P a g e

Figure 8: Design Hierarchy of the Top Level Module

5.5.2 Clocking and IO Modules

TOP_DCM (sys)
 TOP_DCM is responsible for all the global clocking resources of the eMIPS
microprocessor system. This module contains a Digital Clock Manager, or DCM, in series with
a PMCD. The DCM takes the source clock from a clock pin of the FPGA as input. The DCM
outputs a clock of the same frequency and one equal to that source clock divided by ten. In
the case of a 100 MHZ source clock, this produces 100 MHZ and 10 MHZ clocks respectively.
These clocks are inputted to the PMCD where their edges are aligned. The PMCD also
produces additional clocks based on the source frequency input. The PMCD produces clocks
with the source frequency divided by two, four, and eight, all with their edges aligned with the
source frequency clock and the ten-divided clock. The output of the PMCD that is of the
source frequency is inputted to the DCM as an internal feedback. Using the feedback, the
DCM uses phase shifting to minimize the slew of the clock. A second DCM is used in a similar
way to minimize the slew of the clock outputted to the on-board SRAM of the ML401 board
The module includes several global clock buffers (BUFG) to route the clocks throughout the
FPGA fabric.

IOBUF4 (mdatap_io)
 IOBUF4 is a set of four IOBUF primitives wired together to form a four bit bidirectional
bus. This is for implementing bidirectional I/Os for the external chip interfaces. One instance
is used for the parity bits of the SRAM bus.

IOBUF16 (pdata_io)
 IOBUF16 is a set of sixteen IOBUF primitives wired together to form a sixteen bit
bidirectional bus. This is for implementing bidirectional I/Os for the external chip interfaces.
One instance is used for the data bits of the System Ace bus.

DRAFT – DO NOT REPRODUCE

218 | P a g e

IOBUF32 (gpio_io, mdata_io)
 IOBUF32 is a set of thirty-two IOBUF primitives wired together to form a thirty-two bit
bidirectional bus. This is for implementing bidirectional I/Os for the external chip interfaces.
One instance is used for the data bits of the shared SRAM and FLASH bus. Another one is
used for the GPIO.

5.5.3 Trusted ISA (TISA), Static Design Region

TISA (mips)
 TISA encapsulates all the modules in the eMIPS microprocessor system that makes up
the Trusted ISA. These modules include the pipeline stages and the supporting logic as well
as the memory subsystem, including peripheral drivers and busses.

CLOCKMASTER (clkmas)
 The CLOCKMASTER is responsible for synchronizing the eMIPS microprocessor
pipeline. The CLOCKMASTER generates the synchronizing pipeline clock used for piping
instructions through the pipeline. The CLOCKMASTER uses some logic to allow all pipeline
stages to complete their work before continuing. The CLOCKMASTER is also responsible for
announcing the system reset and generating a soft reset in response to a signal from the
system coprocessor zero.

Figure 9: Design Hierarchy of the Trusted ISA

DRAFT – DO NOT REPRODUCE

219 | P a g e

TOPA (to_pa)
 The TOPA module gathers all the signals required by the pipeline arbiter and routes
them to that region of the design.

PIPELINE_ARBITER (pa)
 PIPELINE_ARBITER listens to the instruction decode blocks of the TISA and of the
Extensions to determine which, if any, of the available paths are able to decode the instruction
previously fetched. The PIPELINE_ARBITER is configured using register sixteen of the
system coprocessor zero, the Extension Control register. The Extension Control register is
partitioned into four eight-bit sets that each provides configuration information for a single
Extension slot. The least significant bit of the set is an active high enable bit allowing software
to enable or disable an instantiated Extension. The second bit is the load bit which rises when
an Extension slot is filled and remains high until it is unallocated. The third bit is the trap
enable bit. When this bit is high and a loaded Extension is disabled the PIPELINE will throw a
trap on that Extension‟s instructions. Otherwise, if the trap bit is low, the Extended instructions
associated with that Extension will be treated as NOPs. Following the trap bit is a two bit
priority assignment used for arbitrating conflicts between the Extensions and the TISA. In the
case that neither the TISA nor any Extension recognizes an instruction the
PIPELINE_ARBITER signals a reserved instruction exception or trap. After arbitration is
complete the PIPELINE_ARBITER enables the winning data path.

TOIF (to_if)
 The TOIF module gathers all signals required by the instruction fetch and routes them to
that region of the design. This module also multiplexes signals coming from the extension
region.

INSTRUCTION_FETCH (inf)
 INSTRUCTION_FETCH is the first stage in the eMIPS microprocessor pipeline.
INSTRUCTION_FETCH maintains the current program counter, or PC, and updates it on each
positive edge of the pipeline clock. The INSTRUCTION_FETCH dispatches memory read
request to the memory interface to fetch instructions from memory. When the instruction
returns from the memory interface the INSTRUCTION_FETCH forwards that instruction to the
instruction decode phase.

TOID (to_id)
 The TOID module gathers all signals required by the instruction decode and routes
them to that region of the design. This module also multiplexes signals coming from the
extension region.

INSTRUCTION_DECODE
 INSTRUCTION_DECODE is the second stage in the eMIPS microprocessor pipeline.
INSTRUCTION_DECODE attempts to decode each instruction that is forwarded to it from
instruction fetch, in parallel with the loaded Extensions. In the first stage of the instruction
decode, the INSTRUCTION_DECODE and the Extension ID evaluate the instruction and if the
instruction is recognized by a decoder, that decoder will lower its RI (Recognized Instruction)
signal to show it has recognized the instruction. Then the decode blocks wait to be enabled by

DRAFT – DO NOT REPRODUCE

220 | P a g e

the pipeline arbiter. If the INSTRUCTION_DECODE is enabled, it finishes decoding the
instruction into control signals for the remaining stages in the pipeline and forwards them to the
execution phase. Otherwise, the INSTRUCTION_DECODE forwards the signals that produce
a NOP in the pipeline.

TOEX (to_ex)
 The TOEX module gathers all signals required by the execute phase and routes them to
that region of the design. This module also multiplexes signals coming from the extension
region.

EXECUTE (ex)
 EXECUTE is the third stage in the eMIPS microprocessor pipeline. EXECUTE is
passed control signals and operand data from the instruction decode phase of the pipeline.
Using the control signals EXECUTE performs operations on the operand data using its
arithmetic logic unit, or ALU, and other logic including a multiplier, divider, shifters and muxes.
By the end of this phase, the Execute has produced a result that is either a data result that will
be written to the register file, or an effective address for a memory transaction.

TOMA (to_ma)
 The TOMA module gathers all signals required by the memory access phase and routes
them to that region of the design. This module also multiplexes signals coming from the
extension region. This multiplexing is also used when an instruction in the Extension slot
intends to reenter the TISA execution path at the memory access phase.

MEMORY_ACCESS (ma)
 MEMORY_ACCESS is the fourth stage in the eMIPS microprocessor pipeline.
MEMORY_ACCESS is passed control signals and data from the execution phase of the
pipeline. In the case of a memory related instruction, MEMORY_ACCESS uses the result from
the execution phase as the effective address of a memory transaction. In the case of a write,
the MEMORY_ACCESS dispatches a request to write the data passed from the execution
phase into the effective address location. For a read, the MEMORY_ACCESS dispatches a
read request. When the read request returns, MEMORY_ACCESS then passes the data
returned to the writeback phase of the pipeline, to be written to the destination register. For
non memory related instructions, the MEMORY_ACCESS passes the signals through to the
writeback phase of execution.

TOWB (to_wb)
 The TOWB module gathers all signals required by the writeback phase and routes them
to that region of the design. This module also multiplexes signals coming from the Extension
region. This multiplexing is also used when an instruction in the extension intends to reenter
the TISA execution path at the writeback phase.

WRITE_BACK (wb)
 WRITE_BACK is the fifth and final stage in the eMIPS microprocessor pipeline.
WRITE_BACK is passed control signals and data from the memory access phase of the
pipeline. In most cases, WRITE_BACK will be given data and a destination register number

DRAFT – DO NOT REPRODUCE

221 | P a g e

where that data is to be written. The WRITE_BACK will then dispatch a write request to the
intended general purpose register file. In other cases, such as a memory write, the
WRITE_BACK module does nothing. All instructions are considered to have been committed
after they finish the WRITE_BACK.

TOEXT (to_ext)

The TOEXT module gathers all signals required by the Extension interface and routes
them to that region of the design. Section 6 describes this interface in details.

TODF (to_df)
 The TODF module gathers all signals required by the data forward unit and routes them
to that region of the design.

DATAFORWARD (df)
 DATAFORWARD is a module found in most RISC pipelines and used to deal with data
hazards. DATAFORWARD monitors the source and destination register numbers of the
instructions in each of the eMIPS pipeline stages. Using these, the logic DATAFORWARD
identifies data dependencies in the pipeline and controls a pair of muxes in the instruction
decode and execution phases of the pipeline to forward intermediate data from the memory
access and writeback phases as needed.

TOHZ (to_hz)
 The TOHZ module gathers all signals required by the hazard unit and routes them to
that region of the design.

HAZARD (hz)
 HAZARD is a module found in most RISC pipelines and used to deal with control and
data hazards. HAZARD monitors the control signals of the pipeline to identify control and data
hazards. If the logic in HAZARD identifies a hazard condition, it stalls the pipeline at the
instruction decode phase of the pipeline until the hazard condition has been alleviated.
Potential hazards include, requiring data from a memory read for a branch test or reading from
a multiply unit data register before it is finished with its current operation.

TORG (to_rg)
 The TORG module gathers all signals required by the general purpose register file and
routes them to that region of the design. This module also multiplexes signals coming from the
Extension region.

REGISTERFILE (regs)
 REGISTERFILE is a collection of thirty-two general purpose registers that are used to
store operand data for the instructions executed on the eMIPS microprocessor. The standard
MIPS microprocessor register file has two read ports for reading operand data in parallel and a
single write port. Due to the increased data requirements of Extensions, the REGISTERFILE
for eMIPS has been implemented with four read ports and two write ports for increased
throughput. The current implementation experiences a maximum read latency of 40 ns and a
maximum write latency of 70 ns from the Extension.

DRAFT – DO NOT REPRODUCE

222 | P a g e

TOCP0 (to_cp0)
 The TOCP0 module gathers all signals required by the system coprocessor and routes
them to that region of the design. This module also multiplexes signals coming from the
extension region.

COPROCESSOR0 (cp0)
 COPROCESSOR0 is the system coprocessor and the exception handler included in the
standard MIPS microprocessor architecture. COPROCESSOR0 controls the CPU state of the
eMIPS microprocessor and handles incoming exceptions and interrupts. The
COPROCESSOR allows for software handling of exceptions and interrupts and recovery
through recording of the CPU context in these events for software processing.

TOMEM (to_mem)
 The TOMEM module gathers all signals required by the memory interface and routes
them to that region of the design. This module also multiplexes signals coming from the
Extension region.

LOCK (lk)
 The LOCK module detects the insertion of Extension peripherals. LOCK presents a
serial interface to a key inside the Extension peripheral, using the PRESENT output signal of
the Extension interface. After the Extension peripheral is loaded into the slot and the clock is
activated the Extension peripheral begins sending a bit stream called the key value. The
LOCK module compares this bit stream to the system key and if it matches, LOCK asserts the
PRESENT bit for that Extension slot in the extension controller. When this occurs, the
peripheral discovery and configuration process begins in system software. If there is no match
the PRESENT bit is not asserted. The key inside of the Extension must continue sending the
key bit stream until its LD bit is asserted. The LD is asserted the PRESENT output must be
held high until the Extension peripheral is unloaded. When this occurs, LOCK lowers the
PRESENT bit in the Extension controller and the peripheral removal process reclaims the
system resources from the Extension peripheral.

5.5.4 Memory Subsystem Modules

MEMORY_INTERFACE (mem)
 MEMORY_INTERFACE is the top level interface between the memory subsystem and
the eMIPS microprocessor pipeline. Like in the standard MIPS, the interface exposes two
ports: one for instruction fetching and one for memory accesses. Because the system has
actually only a single bus to memory the MEMORY_INTERFACE is broken into three parts.

MEMORY_ARBITER (ma)
 MEMORY_ARBITER is the part of the memory interface that latches the incoming
memory requests, serializes them, and sends them to the memory bus. The
MEMORY_ARBITER gives higher priority to the instruction read memory transactions over any
data transaction.

DRAFT – DO NOT REPRODUCE

223 | P a g e

MEMORY_BUS_FRONT (mbf)
 MEMORY_BUS_FRONT receives memory requests from the memory arbiter one at a
time, and generates the control signals to carry out the memory request on the memory
controller.

MEMORY_CONTROLLER (mc)
 MEMORY_CONTROLLER combines all the on-chip peripherals and the peripheral
interfaces together on a single bus. Each peripheral listens to the address bus for the address
ranges assigned to it. If the peripheral recognizes an incoming address, it latches the control,
address and data when the start signal is raised. The peripheral acknowledges the request by
lowering its done signal. When the memory transaction is complete the peripheral raises the
done signal. In the case of a memory read, the data is valid with done is raised.

5.5.5 On-Chip Peripherals

Figure 10: eMIPS Memory Bus

BLOCKRAM_CONTROLLER (brc)
 BLOCKRAM_CONTROLLER interfaces the TISA to a small on-chip memory called a
BlockRAM. This BlockRAM contains the bootloader program, which is responsible for
initializing the eMIPS CPU at start up and after reset. The BlockRAM also contains the
Peripheral Mapping Table, or PMT, which represents the allocation of the eMIPS memory
space amongst the peripherals currently present in the system. The table is dynamically
maintained by system software and modified when loadable peripherals are loaded/unloaded

DRAFT – DO NOT REPRODUCE

224 | P a g e

in the Extension slot. The bootloader builds the PMT through a discovery process each time
the eMIPS CPU is initialized.

SRAM_CONTROLLER (sc)
 SRAM_CONTROLLER interfaces the TISA to the ZBT SRAM available on the Xilinx
ML401 board. The application software running the eMIPS CPU is usually copied here from
either Flash or the USART and then executed.

FLASH_CONTROLLER (fc)
 FLASH_CONTROLLER interfaces the TISA to the parallel Flash Memories on the Xilinx
ML401 Board. It is possible to store in Flash a binary image of an application for the eMIPS
system to run at start up. In the case of our experiments this has been a embedded operating
system called Microsoft Invisible Computing (see section 2.3).

USART_CONTROLLER (uc)
 USART_CONTROLLER interfaces the TISA to a fully programmable, universal serial
asynchronous receiver/transmitter. The USART is used to download programs and to
communicate with the command console on the host PC.

SYSACE_CONTROLLER (sac)
 SYSACE_CONTROLLER interfaces the TISA to the System ACE Configuration
Solution chipset available on the Xilinx ML401 Board. The System ACE provides an IDE like
disk interface to the Compact Flash card available on the Xilinx ML401. The System ACE acts
as a JTAG programmer to allow for dynamic reconfiguration of the eMIPS system.

GPIO_CONTROLLER (gpc)
 GPIO_CONTROLLER interfaces the TISA to the switches, buttons, LEDs, and pins of
the Xilinx ML401 Board.

INTERRUPT_CONTROLLER (ic)
 INTERRUPT_CONTROLLER supports programmable interrupts for the eMIPS system.

TIMER_CONTROLLER (tc)
 TIMER_CONTROLLER interfaces two 64-bit counters to the TISA. One of the counters
is a 64-bit down counter and the other is a 64-bit free counter.

POWER_MANAGEMENT_CONTROLLER (pmc)
 POWER_MANAGEMENT_CONTROLLER is a stub module for adding power
management in a later release.

EXTENSION CONTROLLER (ec)
 EXTENSION CONTROLLER acts as a proxy to talk to the Extension peripheral‟s Base
Address Translation registers, or BATs during the configuration phase after an Extension
peripheral is loaded and discovered. Through the EXTENSION CONTROLLER‟s interface the
peripheral‟s address space, interrupt and privilege needs are determined by system software.
Then using this same interface the peripheral is assigned its address space and changed to a

DRAFT – DO NOT REPRODUCE

225 | P a g e

running state. After the system software has configured the Extension peripheral using this
interface, the Extension peripheral is allowed to carry out transactions on the memory bus.

5.5.6 Extensions, Reconfigurable Design Region

EXTENSION0 (ext0)
 EXTENSION0 is an instantiation of an eMIPS Extension. This serves as a wrapper
module to define the Extension interface. It is also used if a user wants to insert an Extension
into the design for a static build. In this case the user Extension is instantiated inside of this
wrapper and connected to the appropriate signals. The EXTENSION0 includes interfaces to
the pipeline stages, register file, and memory.

DRAFT – DO NOT REPRODUCE

226 | P a g e

6 The eMIPS Extension Interface
 The defining feature of the eMIPS system is its Extension interface, and the ability to

dynamically reconfigure the contents of the Extension slots during runtime. Users of the

eMIPS system may utilize the example extensions provided with this release to accelerate

their programs and extend the eMIPS basic functions. This section describes how to fully take

advantage of the eMIPS capabilities by letting users implement their own extensions. Four

topics are addressed: software control of the Extension slots, HDL coding of the interfaces,

interface protocols and design floor planning.

6.1 Extension Interface Control

 The eMIPS Extension interface is controlled by the TISA through the system

coprocessor. The system coprocessor of the eMIPS system has been extended to include a

new register to control the Extension interface. This register is register 16 (sixteen) of the

system coprocessor register file. We will refer to it as the Extension Control Register.

Figure 11: Extension Control Register (CP0 register 16)

 The Extension Control Register is a read/write register that is accessible through the

standard MIPS coprocessor interface instructions, namely MTC0 and MFC0. The Extension

Control Register is divided into four eight-bit slices. Each slice controls the interface to a single

Extension slot, as indicated in Figure 11. Since the eMIPS System in this release only has a

single Extension slot, only the first eight bits of this register are relevant. Figure 12 provides

the layout of the Extension Control Register bits for each slice.

Figure 12: Per Extension Slice of the Extension Control Register

 The load bit, or LD, indicates that an image has been loaded in the Extension Slot and

is ready for use. When this bit is low, all communication with the Extension slot is switched off.

DRAFT – DO NOT REPRODUCE

227 | P a g e

The Extension slot cannot detect any signals from the TISA and cannot drive any signals

either. If the LD is high, the instruction decode bus becomes visible to the Extension and it

may attempt to request to execute the instructions that it recognizes. However, these requests

will be ignored unless the enable bit, or EN, is high. The transition of the LD bit from high to

low also asserts the reset signal to the Extension for a single PCLK cycle, unless the

Extension is a peripheral.

 When the EN is low, all communication with the Extension slot is switched off, with the

exception of the instruction decode bus. This is to allow the Extension to still communicate

which instructions belong to it. If those instructions are not otherwise recognized by the TISA

the processor may trap with a Reserved Instruction exception. If the trap enable bit, or TR, is

low the processor will not trap and treat the instruction as a NOP. If the TR is high, the

processor will trap. Raising the EN bit activates all of the Extension‟s interfaces. This allows

the Extension to compete with the TISA for instruction execution.

It is possible that an instruction is recognized by multiple Extensions, or both by an

Extension and by the TISA. To deal with these cases, each Extension slot is assigned a

priority, defined by the two-bit field PR. In the case of a conflict, the Extension with the highest

priority will win the arbitration process. The TISA has a fixed priority of two (2‟b10).

 The CLK bit is similar in function to the LD bit in how it effects the Extension interfaces,

but it has additional uses. Like the LD bit, if the CLK bit is low all communication between the

Extension and TISA is disabled. Additionally, when the CLK bit is low the reset signal is

asserted, and a few clock cycles later the clock to the Extension is disabled. It is expected that

turning off the clock to an Extension will save power and/or allow the system to shut down

malfunctioning Extensions before unloading them. When the CLK bit is raised the reset signal

is deasserted and the clock to the Extension resumes. If the LD bit is still low the

communication to the TISA continues to be latched off except for the PRESENT signal from

the Extension, which is used for discovery during the Extension peripheral configuration.The

PER bit is a flag used to indicate that an Extension is a peripheral module in addition to, or in

place of, an execution path. With the eMIPS system it is possible to realize Extensions that

can be interfaced via memory transactions and occupy address space in the memory map, just

like the built-in peripheral devices. Examples of these modules are provided in the release and

include a timer and a USART (see Appendix A). When the PER bit is high the memory bus is

exposed to the Extension to allow it to respond to read and write transactions that match its

assigned address space. By setting the PER bit low the connections between the bus and the

Extension are latched off.

 The PRIV bit is a flag used to indicate the level of trust the operating system places on

the Extension image that is occupying this slot. By default the system does not trust the

Extension and the PRIV is low. In this state all interactions with the TISA are controlled by the

pipeline arbiter and the Extension can do nothing without first requesting permission from the

pipeline arbiter. If the PRIV bit is set, this indicates that the system has full trust in the image

that is occupying that slot. Currently, this allows the monitoring ports in the Extension interface

DRAFT – DO NOT REPRODUCE

228 | P a g e

to be opened to allow the Extension to monitor memory and register traffic. Other applications

of the level of trust are planned for future releases.

6.2 HDL Coding of Interfaces

 A good place to start the extension design is the HDL code for the extensions that are

provided in this release. The interface ports and their definitions can be found in the

„extension0_black_box.v‟ file provided in the „Sources‟ package. When looking at the ports in

the module definition it is noticeable that many ports have different uses at different times

during the extension execution. This was done to reduce the number of signals required to

cross the reconfigurable boundary in the design and to reduce the number of bus macros that

must be placed to cross the boundary.

 The recommended way to implement an Extension is to make a copy of the file

„extension0_black_box.v‟ that contains the Extension0 wrapper and to rename it appropriately.

Then an instance of the new extension is instantiated within this wrapper. This approach has

the additional benefit of minimizing code changes to the base system, e.g. in case the user

extension is used in a static build. An example of this scheme is provided in the release in the

following files:

Wrapper file Implementation file

extension0_mmldiv64.v mml_div64.v

6.3 Interface Protocols

This section describes the Extension interface protocols that might be required for an

Extension to interact with the TISA, the eMIPS standard pipeline. Simple Extensions will not

need all of these interfaces. More complex Extensions can utilize several interfaces to execute

their functions. These include interfaces to the register file, memory and pipeline stages.

6.3.1 Instruction Decode/Arbitration Protocol

 This interface to the pipeline is likely to be included in most every extension a user will

ever write. In order for an extension to access the pipeline resources and to interact with the

pipeline, it must request and obtain access to these resources. This entails going through an

arbitration process with potentially competing Extensions, and possibly the TISA. The most

common example is the case of an extension recognizing an instruction and requesting to take

over execution of that the instruction. Figure 13 illustrates the interaction between the pipeline

arbiter and the Extension during the instruction decode phase. The Extension is requesting to

execute the instruction and wins arbitration.

DRAFT – DO NOT REPRODUCE

229 | P a g e

Figure 13: Instruction Decode/Arbitration Protocol

 On the rising edge of the pipeline clock, PCLK, the program counter, PC, and the

instruction itself will be presented to the instruction decode logic of the TISA. If the Extension‟s

load bit in the system coprocessor is enabled, the Extension will also see the program counter

and the current instruction. If the Extension recognizes the instruction it lowers its recognized

instruction signal, RI, and keeps it low until the next positive edge of the PCLK. This is when

the next instruction in the pipeline will be presented to the Extension and the TISA. The

arbitration process begins after the Extension lowers its RI signal. The pipeline arbiter takes

the RI signals from the TISA and from each Extension and based on the priority stored in the

Extension Control Register, it decides which available path will execute the instruction. If the

Extension wins arbitration, the pipeline arbiter will drive high the Extensions enable port, EN,

until the next positive edge of PCLK (see Figure 13). During the next PCLK cycle, if the

Extension requires multiple clocks or resources such as register or memory values, the

Extension must raise its acknowledge signal, ACK, to request them from the pipeline arbiter.

After the Extension asserts its ACK signal the pipeline arbiter responds by raising the grant

signal, GR, for that Extension. At this point the paths to the pipeline registers and memory are

switched to the Extension and the pipeline is stalled. The pipeline arbiter remembers which

Extension it enabled during the last cycle and only responds to an ACK signal from that

DRAFT – DO NOT REPRODUCE

230 | P a g e

Extension. The GR signal will remain high as long as the ACK signal is high. The ACK signal

should be lowered after the positive edge of the PCLK cycle, before the Extension releases

control of the pipeline. The GR will lower after the next positive edge of PCLK and the pipeline

will resume as shown in Figure 14.

Figure 14: Resuming the Pipeline

 When an instruction is assigned to the Extension, a NOP instruction replaces that

instruction in the TISA pipeline. In certain cases it may instead be desirable to allow the TISA

to execute the instruction normally, while the Extension performs some other operation in

parallel (e.g. monitoring, profiling activities). In these cases the Extension must raise its

Passive/Parallel Instruction, or PI, signal. The instruction is then piped to the execution phase

of the TISA (instead of a NOP) but the Extension can still request pipeline resources and stall

the pipeline like in the previous case. This is depicted in Figure 15.

DRAFT – DO NOT REPRODUCE

231 | P a g e

Figure 15: Instruction Decode/Arbitration Protocol for Passive/Parallel Operation

6.3.2 Register File Interface

 The register file interface allows the Extension to read from and write to the general

purpose register file. The TISA pipeline utilizes two read ports and one write port like the

standard MIPS pipeline. It is expected that the Extension logic will usually provide a higher

degree of parallelism than the TISA. To reduce the register data latency resulting from multiple

register fetches, the Extension register file interface expands the number of ports to four read

ports and two write ports. To minimize the number of bus macros and the signals crossing the

reconfigurable boundary, two ports in the interface function both as read and write ports. Ports

one and two can be used as read ports or write ports, depending on the state of their

REGWRITEX signals. Ports three and four are dedicated read ports.

 For a register read from the Extension there is currently a four-clock-cycle latency, but

this value might be reduced in a future release. Figure 16 shows the protocol for a register

read operation. After the Extension‟s GR signal has been raised by the pipeline arbiter, the

Extension may assert a register number on the read port and the data will be available after

four clock cycles of the system clock, CLK. The data will remain on the data side of the port

for up to four clock cycles, unless the register number is changed on the port.

DRAFT – DO NOT REPRODUCE

232 | P a g e

Figure 16: Register Read Interface

 Write operations to the register file can be expedited if the Extension uses a write-and-

forget approach. The Extension does not actually write to the register file directly, but rather to

a FIFO buffer that writes its contents to the register file. It takes a single clock cycle for the

Extension to write a register to the FIFO. Then some clock cycles later the FIFO writes that

value to the register file. The current latency from the moment the Extension writes to the

FIFO to the moment the FIFO writes to the register file is five to seven CLK cycles. The write

register protocol is depicted in

Figure 17.

 Before the Extension can write to the register file it must wait for the GR signal and the

REGRDY signals to be both high. REGRDY high indicates that the FIFO is available and the

Extension can write to it. In addition to REGRDY, the Extension must also obey the REGFULL

and REGEMPTY signals. These signals indicate the current state of the FIFO, e.g. whether it

is full or empty respectively. After all these conditions are met, the Extension can assert the

register number and the data on one of the write ports. Then the Extension raises the

REGWRITEX signal associated with that port for a single CLK cycle. This completes the write

to the FIFO and the REGEMPTY signal will lower (if it is not already low). The Extension may

DRAFT – DO NOT REPRODUCE

233 | P a g e

continue to write to the buffer from both write ports until the REGRDY signal is de-asserted. If

this is due to the buffer being full, the REGFULL signal will assert at this time as well.

Figure 17: Write Register Interface

6.3.3 Memory Interface

 The Extension can access the system memory and perform load and store operations.

Currently the pipeline clock, or PCLK, and the memory subsystem are synchronized to each

other. This method allows for at most one instruction fetch, data transaction, and instruction

commit per PCLK cycle. It is used to simplify the flow of the pipeline for debugging. Future

work will decouple these operations to reduce the effects of memory latency on performance.

The memory interface is designed to capture memory requests on the falling edge of PCLK.

To ensure that the signals are settled and have plenty of time to propagate across the logic of

the FPGA, it recommended asserting the signals on the memory interface on the rising edge of

the PCLK.

 Figure 18 shows the protocol for a memory read. The Extension must assert the memory

address and the output enable signal, or MOE, on the rising edge of PCLK. These signals

must hold until the falling edge of PCLK. The additional control signals (BLS, HLS, RNL) are

DRAFT – DO NOT REPRODUCE

234 | P a g e

not necessary in case of a read, because the system always performs word loads regardless

of the setting of these signals. The Extension will receive an acknowledgement that the

memory read request was received by the memory interface when the MDATA_VLD signal

falls. The signal MDATA_VLD will remain low until the memory read is complete and the data

appears on the MDATA_IN bus. PCLK remains low until all memory requests from the system

have been serviced, including instruction fetch, data memory transaction and extension

memory transaction. After the falling edge of PCLK, the Extension must lower the MOE signal

and may remove the address from the interface. The Extension must wait until the

MDATA_VLD signal goes high again before capturing the data on the MDATA_IN bus. Shortly

after the MDATA_VLD signal raises so will PCLK. The data will remain valid on the bus until

the next falling edge of the PCLK. The Extension may initiate another memory transaction

during the next PCLK cycle.

Figure 18: Memory Read Operation

 Figure 19 shows the protocol for a memory write transaction. The Extension must assert

the memory address, the data and the memory write enable signal, or MWE, on the rising

edge of PCLK. The additional control signals BLS, HLS and RNL are used for byte, half word

and unaligned stores. For non-word stores, all data must be aligned to the least significant

side of the word. These signals must hold until the falling edge of PCLK. The Extension will

receive an acknowledgement that the memory write request was received by the memory

interface when the MDATA_VLD signal falls. MDATA_VLD will remain low until the memory

read is complete and the data appears on the MDATA_IN bus. PCLK remains low until all

DRAFT – DO NOT REPRODUCE

235 | P a g e

memory requests from the system have been serviced, including instruction fetch, data

memory transaction and extension memory transaction. For a memory write the Extension

does not need the data returned from the transaction and MDATA_VLD may be ignored after it

falls. The Extension may initiate another memory transaction during the next PCLK cycle.

Figure 19: Memory Write Operation

6.3.4 Program Counter/Instruction Fetch

 Extensions can modify the program counter, or PC, as a result of executing an

instruction. This is needed, for instance, when optimizing basic blocks, because they all

include a conditional branch. Other types of Extension may also require the ability to modify

the PC.

Figure 20 shows the protocol for updating the PC. The signal PCNEXT indicates that the

Extension wants to modify the PC. It should be raised while the GR signal is high and the

pipeline is stalled. On the falling edge of PCLK, the Extension raises PCNEXT and asserts the

new PC value on the EXTADD bus. The signals must hold until the rising edge of PCLK. The

PC is always modified on the rising edge of PCLK. PCNEXT switches the multiplexer that

routes the new PC to the PC register and enables the PC write.

DRAFT – DO NOT REPRODUCE

236 | P a g e

Figure 20: Extension PC update

6.3.5 Pipeline Re-Entry

 In the previous sections we have shown how to carry out all the register and memory

transactions on the Extension interfaces while the TISA pipeline is stalled. Stalling of the

pipeline is required for all Extended instructions that take more than two cycles to complete.

Sometimes an Extension only requires a single memory access or register writeback. In these

cases it is not necessary to stall the pipeline because the resources in the TISA are sufficient

to complete the execution. This optimization could reduce the latency by a whole pipeline

clock, or PCLK, cycle. To use this optimization, the Extension interface provides for reentering

the pipeline at either the memory access phase, or MA, or the writeback phase, or WB. The

ports used to assert the pipeline signals for writing to the pipeline registers are multiplexed with

other signals to reduce the number of bus macros and signals crossing the reconfigurable

boundary. The pipeline reentry process takes place the on PCLK cycle before the pipeline

resumes, when the Extension is releasing the pipeline resources.

 Figure 21 shows the protocol for reentering the pipeline at MA. The Extension must

lower the ACK signal in the last PCLK cycle before the pipeline resumes and after the positive

edge of PCLK (see also Section 6.3.1). By now the data that will be written to the MA pipeline

stage should be driven on the Extension interface ports. The table below provides the signal

definitions.

Extension Port Memory Access Pipeline Signal

RDREG2[0] REGWRITE_EX

RDREG2[1] MEMTOREG_EX

WRDATA1 ALURESULT_EX

RDREG1 WRREG_EX

RDREG4[2] RNL_EX

Driven high (1‟b1) BRANCH_EX

EXTADD PC_EX

DRAFT – DO NOT REPRODUCE

237 | P a g e

Driven low (1‟b0) EXTNOP_EX

WRDATA2 REG2DATA_EX

RDREG4[3] BLS_EX

RDREG4[1] MEMREAD_EX

RDREG4[0] MEMWRITE_EX

RDREG4[4] HLS_EX

RDREG2[4] MEXT_EX

RDREG2[3] LC_EX

On the next negative edge of PCLK, the Extension must raise the Reenter at Memory Access

signal, or REMA. While the GR signal is still high for the Extension, REMA will switch the

multiplexers that route to the MA pipeline stage from the execute phase ports to the Extension

interface ports. The pipeline registers latch on the rising edge of PCLK. After the positive

edge of PCLK, the Extension must lower REMA and it may remove the pipeline data from the

Extension ports. By this time the Extension GR will have been lowered and the pipeline has

resumed.

Figure 21: Reenter TISA Pipeline at Memory Access

 Figure 22 shows the protocol for reentering the TISA pipeline at WB. The procedure is

similar to the MA case. In the last PCLK cycle before the pipeline resumes, the Extension

must lower its ACK signal after the positive edge of PCLK (see also Section 6.3.1). By now

the data that will be written to the WB pipeline register should be driven on the Extension

interface ports. The table below provides the signal definitions.

DRAFT – DO NOT REPRODUCE

238 | P a g e

Extension Port Writeback Pipeline Signal

RDREG2[0] REGWRITE_MA

RDREG2[1] MEMTOREG_MA

WRDATA1 ALURESULT_MA

RDREG1 WRREG_MA

RDREG4[2] RNL_MA

Driven high (1‟b1) BRANCH_MA

EXTADD PC_MA

Driven low (1‟b0) EXTNOP_MA

WRDATA2 DMDATAOUT_MA

RDREG4[3] BHLS_MA

RDREG4[1:0] DMADD_MA

On the next negative edge of the PCLK, the Extension must raise the Reenter at Writeback

signal, or REWB. While the GR signal is still high for the Extension, REWB will switch the

multiplexers that route to the WB pipeline stage from the memory access phase ports to the

Extension interface ports. The pipeline registers latch on the rising edge of PCLK. After the

positive edge of PCLK, the Extension must lower REWB and it may remove the pipeline data

from the Extension ports. By this time the Extension GR will have been lowered and the

pipeline has resumed.

Figure 22: Reenter TISA Pipeline at Writeback

DRAFT – DO NOT REPRODUCE

239 | P a g e

6.4 Design Floor planning

 Users that perform advanced experiments with eMIPS may need to modify the

Extension interface to suit their application. For instance, any modification that alters the

number of ports, the size of ports or the direction of ports will require that the entire eMIPS

system be re-floor-planned. A constraint file with floor planned constraints is provided in the

release. Figure 23 is a graphical representation of the current eMIPS floor plan generated by

Xilinx PlanAhead. The long purple rectangle on the left side of the FPGA is the reconfigurable

region containing the Extension.

Figure 23: eMIPS Floor Plan

 Since the eMIPS system is a dynamically reconfigurable design and the Extension is a

reconfigurable region within it, all the signals that cross from the Extension to the rest of the

design must pass through a Bus Macro. The only exception to this rule are clock signals.

Changing the Extension interface ports may require changing the connectivity of the Bus

Macros and possibly adding or removing Bus Macros. All the Bus Macros must be constrained

to positions along the region boundary. Figure 24 provides a close up of the Bus Macros in the

eMIPS system, represented by the small orange squares.

DRAFT – DO NOT REPRODUCE

240 | P a g e

Figure 24: Close up of eMIPS Floor Plan with Bus Macros

 The placement of the Bus Macros can be changed graphically using Xilinx PlanAhead

or manually using a text editor. For instructions on how to use Xilinx PlanAhead, see the

documentation available at the „Xilinx Partial Reconfiguration Early Access Lounge‟ at

http://www.xilinx.com/support/prealounge/protected/index.htm. To assign the Bus Macros

locations manually, the procedure is to use a text editor to enter a LOC constraint for each Bus

Macro in the provided implementation constraint file (*.ucf). There are some rules for the

placement of Bus Macros. The Bus Macro must evenly straddle the edge of the reconfigurable

region. Also, the Bus Macro is a hard macro that is two by four slices large. For this reason

the x-coordinate must be a number divisible by four and the y-coordinate a number divisible by

two. The following is an example of a bus macro LOC constraint: „INST "bmi0bm0" LOC =

SLICE_X12Y164;‟.

 As the Extension designs grow in complexity, we may exhaust the limited chip

resources available in the Extension region. Chip area as a whole is a highly limited resource.

The baseline eMIPS system currently utilizes about 80% of the area of the Virtex 4 LX25

device available on the ML401 board. The Extension area is about 12% of the total. For this

reason, we do not recommend increasing the size of the reconfigurable region, unless all other

methods to fit the design into the space provided have been exhausted. To change the

reconfigurable region dimensions graphically we recommend using Xilinx PlanAhead. To

change the reconfigurable region dimensions manually, a user can change the existing AREA

GROUP constraints for the reconfigurable region in the provided floor-planned implementation

http://www.xilinx.com/support/prealounge/protected/index.htm

DRAFT – DO NOT REPRODUCE

241 | P a g e

constraint file (*.ucf). The AREA GROUP RANGE constraints must include all of the slices,

blockrams, fifos and dsp48s within the rectangular region for the Extension.

DRAFT – DO NOT REPRODUCE

242 | P a g e

7 References

[1] Atmel ARM Thumb Microcontrollers: AT91M63200. Atmel Corporation, 1999. Available at

http://www.atmel.com/dyn/resources/prod_documents/DOC1028.PDF

[2] Atmel AT91EB63 Evaluation Board User Guide. Atmel Corporation, 2001. Available at

http://www.atmel.com/dyn/resources/prod_documents/DOC1359.PDF#search=%22AT91EB63

%20Evaluation%20Board%20User%20Guide%22

[3] Athanas, P.. Silverman, H. Processor Reconfiguration through Instruction-Set Metamorphosis.

Computer Vol. 26, March 1993, pp. 11-18.

[4] Xilinx Development System Reference Guide, Chapter 4, Modular Design. Xilinx Inc., December

2005, pp. 75-112. Available at

http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf

[5] Xilinx Development System Reference Guide, Chapter 5, Partial Reconfiguration. Xilinx Inc.,

December 2005, pp. 113-140, Available at

http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf

[6] Xilinx Chipscope Pro Software and Cores User Guide. Xilinx Inc., October 2005, Available at

http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_8_1i_ug029.pdf

[7] Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner, K. An Architecture Framework for

Transparent Instruction Set Customization in Embedded Processors. ISCA 2005, pp. 272-283.

[8] Xilinx FPGA Editor Guide. Xilinx Inc., June 1999. Available at

http://www.xilinx.com/support/sw_manuals/2_1i/download/fpedit.pdf

[9] Hennessy, J. L., Patterson, D.A. Computer Organization and Design: The Hardware/Software

Interface. Morgan Kaufmann Publishers, San Francisco, CA. 1998.

[10] Kane, G., Heinrich, J. MIPS RISC Architecture. Prentice Hall, Upper Saddle River, NJ. 1992.

[11] Sutherland, S. The Verilog PLI Handbook, 2nd ed. Kluwer Academic Publishers, Norwell, MA.

2002.

[12] Xilinx System ACE Compact Flash Solution. Xilinx Inc., April 2002. Available at

http://www.xilinx.com/bvdocs/publications/ds080.pdf

[13] Xilinx Two Flows for Partial Reconfiguration: Module Based or Difference Based. Xilinx Inc.,

November 2003. Available at http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

[14] Xilinx Using Partial Reconfiguration to Time Share Device Resources in Virtex II and Virtex II

Pro. Xilinx Inc., May 2005.

[15] Xilinx Virtex 4 Configuration Guide. Xilinx Inc., January 2006. Available at

http://direct.xilinx.com/bvdocs/userguides/ug071.pdf

[16] Xilinx Virtex 4 Datasheet: DC and Switching Characteristics. Xilinx Inc., February 2006.

Available at http://direct.xilinx.com/bvdocs/publications/ds302.pdf

[17] Xilinx Virtex 4 Family Overview. Xilinx Inc., June 2005. Available at

http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[18] Xilinx Virtex 4 Packaging and Pinout Specification. Xilinx Inc., September 2005.Available at

http://direct.xilinx.com/bvdocs/userguides/ug075.pdf

[19] Xilinx Virtex 4 User Guide. Xilinx Inc., September 2005. Available at

http://direct.xilinx.com/bvdocs/userguides/ug070.pdf

[20] Xilinx. Virtex-4 Development Boards. Xilinx Inc., 2005. At

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm

[21] Mentor Graphics ModelSim at http://www.mentor.com/products/fpga_pld/simulation/index.cfm

http://www.atmel.com/dyn/resources/prod_documents/DOC1028.PDF
http://www.atmel.com/dyn/resources/prod_documents/DOC1359.PDF#search=%22AT91EB63%20Evaluation%20Board%20User%20Guide%22
http://www.atmel.com/dyn/resources/prod_documents/DOC1359.PDF#search=%22AT91EB63%20Evaluation%20Board%20User%20Guide%22
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf
http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_8_1i_ug029.pdf
http://www.xilinx.com/support/sw_manuals/2_1i/download/fpedit.pdf
http://www.xilinx.com/bvdocs/publications/ds080.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://direct.xilinx.com/bvdocs/userguides/ug071.pdf
http://direct.xilinx.com/bvdocs/publications/ds302.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/userguides/ug075.pdf
http://direct.xilinx.com/bvdocs/userguides/ug070.pdf
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm

DRAFT – DO NOT REPRODUCE

243 | P a g e

[22] Microsoft Giano at http://research.microsoft.com/downloads/ and

http://www.ece.umd.edu/~behnam/giano.html

[23] Burger, D., Austin, T. M. The SimpleScalar Tool Set, Version 2.0. Technical Report 1342, June

1997, University of Wisconsin-Madison.

[24] Forin, A., Neekzad, B., Lynch, N., L. Giano: The Two-Headed Simulator. Microsoft Research

Technical Report MSR-TR-2006-130, September 2006.

[25] Bossuet, L., Gogniat, G., Burleson, W. Dynamically Configurable Security for SRAM FPGA

Bitstreams. International Journal of Embedded Systems, 2006.

[26] Bartzoudis, N., G., et al. Reconfigurable Computing and Active Networks. ERSA ’03, Las Vegas,

NV pp. 27-33.

[27] Al Faruque, M., A. Fine Grained Application Profiling for Guiding Application Specific

Instruciton Set Processor (ASIPs) Design. Master Thesis, 2004, Aachen University.

[28] Clark, N., Zhong, H., Mahlke, S. Processor Acceleration Through Automated Instruction Set

Customization. Micro ’03, 2003.

[29] Clark, N. et al. Application-Specific Processing on a General-Purpose Core via Transparent

Instruction Set Customization. Micro ’04, 2004.

[30] Yehia, S. et al. Exploring the Design Space of LUT-based Transparent Accelerators. CASES

’05, 2005.

[31] Yehia, S., Teman, O. From Sequences of Dependent Instructions to Functions: An Approach for

Improving Performance without ILP or Speculation" ISCA ’04, 2004.

[32] Sun, F. et al. Synthesis of Custom Processors Based On Extensible Platforms. ICCAD ’02, 2002.

[33] Bracy, A., Prahlad, P., Roth, A. Dataflow Mini-Graphs: Aplifying Superscalar Capacity and

Bandwidth. MICRO ’04, 2004.

[34] Brisk, P., Kaplan, A., Sarrafzadeh, M. Area-Efficient Instruciton Set Synthesis for Reconfigurable

System-on-Chip Designs" DAC ’04, 2004.

[35] Dales, M. Managing a Reconfigurable Processor in a General Purpose Workstation Environment.

DATE ’03, 2003.

[36] Forin, A., Lynch, N., L., Pittman, R. N. Software Support for Dynamically Extensible Processors.

Microsoft Research Technical Report MSR-TR-2006-147, October 2006.

[37] Yu, P, Mitra, T. Characterizing Embedded Applications for Instruction-Set Extensible Processors.

DAC 2004, San Diego CA.

[38] Fahs, B. et al. Performance Characterization of a Hardware Framework for Dynamic

Optimization. 34
th

 ISM, December 2001.

[39] Razdan, R., Smith, M. D. High-Performance Microarchitectures with Hardware-Programmable

Functional Units. 27
th

 ISM, pagg. 172-180, November 1994.

[40] Hauser, J. R., Wawrzynek, J. Garp: A MIPS Processor with a Reconfigurable Coprocessor.

FCCM’97 pagg 12-21, April 1997.

[41] Lau, D., Pritchard, O., Molson, P. Automated Generation of Hardware Accelerators with Direct

Memory Access from ANSI/ISO Standard C Functions. FCCM’06, pagg. 45-54, April 2006.

[42] Hadžić, I., Udani, S., Smith, J. M. FPGA Viruses. FPLA’99, pagg291-300, September 1999.

[43] Wittig, R. D., Chow, P. OneChip: An FPGA Processor With Reconfigurable Logic. FCCM’96,

pagg. 126-135, 1996.

[44] Carrillo, J. E., Chow, P. The Effect of Reconfigurable Units in Superscalar Processors. FPGA’01,

pagg. 141-150, February 2001.

[45] Lysecky, R., Stitt, G., Vahid, F. Warp Processors. DAES Transactions, pagg659-681, July 2006.

http://research.microsoft.com/downloads/
http://www.ece.umd.edu/~behnam/giano.html

DRAFT – DO NOT REPRODUCE

244 | P a g e

[46] Lysecky, R., Vahid, F. A Configurable Logic Architecture for Dynamic Hardware/Software

Partitioning. DATE’04, 2004.

[47] Estrin, G. Organization of computer systems: The fixed plus variable structure computer. Proc.

Western Joint Computer Conference, pagg 33-40, New Yowrk 1960.

[48] Sawitzki, S., Köhler, S., Spallek, R. Prototyping Framework for Reconfigurable Processors.

FPL’01, pagg. 6-16, 2001.

[49] Goldstein, S. C., et al. PipeRench: A Reconfigurable Architecture and Compiler. IEEE Computer,

2000.

[50] Schmit, H. Et al. PipeRench: A Virtualized Programmable Data path in 0.18 Micron Technology.

IEEE CICC’02, 2002.

[51] Rowen, C, Maydan, D. Automated Processor Generation for System-on-Chip. ESSCIRC’01,

2001.

[52] Anderson, E. et al. Enabling a Uniform Programming Model across the Software/Hardware

Boundary. FCCM’06, pagg. 89-98, April 2006.

[53] Altera Corp. Excalibur Embedded Processor Solutions, 2005.

 .http://www.altera.com/products/devices/excalibur/excindex.html,

[54] Stretch, Inc. http://www.stretchinc.com 2006.

[55] Tarari, Inc. http://www.tarari.com 2002.

[56] SRC Computers Inc. http://www.srccomp.com 1996.

[57] Mitrionics, Inc. http://www.mitrionics.com 2001.

[58] Jacob, J., A., Chow, P. Memory Interfacing and Instruction Specification for Reconfigurable

Processors. FPGA’99, 1999.

[59] Davidson, J. FPGA Implementation of a reconfigurable microprocessor. CICC’93, May 1993.

[60] Hauck, S. et al. Totem: Domain-Specific Reconfigurabel Logic. IEEE Transs VLSI.

[61] Hauck, S. et al. The Chimaera Reconfigurable Functional Unit. IEEE VLSI, 2004.

[62] Hauck, S., Agarwal, A. Software Technologies for Reconfigurable Systems. NW Univ. Technical

Report, 1996.

[63] Helander, J., Forin, A. MMLite: A Highly Componentized System Architecture. Eight ACM

SIGOPS European Workshop, Sintra, Portugal, September 1998.

Download at http://research.microsoft.com/invisible/

[64] Y. Lai, and P. Wang, Hierarchical interconnection structures for field programmable gate arrays

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 5 Issue: 2, June

1997 Page(s): 186 –196.

[65] Aggarwal, A.A.; Lewis, D.M. Routing architectures for hierarchical field programmable gate

arrays Computer Design: VLSI in Computers and Processors, 1994. ICCD '94. Proceedings.,

IEEE International Conference on, 10-12 Oct. 1994 Page(s): 475 –478.

[66] W. Li, D.K. Banerji, Routability prediction for hierarchical FPGAs Ninth Great Lakes

Symposium on VLSI, pp. 256 –259 4-6 March 1999

[67] V. Betz, Architecture and CAD for the Speed and Area Optimization of FPGAs Ph.D.

Dissertation, University of Toronto, 1998.

[68] Mark Nelson, Fast String Searching With Suffix Trees, Dr. Dobb's Journal, August, 1996. At

http://www.dogma.net/markn/articles/suffixt/suffixt.htm

[69] K. Sarrigeorgidis, and J. M. Rabaey, Massively Parallel Wireless Reconfigurable Processor

Architecture and Programming 10th Reconfigurable Architectures Workshop, Nice, France,

April 22, 2003.

http://www.altera.com/products/devices/excalibur/excindex.html
http://www.stretchinc.com/
http://www.tarari.com/
http://www.srccomp.com/
http://www.mitrionics.com/
http://research.microsoft.com/invisible/
http://www.dogma.net/markn/articles/suffixt/suffixt.htm

DRAFT – DO NOT REPRODUCE

245 | P a g e

[70] H. Zhang, M. Wan, V. George, and J. Rabaey, Interconnect Architecture Exploration for Low-

Energy Reconfigurable Single-Chip DSPs. IEEE Computer Society Workshop on VLSI '99 pp.

2-8, April 1999.

[71] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. M. Rabaey, A 1-V

Heterogeneous Optimization by DAG Matching Proc. of DAC 1987.

 [72] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu, and J. M. Rabaey, Design

Methodology of a Low-Energy Reconfigurable Single-Chip DSP System Journal of VLSI Signal

Processing Systems, 28, pp. 47-61, May-June 2001.

[73] J. Becker, and M. Glesner, A Parallel Dynamically Reconfigurable Architecture Designed for

Flexible Application-Tailored Hardware/Software Systems in Future Mobile Communication

The Journal of Supercomputing,19(1), pp. 105-127, 2001.

[74] Atmel Corp. FPSLIC (AVR with FPGA), 2005. At: http://www.atmel.com/products/FPSLIC/.

[75] Berkeley Design Technology, Inc. , 2004. Available at:

http://www.bdti.com/articles/info_eet0207fpga.htm#DSPEnhanced%20FPGAs.

[76] Böhm, W., J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Najjar. Mapping a

Single Assignment Programming Language to Reconfigurable Systems. The Journal of

Supercomputing, Vol. 21, pp. 117-130, 2002.

[77] Chen, W., P. Kosmas, M. Leeser, C. Rappaport. An FPGA Implementation of the Two-

Dimensional Finite-Difference Time-Domain (FDTD) Algorithm, International Symposium on

Field-Programmable Gate Arrays (FPGA), 2004.

[78] Critical Blue, at http://www.criticalblue.com, 2005.

[79] Ernst, R., J. Henkel, T. Benner. Hardware-Software Cosynthesis for Microcontrollers. IEEE

Design & Test of Computers, pages 64-75, October/December 1993.

 [80] Gokhale, M., J. Stone. NAPA C: Compiling for hybrid RISC/FPGA architectures. IEEE

Symposium on FPGAs for Custom Computing Machines (FCCM), 1998.

[81] Gordon-Ross, A., F. Vahid. Frequent Loop Detection Using Efficient Non-Intrusive On-Chip

Hardware. Conference on Compilers, Architecture and Synthesis for Embedded Systems

(CASES), 2003.

[82] Guo, Z., B. Buyukkurt, W. Najjar and K. Vissers. Optimized Generation of Data-Path from C

Codes. ACM/IEEE Design Automation and Test Europe (DATE), 2005.

[83] Keane, J., C. Bradley, Clark, C. Ebeling. A Compiled Accelerator for Biological Cell Signaling

Simulations, International Symposium on Field-Programmable Gate Arrays (FPGA), 2004.

[84] Triscend Corp. http://www.triscend.com, 2003.

[85] Venkataramani, G., W. Najjar, F. Kurdahi, N. Bagherzadeh, W. Bohm. A Compiler Framework

for Mapping Applications to a Coarse-grained Reconfigurable Computer Architecture.

Conference on Compiler, Architecture, and Synthesis for Embedded Systems (CASES), 2001.

[86] Zagha, M., B. Larson, S. Turner, and M. Itzkowitz. Performance Analysis Using the MIPS

R10000 Performance Counters. Supercomputing, Nov. 1996.

[87] Zhang, X., et al. System Support for automatic Profiling and Optimization. Proceedings of the

16th Symposium on Operating Systems Principles, 1997.

[88] Zilles, C.B. and G.S. Sohi. A Programmable Co-processor for Profiling. International Symposium

on High-Performance Computer Architectures, 2001.

[89] Dean, J., et al. ProfileMe: Hardware Support for Instruction-Level Profiling on Out-of-Order

Processors. MICRO, 1997.

[90] Graham, S.L., P.B. Kessler and M.K. McKusick. gprof: a Call Graph Execution Profiler.

SIGPLAN Symp. on Compiler Construction, pp. 120-126, 1982.

http://www.atmel.com/products/FPSLIC/
http://www.bdti.com/articles/info_eet0207fpga.htm#DSPEnhanced%20FPGAs

DRAFT – DO NOT REPRODUCE

246 | P a g e

[91] Fu, W., K. Compton. An Execution Environment for Reconfigurable Computing. IEEE

Symposium on Field-Programmable Custom Computing Machines, 2005.

[92] Tensilica, Inc. http://www.tensilica.com, 2006.

[93] Cong, J. et al. Instruction set extension with shadow registers for configurable processors

FPGA’05, pagg 99-106, Monterey CA 2005.

[94] Cong , J. et al. Application-specific instruction generation for configurable processor

architectures FPGA’04, Monterey CA 2004.

[95] Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L. Performance and Energy Benefits of

Instruction Set Extensions in an FPGA Soft Core VLSID’06, pag. 651-656

[96] Simat, M., Cotofana, S., van Eijndhoven, J.T.J., Vassiliadis, S., Vissers, K., An 8x8 IDCT

Implementation on an FPGA-Augmented TriMedia FCCM’01, Pagg. 160-169.

 [97] Simat, M., Cotofana, S., Vassiliadis, S van Eijndhoven, J.T.J.,., Vissers, K., MPEG-compliant

entropy decoding on FPGA-augmented TriMedia/CPU64 FCCM’02, pagg. 261- 270.

[98] Guo, Z. et al. A Quantitative Analysis of the Speedup Factors of FPGAs over Processors

FPGA’04, Monterey CA.

[99] Borgatti, M., et al. A Reconfigurable System Featuring Dynamically Extensible Embedded

Microprocessor, FPGA, and Customizeable I/O IEEE Journal of Solid-State Circuits, March

2003, Vol. 38, pagg 521-529.

[100] Cali, L., Lertora, F., Tazzina, C., Besana, M., Borgatti , M. Platform IC with Embedded Via

Programmable Logic for Fast Customization CICC’04, pagg. 419-422.

[101] Lertora, F., Borgatti, M. Handling Different Computational Granularity by a Reconfigurable IS

Featuring Embedded FPGAs and a Network-On-Chip FCCM’05, pagg. 45-54.

[102] DeHon, A., DPGA-coupled microprocessors: commodity ICs for the early 21stCentury
FCCM’94, pagg. 31-39.

[103] Hauck, S. The roles of FPGAs in reprogrammable systems Proceedings of the IEEE, April 1998,

Vol. 86, pagg.615-638.

[104] Lu, H. and Forin, A. The Design and Implementation of P2V, An Architecture for Zero-Overhead

Online Verification of Software Programs. Microsoft Research Technical Report MSR-TR-2007-

99, August 2007.

[105] Sukhwani, B., Forin, A., Pittman, R. N. Extensible On-Chip Peripherals. Microsoft Research

Technical Report MSR-TR-2007-120, September 2007.

[106] Meier, K., Forin, A. MIPS-to-Verilog, Hardware Compilation for the eMIPS Processor.

Microsoft Research Technical Report MSR-TR-2007-128, September 2007.

[107] Busonera, G., Forin, A. eBug: Debugging Extensions for the eMIPS Dynamically Extensible

Processor. Microsoft Research Technical Report MSR-TR-2007-155, November 2007.

http://scholar.google.com/url?sa=U&q=http://www.cs.ucr.edu/~najjar/papers/2004/fpga2004.pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/p2v_report.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/p2v_report.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-120.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-128.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-155.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-155.pdf

DRAFT – DO NOT REPRODUCE

247 | P a g e

Appendix A: Example eMIPS Extensions

 The following is a brief discussion of the example Extensions provided with the release.

These examples are meant to be a primer for those seeking to develop their own Extensions.

The collection includes working examples of all the Extension protocols and interfaces. The

example Extensions are listed below:

1. mmldiv64 – Hardware Extension for accelerating a software 64-bit division

2. loadreturn – Hardware Extension for implementing the return from function code

sequence.

3. timer – Example of an Extension peripheral realizing an additional timer

4. usart – Example of an Extension peripheral realizing an additional USART

5. eBUG HW 2 – Software Debug Extension with two hardware watchpoints

6. eBUG HW 8 – Software Debug Extension with eight hardware watchpoints

Developers may refer to these examples for assistance in developing new extensions.

mmldiv64

 The mmldiv64 Extension accelerates the software implementation of the 64-bit division

used by the Microsoft Invisible Computing RTOS. A portion of the software routine uses a

series of instructions to perform a 128-bit shift-left-by-one operation across four registers.

Performing an operation of this kind on 32-bit hardware requires many instructions and is

inefficient. The mmldiv64 Extension accelerates this operation by reading the four registers

containing the operand data in parallel and loading them into a 128-bit shift register. After the

data is loaded in the Extension the shift takes a single clock cycle. Then the Extension writes

the new values of the registers back to the register file, two at a time using the available write

ports. This Extension is therefore useful to learn how to access to the register file.

DRAFT – DO NOT REPRODUCE

248 | P a g e

Figure 25: mmldiv64 shift 128-bit left logical

 The mmldiv64 Extension also performs a conditional jump. After the 128-bit shift is

complete, the software basic block that the mmlidiv64 Extension replaces performs a

conditional branch based on the new values. The Extension performs the branch test after the

shift is performed. If the test determines that a jump is required, the Extension calculates the

new PC and updates it in the instruction fetch unit using the PC update interface. If a branch is

not necessary, the Extension allows the execution to resume at the fall through PC. This

Extension is therefore useful to learn how to affect the control flow of the basic data path.

 After the branch tests and the registers have been written back, the execution is

returned to the TISA data path at the writeback stage.

loadreturn

 The loadreturn Extension implements the typical return-from-function code sequence.

This sequence includes three instructions that load the return address from the stack, update

the stack pointer and jump to the return address. The Extension performs these three

operations in a single Extended instruction. The loadreturn Extension reads the stack pointer

register, then uses it to read the return address from memory. Then the Extension updates the

stack pointer register using the immediate value. The Extension updates the PC to the value

of the return address before returning execution back to the TISA at the memory access stage.

This Extension is useful to learn how to perform read transactions on the memory interface.

DRAFT – DO NOT REPRODUCE

249 | P a g e

timer

 The timer Extension is an example of an Extension Peripheral. This Extension uses the

peripheral hot-plug protocol to notify the operating system of its presence, and of its needs for

resources, including address space and interrupt. The Extension first sends the key serially

using its PRESENT output signal. If the key matches the key stored in the LOCK module, the

Extension Controller is notified of the presence of a new peripheral and the processor is

interrupted. The operating system takes over at this point and uses the interface of the

Extension Controller to configure the Extension peripheral, based on the requested resources

stored in the Extension‟s BATs. After the Extension peripheral is configured it transitions from

the configuration to the run state, and from then on it runs like the other on-chip timer

peripheral until it is unloaded.

 The timer Extension uses the memory and configuration interfaces to the memory bus

and two 64-bit counters based on the 100 MHZ system clock. One counter is a 64-bit down

counter and the other is a 64-bit free counter. If interrupts are enabled for this peripheral in the

interrupt controller module, software can use this peripheral to generate timing interrupts. The

software interface of the Extension is the same as the built-in timer peripheral.

This Extension is useful to learn how loadable on-chip peripherals are loaded and unloaded,

how they reply to memory transactions, and how they generate interrupts.

usart

 The usart Extension is an example of an Extension Peripheral. This Extension uses the

peripheral hot-plug protocol to notify the operating system of its presence, and of its needs for

resources, including address space and interrupt. The Extension first sends the key serially

using its PRESENT output signal. If the key matches the key stored in the LOCK module, the

Extension Controller is notified of the presence of a new peripheral and the processor is

interrupted. The operating system takes over at this point and uses the interface of the

Extension Controller to configure the Extension peripheral, based on the requested resources

stored in the Extension‟s BATs. After the Extension peripheral is configured it transitions from

the configuration to the run state, and from then on it runs like the other on-chip USART

peripheral until it is unloaded.

 The usart Extension uses the memory and configuration interfaces to the memory bus

and a fixed baud USART. The current eMIPS processor design includes only a single

programmable USART. Using a Extension such as this one, software could utilize some

unused pins on the ML401 board to provide an additional USART as needed.

This Extension is useful to learn how loadable on-chip peripherals are loaded and unloaded,

how they reply to memory transactions, how they generate interrupts, and how they can

access I/O pins on the FPGA fabric.

DRAFT – DO NOT REPRODUCE

250 | P a g e

eBUG HW 2

 The eBUG HW 2 is a software debugging solution implemented using the eMIPS

Extension hardware. The Extension monitors the execution flow, and the register and memory

traffic contained within a software process. The Extension takes over execution of the BREAK

instruction, stalling the processor and initiating a debug session. The software developer can

interface with the processor using the GDB debug console to suspend, continue and monitor

memory and registers. Additionally, this version provides two hardware watchpoints for

monitoring the values of variables in the software program. eBug is described in [107].

This extension is useful to learn how to monitor and override instructions in the TISA, how to

read and write to the register file, how to read and write to memory, how to stall and resume

the processor, and how to implement a simple communication protocol.

eBUG HW 8

 The eBUG HW 8 is a software debugging solution implemented using the eMIPS

Extension hardware. The Extension monitors the execution flow, and the register and memory

traffic contained within a software process. The Extension takes over execution of the BREAK

instruction, stalling the processor and initiating a debug session. The software developer can

interface with the processor using the GDB debug console to suspend, continue and monitor

memory and registers. Additionally, this version provides eight hardware watchpoints for

monitoring the values of variables in the software program. eBug is described in [107].

This extension is useful to learn how to monitor and override instructions in the TISA, how to

read and write to the register file, how to read and write to memory, how to stall and resume

the processor, and how to implement a simple communication protocol. This is the preferred

solution for debugging software on the eMIPS system.

DRAFT – DO NOT REPRODUCE

251 | P a g e

Appendix B: Build Scripts

 The following are the commands for building the eMIPS Processor system using the
Xilinx Partial Reconfiguration Flow. These commands may be copied into batch files and
modified to ease the build process. The following build scripts are included in the release.

1. eMIPS_PR_Top.bat – Script for building the Top level module
2. eMIPS_PR_TISA.bat – Script for building the TISA (Fixed Region)
3. eMIPS_PR_Extension0_mmldiv64.bat – Script for building the Extension0

(Reconfigurable Region)
4. eMIPS_PR_Extension0_mmldiv64_merge.bat – Script for merging the TISA and

Extension0 (Generates full and partial bit files)

eMIPS_PR_Top.bat

ngdbuild -uc ..\..\Sources\Contraints\mips_fp.ucf -sd ..\..\Xilinx_PR_Bus_Macros\V4\NMC -modular initial

..\..\Synthesis\Top\MIPSPL_FPGA3.ngc

eMIPS_PR_TISA.bat

ngdbuild -uc ..\..\Sources\Contraints\mips_fp.ucf -sd ..\..\Xilinx_PR_Bus_Macros\V4\NMC -sd

..\..\Synthesis\TISA -modular initial ..\..\Synthesis\Top\MIPSPL_FPGA3.ngc
map -uc ..\..\Sources\Contraints\mips_fp.ucf -ol high -pr b -timing -xe c MIPSPL_FPGA3.ngd
par -w -uc ..\..\Sources\Contraints\mips_fp.ucf -ol high -pl high -rl high -xe c MIPSPL_FPGA3.ncd

MIPSPL_FPGA3_BASE_ROUTED.ncd

eMIPS_PR_Extension0_mmldiv64.bat

copy ..\..\TISA\static.used arcs.exclude
ngdbuild -uc ..\..\..\Sources\Contraints\mips_fp.ucf -sd ..\..\..\Xilinx_PR_Bus_Macros\V4\NMC -sd

..\..\..\Synthesis\Extension0\mmldiv64 -modular module -active extension0

..\..\..\Synthesis\Top\MIPSPL_FPGA3.ngc
map -uc ..\..\..\Sources\Contraints\mips_fp.ucf -ol high -pr b -timing -xe c MIPSPL_FPGA3.ngd
par -w -uc ..\..\..\Sources\Contraints\mips_fp.ucf -ol high -pl high -rl high -xe c MIPSPL_FPGA3.ncd

MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd

eMIPS_PR_Extension0_mmldiv64_merge.bat

copy ..\..\TISA\MIPSPL_FPGA3_BASE_ROUTED.ncd MIPSPL_FPGA3_BASE_ROUTED.ncd
copy ..\..\Extension0\mmldiv64\MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd

MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd
call PR_VERIFYDESIGN MIPSPL_FPGA3_BASE_ROUTED.ncd MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd
call PR_ASSEMBLE MIPSPL_FPGA3_BASE_ROUTED.ncd MIPSPL_FPGA3_EXT0_MMLDIV64_ROUTED.ncd

