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Abstract 
 

The eMIPS architecture can realize the performance 
benefits of application-specific hardware optimizations in 
a general-purpose, multi-user system environment using a 
dynamically extensible processor architecture.  It allows 
multiple secure Extensions to load dynamically and to 
plug into the stages of a pipelined data path, thereby 
extending the core instruction set of the microprocessor. 
Extensions can also be used to realize on-chip 
peripherals and if area permits even multiple cores. The 
new functionality can be exploited by patching the 
binaries of the existing applications, without requiring 
any changes to the compilers. A working FPGA prototype 
and a flexible simulation system demonstrate speedups of 
2x-3x on a set of applications that include games, real-
time programs and the SPEC2000 integer benchmarks. 
eMIPS is the first realized workstation based entirely on a 
dynamically extensible processor that is safe for general 
purpose, multi-user applications. By exposing the 
individual stages of the data path, eMIPS allows 
optimizations not previously possible. This includes 
permitting safe and coherent accesses to memory from 
within an Extension, optimizing multi-branched blocks, 
and throwing precise and restartable exceptions from 
within an Extension. 

1 Introduction 
 

Most of the many modern available microprocessors 
implement the Reduced Instruction Set Computer 
architecture, or RISC, which is based on fixed instruction 
sets.  Many different types of RISC microprocessors 
populate the market based on these different sets of 
instructions including, MIPS, ARM and PowerPC to 
name some of the more popular.  These microprocessors 
are realized in the form of application specific integrated 
circuits, or ASIC, made up of logic fixed at design time 
that cannot be altered after the chip fabrication process is 
complete.  When designing instruction sets, computer 
engineers attempt to capture all the instructions necessary 
to cover the largest space of potential applications, while 
keeping in mind factors such as size, cost and power.  
This set of instructions form the blue print for the 

instruction set architecture, or ISA, to be implemented on 
the new microprocessor.  Despite all efforts, the quest for 
the ‘optimal fixed instruction set architecture’ is an 
impossible one because the space of applications to which 
the designers apply general purpose processors evolves 
constantly.  In addition, the trends that govern this 
evolution shift periodically in response to changes in 
consumer lifestyles and demands. For example, the need 
to process more audio and video data has led to 
extensions for all of the suindicated RISC architectures. 
Therefore, the selection of instructions for a ‘general 
purpose’ microprocessor designed to meet the demands of 
today’s market place may be ill equipped to handle the 
applications of future markets.  We can also argue that the 
quest for the ‘optimal general purpose’ microprocessor 
for today’s market does not make sense anymore, 
especially in the embedded market place.  In the 
embedded market, system designers work within the 
strictest constraints of size, cost and power.  The systems 
they design apply to a specialized and significantly 
reduced space of potential applications.  In this context, a 
‘general purpose’ microprocessor is inefficient and under-
utilized when the majority of applications never use a 
large subset of the capabilities it provides.  For instance, 
many embedded systems rarely if ever use floating point 
operations but most ‘general purpose’ microprocessors 
include them.  For these applications, a popular solution is 
to use custom microprocessors with reduced instruction 
sets but with customized instructions added specifically 
for the intended application space.  This requires 
redesigning the microprocessor architecture and 
fabricating custom microprocessors for each of the 
desired application domains; still they suffer from the 
inflexibility previously discussed.  Therefore, 
manufacturers cannot offset the cost in design and 
fabrication of the new custom chip if the market for the 
given application is not large enough.  As demonstrated in 
this discussion, the problem of this inflexible ‘general 
purpose’ microprocessor architecture becomes a severe 
hindrance.  What is needed in the embedded application 
space and potentially in all areas of microprocessor 
hardware design is a new technology that can provide for 
flexibility and customization, allowing the 
microprocessors to evolve with their target markets at all 
stages of their life cycles. 
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The Field Programmable Gate Array, or FPGA, is a 
digital semiconductor device often used for prototyping.  
Developers use FPGAs in prototyping for the ability to 
configure or program their electrical interconnects to 
realize an expansive space of applications from glue logic 
to application coprocessors.  As the name indicates, 
developers are free to apply modifications to the design 
implemented on the FPGA in the field, after deployment.  
Developers synthesize the configurations from a hardware 
description language, like Verilog or VHDL, for the 
targeted FPGA device.  Eventually, the configuration file 
downloads to the chip through an interface such as JTAG.  
This flexibility comes with a price.  The configurable 
logic of the FPGA experiences significantly lower 
performance, currently clocking at frequencies up to 500 
MHz, than the modern ASIC, currently clocking at 
frequencies over 3 GHz.  Despite this limit, FPGA 
technology has evolved to the point where developers can 
implement fixed logic microprocessors with performance 
levels competitive with their ASIC counterparts in the 
embedded market.  These future microprocessors will 
have the advantage that they can be dynamically updated 
after deployment to meet new demands.  This approach to 
microprocessor design leads to a new class of 
microprocessors termed the “dynamically extensible 
processor”.  Using modern FPGAs it is possible to 
partition the FPGA into sections containing a standard 
fixed logic processor core with interconnects to blocks 
termed ‘Extensions’ that contain customized instructions 
and functionality that loads, modifies and enables while 
the fixed logic continues to function without interruption.  
In this way, the dynamically extensible processor, using a 
library of Extensions from which it can draw, adapts to 
the changing application needs in the field.  By using 
these dynamically extensible processor cores, a 
“reconfigurable central processing unit” becomes 
possible. The eMIPS project described in this document 
argues that such a device is feasible today and proves this 
thesis by means of an example prototype implementation. 

The standard RISC architecture lacks the 
infrastructure to allow for the kind of flexibility and 
extensibility possible through the use of FPGAs.  This 
new extensible instruction set computer architecture 
provides this infrastructure.  The FPGA is partitioned into 
fixed and reconfigurable regions.  The fixed logic region 
constitutes the base functionality of the processor 
including security sensitive resources such as the system 
coprocessor and the systems used by the microprocessor 
to control its configuration.  The Extensions to the base 
processor make up the reconfigurable region of the 
FPGA.  Alternatively, the fixed logic region can be 
implemented using ASIC technology and only the 
reconfigurable region as FPGA or CPLD, with the added 
benefits of extra security, speed and reduced area. The 

eMIPS architecture provides the flexibility and 
adaptability lacking in the RISC architecture. 

The Extensions can take the form of new instructions 
developed to meet the changing computing needs of the 
market.  The Extensions can be thought of similarly to 
firmware updates in other devices that load when 
applications requiring those updated instructions are 
loaded or of added optional features such as floating point 
operations.  In addition, Extensions can implement 
optimized instructions that can take the place of blocks of 
code with the same semantics.  In the case of the 
optimized instructions, these instructions are added to the 
software binaries immediately before the blocks they 
replace.  If the ‘Extension’ associated with that instruction 
has been configured to one of the available extension 
slots in the reconfigurable region of the FPGA, the 
Extension executes the optimized instruction and the 
block it replaced is skipped.  Otherwise, the data path 
contained within the fixed region of the FPGA interprets 
the optimized instruction as a NOP and the original block 
that is still in the software binary executes normally.  The 
Extension’s custom logic implements the block’s 
functionality more efficiently than a sequence of 
instructions that reuses the same execution units to 
perform the block’s function step by step.  For this 
reason, the Extension executing the same function as the 
block completes the operation faster.  If the block 
constitutes a large enough percentage of the execution 
count of the application software the overall performance 
on this microprocessor is significantly improved.  The 
inclusion of these new instructions requires minimal 
changes to software binaries, as little as adding the 
instructions immediately before the blocks they replace. 

The eMIPS architecture also addresses the waste 
associated with including functionality in systems where 
they are never used.  The Extensions of the eMIPS 
architecture do not load when the microprocessor powers 
up.  The fixed logic system only includes the minimum 
functionality (system management, reconfiguration 
support, load, store, arithmetic and logical functions), the 
Extensions provide any additional functions required by 
the applications running on the microprocessor.  For 
instance, the floating point co-processor or the media or 
vector co-processors can be loaded only if and when 
software applications use them. When applications do not 
require these functions the Extensions are not loaded, 
providing for potentially large power savings because the 
unused Extension slots may have their clocking resources 
and power disabled to reduce the power consumption. 
Area savings are also possible because not all Extensions 
need to be present at all times, as is the case instead for an 
ASIC implementation. This waste reduction may increase 
by dynamically loading and unloading not only the co-
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processors but also the on-chip peripherals that are part of 
an embedded microcomputer. Rather than including all 
possible peripherals in the ASIC we can load them on an 
extensible processor as Extensions, again with power and 
area reductions. 

The software design techniques for multi-core 
systems must become more mature before applications 
can take full advantage of the large-grain parallelism they 
require. When this happens, the eMIPS technology can be 
leveraged to realize even greater speedups by providing 
multiple customized processors executing in parallel. 
Each processor may additionally execute the instruction 
blocks that it is best suited for. If the chip area devoted to 
the Extensions is abundant we can use the eMIPS 
architecture to realize a more complex and more 
adaptable multiprocessing system by allowing Extensions 
to include additional complete data paths, or some other 
custom processor design.  These additional data paths can 
be loaded on-demand to increase overall throughput. In 
this way we can convert the eMIPS into a multi-core 
system when the system is under heavy computational 
demand. When the system is lightly loaded the Extensions 
are disabled to save energy and the system reverts to a 
uni-core system. 

Through the use of FPGA configuration technology, 
the eMIPS architecture addresses the inflexibility, 
performance growth and waste of the modern RISC 
architecture.  We have realized the architecture in a 
working prototype, exposing the five stages of the base 
pipeline to the dynamically loaded Extensions. We have 
implemented the dynamic loading of Extensions 
leveraging the Partial Reconfiguration tools and processes 
provided with the manufacturer’s synthesis tools. The 
ML401 board we used has enough peripherals that we 
could create a complete eMIPS workstation and 
experiment with a multi-user application environment. 
The flexibility and performance benefits of the 
architecture have been demonstrated by patching the 
binaries of a number of software applications and 
measuring the resulting speedups. We used several 
software systems, ranging from an object oriented real-
time operating system for embedded applications, video 
games, and the SPEC2000 benchmarks.  We find that 
simple Extensions can easily achieve speedups factors of 
2x-3x over the original application binaries, using a very 
small number of Extended Instructions per application.  

The eMIPS system makes the following specific 
contributions. eMIPS is the first realized workstation 
based entirely on a dynamically extensible processor that 
is safe for general purpose, multi-user applications. By 
exposing the individual stages of the data path, eMIPS 
allows optimizations not previously possible. This 
includes permitting safe and coherent accesses to memory 

from within an Extension, optimizing multi-branched 
blocks, and throwing precise and restartable exceptions 
from within an Extension. 

The remainder of this document is structured as 
follows. Section 2 presents the most relevant background 
information before introducing the eMIPS architecture in 
Section 3. The implementation of a first prototype is 
presented in Section 4, the testing and verification 
processes are illustrated in Section 5.  Section 6 reports 
the current status of the implementation. Section 7 
presents related work. 
 

2 Background 
 

2.1 Shortcomings of Modern ASICS 
 
The classical microprocessors have grown 

exponentially in speed and complexity while maintaining 
relative constrained their costs, in a fashion characterized 
by Moore’s Law.  Moore’s Law states that the complexity 
of modern integrated circuits with respect to cost doubles 
every two years.  One may observe this trend as the 
various microprocessor manufacturers; including Intel 
and AMD, vie for supremacy in the market by delivering 
increasingly faster and more complex microprocessors 
with new features that augment their capabilities while 
maintaining fairly level costs over time.  As 
manufacturers reach the limits of the physical constraints 
of the materials available in terms of speed, conductivity, 
size and reliability, they also reach the end of this level of 
growth under current microprocessor design paradigms. 
With eMIPS the performance gains do not come 
exclusively from higher clock rates but effectively from 
devoting more and more area resources to specialized 
implementations of frequently executed software 
operations. 

The current trend in the quest for additional 
execution speed provides additional processing cores in 
the central processing unit and to parallelize the execution 
of as much of the software as possible.  This paradigm 
has potential, but its effectiveness has been limited by the 
difficulties involved in parallelizing software that was 
written for sequential execution, resulting in cumbersome 
dependencies.  These dependencies require extensive 
changes in the software design paradigms if this approach 
means to reach its full potential.  The eMIPS processor 
departs from the current techniques for attaining 
microprocessor execution speedups because it does not 
require any changes in software design and it is hidden 
from developers at the software level.  To utilize the 
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Extensions, only minimal changes are required at the 
assembly/binary level. 

2.2 MIPS Instruction Set 
 
The MIPS instruction set [ 10 ] provides a good 

example of a modern RISC instruction set architecture, 
although it is but one of many.  There are other RISC 
ISAs available such as the ARM and PowerPC that 
arguably could be better than the MIPS ISA.  
Unfortunately, these ISAs fall under proprietary controls 
that removes them from consideration in research projects 
such as this.  The MIPS documentation for the MIPS 
R16000 is widely available and by residing in the public 
domain where most other instruction sets are proprietary, 
it makes MIPS an ideal choice for research in 
microprocessor architecture and design.  The MIPS 
instruction set architecture like all fixed RISC 
architectures has experienced growth, modification and 
expansion in order to keep up with the changing needs of 
the microprocessor market.  The architecture is currently 
in its ninth generation with the MIPS R16000.  For this 
reason, the MIPS R4000 was chosen as the basis of the 
eMIPS processor.  In order to consider a device a MIPS 
microprocessor, all the basic instructions must be 
implemented.  Software compiled using this base 
instruction set must run on the eMIPS microprocessor and 
existing compilers for high-level programming languages 
that target the R4000 should remain usable without 
change. 

The MIPS architecture is pipelined to provide 
improved throughput at higher clock frequencies.  One 
can increase the clocking frequency by breaking the 
instruction execution within the processor into stages that 
require less time to execute.  Each stage of the pipeline 
works on different instructions at different times and then 
passes the instruction to the next stage to continue 
execution.  After the pipeline is full, the microprocessor 
completes execution of one instruction per clock cycle 
just like the non-pipelined version except at a much 
higher clock rate.  This architecture results in a net 
increase in throughput despite the overhead that the 
architecture experiences with flow control, hazards and 
exceptions.  The time to fill the pipeline is negligible.[ 9 ] 

The classic implementation of the RISC pipeline 
architecture [ 9 ] includes five pipeline stages:  Instruction 
Fetch (IF), Instruction Decode (ID), Instruction Execute 
(IE), Memory Access (MA) and Writeback (WB).  The 
functions of these stages are as follows: 
 

• Instruction Fetch (IF) – Update the program 
counter, or PC, and fetch the instruction located 
in memory at the address stored in the PC. 

• Instruction Decode (ID) – Using wired logic, 
decode the instruction passed from IF into 
control signals that control the remainder of the 
pipeline.  Read any data required by the 
instruction from the general purpose register file.  
Test branch conditions and calculate the memory 
location of the next instruction to be executed. 

• Instruction Execute (IE) – Using an Arithmetic 
Logic Unit, or ALU, and other special purpose 
logic perform operations on data based on the 
control signals passed from ID. 

• Memory Access (MA) – In case of a load or store 
instruction, the output of IE is used as the 
memory location to be read from or written to.  
Otherwise, the output of IE is passed through. 

• Writeback (WB) – In the event a register in the 
general purpose register file is modified by the 
instruction, the output of MA is written to the 
desired register. 

 
To realize greater throughput at higher frequency, 

some microprocessor implementations have utilized as 
many as eight pipeline stages.  The deeper the pipeline is 
the greater the overhead in the event of a branch event, 
hazards and exceptions on execution.  To further offset 
this overhead, microprocessor designers have developed a 
variety of features, including branch predictors and 
speculated execution.  These features have highly 
complex implementations and exist beyond the scope of 
this project.  For this reason, the architecture of the 
eMIPS processor omits these features and has just the 
basic five pipeline stages. 

2.3 FPGA Architecture, Self and Partial 
Reconfiguration 

 
Some of the new ‘state of the art’ FPGAs, which 

have come to market in recent years, have added features 
that further augment their flexibility and power.  First, 
modern FPGAs, such as the Virtex series from Xilinx Inc. 
and the Stratix series from Altera Corp., have included a 
feature called ‘dynamic partial reconfiguration’.  FPGAs 
that include this feature may have their configurations 
partitioned and later allow individual partitions within the 
design to continue operations while a new configuration 
downloads to another partition.[ 14 ]  FPGA 
configuration solutions allow for FPGAs to be configured 
at runtime by other devices or by themselves.  An 
example of one of these solutions is the System ACE 
Compact Flash configuration solution.  This is an IC chip 
set that provides five interfaces:  JTAG to host PC, JTAG 
to FPGA, external to a Compact Flash chip, and Control 
from either the Microprocessor or the FPGA.  Using these 
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interfaces a system can configure one or multiple FPGAs 
using the JTAG from a PC or reading a configuration 
from the Compact Flash and streaming it to the FPGAs on 
the JTAG chain.  

 
Figure 1: Xilinx ML401 Evaluation Board with Virtex 

4 LX25[ 20 ] 

The FPGA selected for the development and 
experimentation of this project is the Xilinx Virtex 4 
product line1.  The Virtex series rates among the most 
powerful FPGA devices in the market in terms of density, 
feature set and speeds.  These FPGAs clock commonly at 
frequencies of 100 MHz but the specifications indicate 
they could operate at much higher frequencies, the 
specifications claim 500 MHz.  These frequencies fall 
significantly short of modern ASIC frequencies 
approaching multiple gigahertzes but the FPGAs continue 
to grow in speed with each new generation.  The Virtex 4 
high-end FPGAs come in three flavors denoted by LX, 
SX and FX.  Each flavor includes a set of special features 
to allow developers to select an FPGA with the feature set 
that best fits their application domain.  The Virtex 4 LX 
targets logic design applications.  For this reason, the 
Virtex 4 LX provides the largest number of logical blocks 
for implementation. Given the floor planning 
requirements of partial reconfiguration, having more logic 
area to work with is preferred.  Therefore, the 
implementation of the eMIPS processor targets the Xilinx 
ML401 Evaluation board with the Virtex LX25.[ 20 ] 

The eMIPS processor uses the dynamic partial 
reconfiguration feature of the Xilinx FPGAs to implement 
the dynamic loading of Extensions to the core 
microprocessor architecture.  During the design phase, the 
core microprocessor architecture resides in the fixed logic 
                                                           
1 The choice of one manufacturer over others was based 
solely on the author’s familiarity with the tools and 
devices. For instance, Altera’s devices [ 53 ] should work 
equally well. 

region of the FPGA configuration.  The configurable 
partition(s) constitute the area dedicated to the loading of 
Extensions after the processor has begun operation.  After 
design implementation completes, the process produces a 
binary file containing the default configuration.  Later the 
process generates the binary files used to alter the 
configuration of the extension slots using the default 
configuration and the hardware description of the 
Extension as a starting point.  At power up, the default 
configuration contains the implementation of the core 
microprocessor architecture and the region allocated for 
the Extensions is empty, or actually contains the 
minimum logic needed to prevent the synthesis tool from 
removing it during optimization.  When the processor 
starts an application that requires an Extension, it loads 
the Extension using a JTAG chain provided by the 
System ACE configuration solution. 

 

 
Figure 2: Examples partitioning of a Reconfigurable 

FPGA design.[ 14 ][ 5 ] 

 
The System ACE configuration solution provides 

functionality needed for the Xilinx FPGA to control and 
change its configuration.  The System ACE configuration 
solution includes a JTAG configuration chain capable of 
dynamically configuring the Extensions of the processor.  
The processor stores the default configuration and the 
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Extensions in the Compact Flash card interfaced to the 
System ACE chipset.  At power up, the System ACE 
configuration solution reads the default configuration 
from the Compact Flash card and streams it on the JTAG 
chain implementing it on the FPGA.  The processor 
running on the FPGA requests changes to the extension 
configurations by requesting the loading of a 
configuration from System ACE through the chip control 
interface.  In this event, System ACE reads the requested 
extension configuration from the Compact Flash Card.  
Then like the default configuration at power up, System 
ACE streams the configuration on the JTAG chain.  In the 
case of a partial reconfiguration, the signals on the JTAG 
chain only modify the region of the FPGA where the 
Extension is located.  The remainder of the FPGA 
continues to function normally.  Consequently, the 
processor may continue to execute instructions while the 
configuration process alters the extension configuration. 
In this way, the processor power up using the default 
configuration and modifies its own configuration using 
the partial extension configurations stored in the Compact 
Flash Card. 
 
2.3.1 Partial Reconfiguration of Xilinx FPGAs 

 
Xilinx has supported partial reconfiguration since its 

Virtex II chip [ 14 ] and that feature continues in the more 
modern Virtex 4 and Spartan III.  Despite the continued 
support of this feature on their hardware, Xilinx continues 
to under-emphasize this feature in the tool suite, the ISE 
Foundation.  Xilinx recently released the latest release of 
the ISE, release 8.2i.  In the past, hardware designers 
performed the partial reconfiguration design flow using 
command line instructions to the tools in the ISE.  Xilinx 
did not integrate the design flow into the graphical user 
interface, or GUI of the ISE Project Navigator.  This 
results in a large amount of tedious repetitive steps one 
must perform to run the design flow.  Project 
management and organization becomes crucial, a large set 
of files is required for each stage of the design flow.  In 
recent months, Xilinx made a greater effort to provide 
tool support for the partial reconfiguration and to make it 
more accessible to developers.  A new tool that Xilinx has 
developed is called Planahead and attempts to provide 
improved floor planning utilities and to integrate the 
partial reconfiguration design flow into a project structure 
managed by a GUI. Planahead currently has limited 
availability in advanced access beta program. 

The smallest reconfigurable unit of the FPGA 
configuration fabric is called the ‘frame’.  When 
partitioning the FPGA into different independently 
reconfigurable and static regions the boundaries between 
these regions must coincide with the boundaries of these 

‘frames’.  Multiple frames may be grouped together into a 
single rectangular region.  Regions cannot be smaller than 
a ‘frame’.  In the Virtex and Virtex II architectures a 
frame constituted a column of logic cells called slices that 
spanned the height of the chip.  In the Virtex 4, a column 
of sixteen slices makes up the ‘frame’.  In this way, each 
column of the Virtex 4 contains multiple frames.  In the 
case of the LX25, which has 192 rows of slices, each 
column contains twelve frames.  This architecture 
provides the Virtex 4 the advantage of allowing for 
rectangular regions in the form of tiles on the FPGA 
configuration fabric as opposed to strictly columns as in 
the previous architectures.[ 5 ] 

 
Figure 3: Logical connections of signals cross region 

boundary.[ 5 ] 

Hardware designers must also consider the routing of 
signals crossing the boundaries of the various regions.  
Only the region containing the reconfigurable module 
changes when reconfiguration occurs.  The remaining 
configuration fabric remains unchanged.  Therefore any 
inconsistency from one configuration to the next will 
result in unpredictable results.   

One potential inconsistency can occur when a signal 
crosses the module boundaries.  Consider for instance the 
case of a signal that crosses the boundary and in one 
configuration the signal routes through row four but the 
same signal is routed in row five in another configuration.  
When the system undergoes reconfiguration, the signal 
will not line up on the boundary where the 
reconfiguration occurred, therefore cutting the signal.  To 
prevent this inconsistency we can restrict the routing of 
such signals to fixed locations along the region 
boundaries.  This is done by passing the signals through a 
‘bus macro’ or a hard pre-routed macro positioned on the 
module boundary and by forcing the router program to 
route the signal through a given location in each 
configuration.  For the eMIPS processor, bus-macros are 
placed between the interfaces of the fixed instruction set 
logic and the dynamic Extensions. 

In the Virtex and Virtex II architectures Xilinx 
provided ‘bus macros’ based on tri-state buffers, or 
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TBUF. Figure 4 shows an example of a TBUF-based bus 
macro used to interface two modules, module B and 
module C.  TBUFs are not included in the Virtex 4 and 
Xilinx provided no alternative ‘bus macros’ when the 
device was released.  Researchers intending to do partial 
reconfiguration created ‘bus macros’ of their own during 
this time.  Most of these bus macros ended up being based 
on look-up tables, or LUT.  Researchers and developers 
would use the FPGA Editor tool available in the Xilinx 
ISE to route and generate these hard macros. Figure 5 
shows an example of a LUT-based bus macro. 

 
Figure 4: TBUF based Bus Macro.[ 14 ] 

 
When Xilinx released Planahead in beta, they also 

released LUT based ‘bus macros’ for all their products 
including the partial reconfiguration feature.  Planahead 
takes the required routing consistency a step further by 
recording the routing of all fixed logic that passes through 
reconfigurable regions in a routing database.  Planahead 
incorporates these routing patterns in the place-and-route 
phase of compilation, so that the reconfigurable regions 
will maintain consistency. 

 
Figure 5: LUT Based Macro.[ 5 ] 

 

The partial reconfiguration design flow includes four 
phases as documented by Xilinx.  These phases are 
Design Entry, Initial Budgeting, Active Module, and 
Final Assembly.  Full details can be found in [ 5 ][ 13 ][ 
14 ].  The following is a brief description of each phase: 
 
1. Design Entry – This phase involves setting up the 

project by targeting the desired FPGA device, decide 
on design partitioning and performing some design 
planning.  Before Planahead, this phase also included 
manually setting up the project directory structure.  
Planahead now handles this in project setup.  In large 
projects including multiple engineers, this phase is 
usually carried out by the team lead. 

2. Initial Budgeting – In this phase the design 
engineers write the top level module and 
implementation constraint files.  The constraint files 
include information such as pin assignments, area 
definitions, assignment of modules to areas and 
clocking constraints.  The top level module defines 
the ports of the design and instantiates all second 
level modules and defines their interfaces to each 
other and to the system ports.  This top level should 
be minimal in its contents.  There should be as little 
logic in this layer as possible and contain only the 
modules that will be implemented at this layer.  Any 
top level logic that is present goes through place and 
route and this data is written to the routing database 
for future use.  In most cases, a team lead also carries 
out this phase. 

3. Active Module – Design engineers execute this 
phase of the design flow for each module instantiated 
in the top level in parallel.  The team lead assigns 
hardware designers to implement the different 
modules using the interface outlined in the top level 
written in the previous phase.  In the case of 
reconfigurable modules, hardware designers 
implement two or more versions of this module.  In 
some cases, designers write module level constraints 
into the implementation constraint file.  The 
Planahead tool, synthesizes each module 
independently of the rest of the design and performs 
place and route within the region designated for it 
while taking the contents of the routing database into 
account. 

4. Final Assembly – This is the final phase of the 
design flow.  In this phase, the team lead collects the 
module implementation of each module from the 
hardware designers and uses Planahead to integrate 
them together.  The team lead creates a floor plan of 
the system for each possible configuration or 
combination of modules.  Using these floor plans 
Planahead completes any additional place and route 
required and generates configurations files for the 
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desired default configuration and other files for the 
reconfigurable regions that change dynamically. 

 
We used these phases in the eMIPS project. Through 

Planahead the eMIPS processor was synthesized, floor 
planned, components placed, signals routed, and 
configuration files generated. 
 
2.3.2 System ACE Compact Flash Solution 

 
The System Advanced Configuration Environment, 

or System ACE [ 12 ], attempts to fill a niche for pre-
engineered configuration solutions of multiple FPGA 
systems.  The system applies to the eMIPS processor’s 
need to control and modify its extensible configuration 
architecture.  System ACE works through the interaction 
of four interfaces:  JTAG to host PC, JTAG to FPGA, and 
Compact Flash & Control from Microprocessor or FPGA.  
Using the host JTAG interface a configuration file can be 
downloaded manually to the system and used to configure 
one or multiple FPGAs.  This feature is excellent for 
debugging, it allows the developer to download test 
configuration and run code before including the new 
configuration in the system.  When configuring the 
system from the host JTAG the System ACE reads the 
bits stream on the host interface and transfers it to the 
system JTAG chain it controls.  After the configuration 
design completes and the system is ready for deployment, 
system controlled configuration can be performed via 
microcontroller or FPGA control.  In the case of a single 
FPGA system, like the eMIPS processor, the 
microcontroller interface can be integrated in the FPGA 
to allow it to control its own configuration.  The Compact 
Flash is a portable, permanent storage device that stores 
the configuration files and inserts into a reader integrated 
with the System ACE.  Using the control interface the 
FPGA or microcontroller can initiate configuration of the 
system by selecting a configuration file stored in the 
Compact Flash that the System ACE drives on the system 
JTAG chain.  The System ACE also provides an interface 
similar to IDE disk interface commonly found on PCs to 
allow the controller to read and write to the Compact 
Flash. 

The System ACE controller interface provides a 3-bit 
configuration selection input to allow the controller to 
select one of eight potential configurations.  Note that the 
Compact Flash can store more than eight configurations, 
as illustrated in Figure 6.  The configurations are grouped 
into sets of no more than eight and placed in directories 
on the Compact Flash.  In the root directory there exists a 
file called ‘xilinx.sys’.  This file tells System ACE which 
directory containing configuration files should be 
considered ‘active’.  The controller can only use 

configuration files from the ‘active’ directory.  The 
‘xilinx.sys’ file also assigns to each file the numerical 
designation zero through seven for the configuration 
selection.  To change which set of configurations is 
considered active, one must change the assignment in the 
‘xilinx.sys’ file.  System software can do this dynamically 
using the IDE interface to the Compact Flash.[ 12 ] 

 
Figure 6: System ACE File structure.[ 12 ] 

 

2.4 Profiling & Identification of Basic Blocks 
 
While CPU designers seek generality in their designs, 

all application programs spend most of their execution 
time in small sections of the code that make up the 
executable file image.  This observation holds regardless 
of platform or application, from personal computers to 
embedded systems to entertainment consoles and devices.  
Analysis of software execution profiles revealed that in 
many cases the two to three most executed sequences of 
code in the applications program account for more than 
80% of the total instruction execution count.  Based on 
this observation, if we can somehow optimize the 
execution of these few select sequences we can attain an 
overall improvement of the performance of the entire 
application. 

These sequences are termed the “basic blocks” of the 
software application.  Technically, a basic block is a 
sequence of instructions that ends in a (conditional) 
branch and is not branched-to anywhere but at the first 
instruction. In our work, the basic blocks are identified 
using the tools distributed with Microsoft Giano [ 22 24 ].  
Giano has been used internally at Microsoft Corp. for 
system verification for some years now.  The profiling 
tool outputs a database of basic block and basic block 
patterns that manifest in the (set of) application 
program(s). Roughly speaking, a basic block pattern is the 
set of all basic blocks that perform the same function but 
differ in their register assignments or in the embedded 
constants.  Once the database is generated, it is updated 
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by the simulator each time the profiled application is run. 
Each basic block is uniquely identified by a hash value, 
there are no duplicates in the database. Each entry also 
contains counters for the static and dynamic repetition 
counts of the block. The static count indicates how many 
times the block is repeated in the application binary itself, 
or possibly across more than one binary, according to the 
user’s preference. The dynamic count is maintained by 
the execution simulator and counts the times the block has 
been actually executed during one or possibly more 
executions of the application. It is possible to obtain the 
distribution of dynamic counts against time by 
checkpointing the database with a certain frequency. This 
can capture the behavior of programs that exhibit 
“phases” during their execution. 

 
Figure 7: Execution Counts of Individual Basic Blocks 

in XQuake, on the Xbox360. 

Figure 7 shows the distribution of the top 100 basic 
blocks in the XQuake video game on the Xbox360 
gaming platform. On the Y axis is the dynamic execution 
count of the individual basic blocks, numerically indexed 
on the X axis. Other profiling data demonstrate the same 
two basic traits shown in Figure 7: the graphs drop 
exponentially and have a rather long tail. In the XQuake 
case for instance, there are more than 12,500 basic blocks 
that are executed at least once, against a total population 
of more than 38,500 individual basic blocks. 

To demonstrate the potential speedups that 
optimizing these basic blocks would deliver, “Extended 
Instructions” with the same semantics as the basic blocks 
are added to the simulation of the CPU.  Then the profiled 
application program is ran again, this time with the 
optimized instructions for the basic blocks inserted into 
the binary of the software at locations immediately 
preceding the basic blocks.  When the CPU reaches these 
instructions, it executes the optimized instructions and 
skips the following block. The idea is that these optimized 
instructions in the simulation will then become the basis 
for hardware Extensions of the eMIPS processor. As 
shown in Figure 8, in the XQuake case this results in a 
three-fold improvement in the game’s frame rate. Similar 

results are obtained with the Doom video game, this time 
using eMIPS and system software from the Microsoft 
Invisible Computing, or MIC [ 63 ]. 

 
Figure 8: Speedups from Extended Instructions. 

Figure 8 then shows the results from the execution of 
a series of over 40 tests programs that are part of the MIC 
system. Only one basic block was optimized in these 
tests, the same in all cases and shown in Figure 9. This 
optimization is also applicable to the Doom case. The 
third column shows the speedup for the individual test 
that benefits the most from this optimization. The fourth 
column shows the cumulative speedup across all tests. 

Column five and six in Figure 8 report the speedups 
for two benchmarks from the SPEC2000 suite that were 
run on eMIPS with MIC. Porting of other benchmarks is 
in progress.  Other experiments reported in the literature [ 
28 , 29 , 31 , 33 , 37 ] similarly show that replacing basic 
block sequences with optimized instructions results in a 
speedup from factors of two to factors of five and in some 
cases over a factor of ten.   

In the practice, the basic block sequences are given to 
hardware design engineers as specifications, so that they 
can create a hardware module that implements the 
semantics of that sequence in the most optimized way 
possible and in a manner that conforms to the Extension 
interface of the processor.  Automatic generation of the 
Extension appears feasible [ 31  60 ] but it is beyond the 
scope of this project and we will assume manual 
generation. The engineers create the design for the 
Extension and generate the FPGA configuration file.  The 
configuration file integrates into the application software 
package.  When the application starts up on a platform 
that supports it the Extension is loaded in a free Extension 
Slot, provided one is available.  If the platform does not 
support Extensions, or if the security settings of the 
platform disallow it or if the configuration file is damaged 
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the Extended Instruction is ignored and the basic block 
sequence executes normally. 

 
Figure 9: A Basic Block Augmented with an Extended 

Instruction 

The implementation of the Extension and its use in 
the application is abstracted and hidden at the software 
level.  No change to the higher level compiler is 
necessary.  After the basic block is identified, 
implemented and encoded into an Extended Instruction, 
another tool independent of the compiler augments the 
executable image.  The tool scans the assembly binary 
image for occurrences of the basic block pattern identified 
in the profile database; it encodes the new Extended 
Instruction to match the register assignments and 
constants, and inserts the new Extended Instruction 
immediately before the instance of the basic block 
pattern.  In this way, the software is not aware of the 
hardware acceleration and need not be aware of it. 

Figure 9 shows the basic block that was found to be 
the most frequently executed during the tests of Figure 8. 
This block was the dynamically most frequent one, it was 
not the statically most frequent. It was only through actual 
execution profiling that we found it to be the best 
candidate for optimization. Simple inspection of the 
binary code base pointed to a completely different block. 
The first instruction in Figure 9 is the Extended 
Instruction, inserted before the block itself. The block is 
part of a software implementation of a 64-bit division. It 
shifts left by one the 128-bit number contained in the 
register quad t0-t1-a0-a1, then makes a conditional branch 
depending on register t1 being greater than register a2. 

The Extended Instructions must conform (at least in 
part) to the instruction format restrictions of the ISA from 
which they are derived.  In the case of the MIPS ISA, 
instructions consist of a 32-bit value including an opcode, 
up to two operand registers and a destination register or 
data immediate.  If this single instruction must replace a 
possibly long sequence of several instructions with as few 

as two operands per instruction, one destination and data, 
the question becomes how to encapsulate all that 
information into a 32 bit instruction.  One way is to 
leverage the relationships that exist between operands, 
destinations and immediate values. For instance, if the 
register operand of one instruction is the same as the 
destination of a previous instruction it only needs to be 
encoded once.  Scratch registers need not be encoded, for 
instance in Figure 9 we can skip the scratch register t3. 
Notice though that in the implementation of the Extension 
care should be taken to maintain the same semantics as 
the original sequence and to write this new value to the 
register file even if nothing else uses it.  When registers 
differ, the relationships between register numbers can be 
built into the instruction decoding phase of the Extension.  
For instance, if there are two registers used by different 
instructions in a sequence but the second is always one 
away from the first, the Extension designers only require 
one of the register numbers to encode both of them.  In 
Figure 9 this is the case both for t0-t1 and for a0-a1-a2. It 
is up to the binary patching tools to verify that these 
constants are met. Encoding of destination registers can 
be performed in the same way.  In the case of immediate 
values, if the value is the same every time the block is 
executed, then this may be encoded directly into the 
Extension.  This is not the case in the example of Figure 9 
and the immediate field must be used, reducing the 
number of available slots for register numbers by one. 

Similar relationships can be identified amongst 
operand registers to reduce the number of bits (register 
numbers and the like) needed to encode the required data 
in the instruction format.  If hardware designers cannot 
reduce the required register numbers to two operands and 
one destination they could violate the ISA rules and use 
any of the bits other-than the opcode as they see fit.  The 
only penalty is that a disassembler will not be able to 
provide any meaningful decoding of the Extended 
Instruction. Yet another possibility is to further break up 
the sequence into two or more Extended Instructions.  
More information, including the means to automatically 
identify patterns of instruction sequences and applying 
such patterns to modify executable binaries is presented 
in [ 36 ]. 

Using the eMIPS mean of execution acceleration 
requires no change in software design or practice. 
Modifications are applied after the software development 
process is complete, to the finished product. This is in 
sharp contrast to multi-core parallel systems that require 
parallelization of the software design at the highest levels 
to benefit from the hardware feature. Future business 
models for platform manufacturers that utilize processors 
include independent services to profile and augment 
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application software binaries with an Extension to fully 
utilize hardware acceleration. 
 

3 Dynamically Extensible Processors 
 
The eMIPS processor is a ‘dynamically extensible 

microprocessor’ because it is based on a new, extensible 
architecture.  The architecture is extensible because it 
allows additional logic to interface and interact with the 
basic data path at all stages of the pipeline. The additional 
logic, which we term Extensions, can be loaded on-chip 
dynamically during execution by the processor itself. The 
architecture therefore possesses the unique ability to 
extend its own ISA at run-time.  To explain this more in 
detail, we will first describe the ‘classical’ CPU RISC 
architecture in Section 3.1 and then show where the 
processor architecture departs from it in Section 3.2 and 
Section 3.3.  The overall functioning of a complete 
system based on an eMIPS microprocessor is then 
described in Section 3.4. 

3.1 The ‘Classic’ RISC CPU 
 
Figure 10 presents a block diagram of a ‘classic’ 

RISC CPU organization, including five pipeline stages, a 
general purpose register file, a memory interface that 
includes the interface to the peripherals and a system 
coprocessor.  The five pipeline stages include Instruction 
Fetch (IF), Instruction Decode (ID), Instruction Execute 
(IE), Memory Access (MA) and Writeback (WB). The 
stages are as described in Section 2.2.  It is important to 
note the inclusion in this organization of two Floating 
Point Units, or FPU, depicted as operating in parallel with 
the IE block.  Execution of floating point arithmetic and 
other operations require considerably longer execution 
times to complete than most integer operations performed 
by the Arithmetic Logic Unit, or ALU, inside of the IE 
block.  These FPUs operate on data in register files that 
are independent of the general purpose register file used 
by the rest of the CPU.  Independence of the data in these 
units removes potential conflicts and dependencies and 
allows these functional units to execute in parallel with 
the rest of the CPU.  Parallel execution limits the latency 
effects of these floating point operations to those tasks 
dependent on their outputs.  The presence of two FPUs in 
the diagram denotes the established practice of including 
multiple instances of functional units on a single chip to 
achieve a higher rate of instruction throughput.  Several 
other functional units available in modern high-
performance microprocessors have been omitted from this 
diagram for simplicity.  These functional units go beyond 

the scope of this project and have been omitted from the 
design. 

 
Figure 10: Block diagram of a typical pipelined CPU 

architecture. 

Figure 10 depicts the FPUs using different colors to 
signify that it differs from the other blocks in important 
ways.  In the first place, unlike the other blocks in the 
diagram the processor does not require these units to 
function correctly.  Floating point operations could be 
performed in software, using the ALU, although at a 
significant execution time penalty.  Many applications in 
embedded systems never use floating point operations and 
it is fairly common to omit these functional units from 
simpler microprocessors.  The omission results in smaller 
chips, lower power and reduced costs for the embedded 
market.  In the second place, system software has the 
capability of disabling access to these functional units 
when switching between software tasks and of restricting 
use of these units to particular tasks.  When restricting 
access to the FPUs the state of the FPU is preserved 
across context switches for the benefit of that particular 
task. This eliminates the swapping of the FPU register file 
in and out to memory and increases overall system 
performance. 

3.2 The eMIPS Architecture 
 
Figure 11 presents a block diagram of the eMIPS 

processor organization.  The pipeline stages, general 
purpose register file and memory interface match those 
depicted for the ‘classic’ CPU and are depicted in lighter 
color in the diagram.  These pipeline stages constitute the 
Trusted ISA or TISA, the core portion of the architecture 
that is required for initial operation and to provide a level 
of trust in the functioning of the processor.  These blocks 
cannot be removed or disabled and must be present at 
startup of the system.  These blocks constitute the fixed 
partition of the architecture and include all resources that 
are of a security sensitive nature, such as the system 
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coprocessor.  The TISA also includes all the facilities for 
self-extension, including instructions for loading, 
unloading, disabling and controlling the unallocated 
blocks in the microprocessor.  At a functional level the 
pipeline blocks operate similarly to the ‘classic’ CPU, 
except their interconnections with respect to each other 
and other blocks differs.  Their implementations differ as 
well and this will be explained later. 

 
Figure 11: Block diagram of the eMIPS architecture. 

In place of the FPUs Figure 11 shows two sets of 
blocks labeled “Extensions”. These Extensions 
distinguish the processor architecture from the established 
RISC architecture from which it is derived.  Through the 
Extensions the processor overcomes two major 
shortcomings of the RISC architecture; inflexibility and 
inability to evolve with changing needs.  Using the partial 
reconfiguration design flow described in Section 2.3 the 
processor is partitioned into fixed and reconfigurable 
regions. The TISA is included in the fixed region; the 
Extensions are included in the reconfigurable regions and 
are interconnected with the TISA by means of the bus 
macros described in Section 2.3.1.  By implementing 
different Extensions for the reconfigurable regions, it 
becomes possible to adapt the functionality of the 
processor.  The processor may apply these adaptations 
after deployment, dynamically while the applications 
continue executing. 

Examples of possible Extensions include but are not 
limited to FPUs, Digital Signal Processors, or DSP, 
Encryption Coprocessors, Vector Processors and the 
application specific instructions of Section 2.4.  Using 
application execution profiling, engineers identify the 
Extended Instructions and implement them as hardware 
modules synthesized for the target device. More than one 
Extended Instruction might be included in a single 
Extension. A successful implementation of an Extended 
Instruction runs in fewer clock cycles than the original 
instruction sequence it replaces.  If the instruction is 

executed a sufficient number of times, even a single clock 
cycle reduction in execution could significantly improve 
performance. 

Let us compare an Extension with the FPU available 
in the ‘classic’ architecture.  In the first place, in the 
eMIPS context a FPU is indeed implemented as an 
Extension.  The second difference between the FPU and 
the Extension is that the Extension is not available as a 
chip resource at power up, because Extensions are only 
loaded and unloaded dynamically during execution by the 
TISA. A third difference is that the blocks of an 
Extension overlap with ID, IE and MA whereas the FPUs 
only overlap with IE.  The Extension blocks must overlap 
with ID in order to recognize their instructions.  The 
Extension may not require access to memory and 
therefore can extend into the MA block of the pipeline as 
well.  In this way, if an Extended Instruction only requires 
two clock cycles to complete but does not access memory, 
no stall is necessary and it can pass its outputs to WB to 
update the necessary registers without creating any 
pipeline bubbles.  

The diagram of Figure 11 depicts only two Extension 
blocks but more can be included, depending on space and 
other limitations imposed by the physical chip. If Moore’s 
Law continues to hold we can project that tens and 
possibly even hundreds of Extensions might be available 
in future chips. 

3.3 Execution Data Paths:  MIPS vs. eMIPS 
 
In the case of the ‘classic’ RISC CPU architecture, 

the IF block fetches the instruction indicated by the 
current value of the program counter, or PC.  That 
instruction passes to the ID block that decodes the 
instruction into the appropriate control signals for the 
remainder of the pipeline.  If the ID does not recognize 
the instruction, the ID throws a reserved instruction 
exception to the system coprocessor.  The ID also 
calculates the next PC based on the current PC and the 
instruction being decoded.  In the case of a non-branching 
instruction, the next PC is the current PC plus four.  In the 
case of a branch, the ID tests the branch condition.  If the 
branch condition is true, the next PC is the current PC 
plus an offset, otherwise it is the same as a standard 
instruction.  In the case of a jump, the next PC is the 
current PC plus an offset or the content of a register.  For 
all instructions, the ID fetches operand data from the 
general purpose register file.  Using the control signals 
and data from the ID block, the remainder of the pipeline 
executes the decoded instruction.  In the case of an 
operation instruction, the IE block modifies the operands 
fetched by ID using the operation indicated by the 
instruction decoding.  In the case of a load or store 
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instruction, the IE calculates the address to be loaded or 
written to and passes it to the MA block. Using the 
address calculated by the IE, the MA loads the contents of 
that address from memory or modifies it using data read 
from a register in ID.  For operation instructions, the MA 
block passes the result of IE directly to WB.  Finally, if 
the instruction modifies a register in the general purpose 
register, WB writes the new value of the register to the 
register file. 

The eMIPS follows a similar execution path for 
instructions included in the TISA.  For instructions not in 
the TISA, the processor departs from this execution path 
in the ID phase where the ID blocks of the Extensions 
operate in parallel with the one in the TISA.  After the IF 
block fetches the current instruction from memory, the 
instruction is sent in parallel to the ID blocks of the TISA 
and of each Extension.  Each ID of the blocks attempts to 
decode the instruction in parallel.  If the TISA recognizes 
the instruction, the execution path is the same as the 
previous example of the ‘classic’ CPU.  In the case that 
none of the ID blocks recognize the instruction, the TISA 
ID block will throw a reserved instruction exception to 
the system coprocessor like the ‘classic’ CPU model. 

 If one of the Extensions recognizes the instruction, 
its ID requests to take over execution of the instruction.  
The ID arbitration logic sends a NOP to the TISA 
pipeline stages and to those of the other Extensions.  The 
arbitration logic also passes control of the read ports of 
the general purpose register file to the ID of the Extension 
that recognized the instruction.  The ID of the Extension 
that recognized the instruction finishes decoding the 
instruction and passes the operand data from the register 
file and control signals to the IE block of the Extension.  
In general, the instruction decoding may be implemented 
in logic but for a more flexible design a content 
addressable memory, or CAM, is preferred.  The IE block 
of the Extension may span the IE and MA block of the 
TISA, allowing it an additional clock signal of execution 
time to complete the designated operation. When 
operations require additional clock cycles an IE of the 
Extension sends a signal to the hazard detection unit of 
the TISA to stall the processor until the Extension has 
completed operations.  The IE of the Extension completes 
execution of its implemented instruction and passes the 
results to the WB block of the TISA.  Other issues exist 
arbitrating between the TISA and the Extensions and in 
controlling this more complex data path and they will be 
identified and addressed in Section 4. 

3.4 The eMIPS Workstation 
 
Figure 12 illustrates the two ways in which a 

workstation based on the eMIPS processor differs from a 

regular workstation. In the first place, at power up time 
the TISA is loaded in the FPGA if it is implemented as 
the default configuration. If it is implemented in fixed 
logic this step is not necessary. If the step is necessary, a 
secure component verifies the validity and integrity of the 
configuration bitfile and loads it on the FPGA [ 25 ]. In 
the second place, when a user starts a program that uses 
an Extension the Operating System asks the TISA to 
verify and load the Extension Bitfile and enables it for 
that particular process. Other processes can later share the 
Extension. For those Extensions that are in fact 
peripherals the corresponding software entity is a device 
driver. A multi-core Extension is loaded directly by the 
operating system, automatically as appropriate. 

 
Figure 12: The eMIPS Workstation, Concept 

When the execution reaches a basic block accelerated 
by an Extension, the Extension will execute its optimized 
Extended Instruction and skip the block that the 
instruction replaced.  If for any reason the Extension is 
not available the Extended Instruction is ignored and the 
software executes normally.  To accomplish this evolution 
of the eMIPS processor within a system some software 
support is required.  Some of this software support was 
described in Section 2.4, namely the software profiling 
tools used to identify the basic blocks to be implemented 
as Extensions.  Additional changes to the operating 
system software are required to control the loading of 
Extensions and to activate them when they are available.   

The operating system is notified of the Extension 
requirements at application loading time, either explicitly 
by invoking some API, or implicitly by information 
contained in the executable file image. The operating 
system keeps track of the Extension information on a per-
process and per-processor basis, as part of its protected 
state.  Figure 13 depicts the additional state that is 
required for a dual-multiprocessor using the extensible 
processor of Figure 11.  Notice that it is necessary to keep 
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track of which Extension is loaded in which slot of each 
available processor, as is depicted in Figure 13.  This 
knowledge is necessary to load Extensions from different 
application programs at the same time. 

 
Figure 13: Required Additions to the OS-managed 

Protected State, Processes and Processors 

The operating system loader is the module 
responsible for providing the Extension data to the 
operating system, at application launch time. The loader 
can be used to help sharing Extensions among 
applications. Every Extended Instruction is defined by the 
binary patching tool using opcodes that all start at some 
value and progress in the same manner.  This leads with 
certainty to collisions between opcodes among 
independently developed Extensions.  What the loader 
can do instead is to modify the opcodes in a newly loaded 
image such that they minimize the conflict with other 
previously loaded images. Figure 13 shows the effects of 
this optimization.  Because Process-A and Process-B use 
different opcodes they could both be scheduled on 
Processor-1 without incurring any management trap, and 
Process-B can be scheduled on both processors.  If we try 
to schedule Process-1 on Processor-2 we will instead 
incur a trap. 

An extensible processor has only a limited number of 
slots for currently-loaded Extensions. The actual number 
could be as small as depicted in Figure 11 or much larger, 
but it will always be finite. The operating system is the 
arbiter that manages this limited resource on behalf of the 
application program(s), sharing it in an efficient manner.  
This management problem is similar to the problem of 
handling a floating-point coprocessor and the state left in 
it by multiple application programs.  Well known 
algorithms can be applied here, with one crucial 
difference.  In the floating-point coprocessor case 
execution cannot proceed unless the coprocessor is made 
available because there is state left in it and only the 
coprocessor is capable of executing the floating-point 
instructions.  In the case of Extensions, we are subject to 
neither of these constraints.  In the first place, the 
application state is held in the general purpose registers 

and not in a special unit, unless the Extension provides 
extra register state, which is a special case similar to the 
floating-point case. Notice that the Extension bitfile is not 
changeable and does not need to be preserved across 
context switches.  Secondly, the code of the original basic 
block is still available; therefore the operating system has 
the option of skipping the extended instructions and 
simply falling-through to the original code.  This is the 
reason why we require the extensible processor to leave it 
to software to decide whether to trap or not on an 
Extended Instruction. 

Having the option to continue execution “without the 
coprocessor” opens the door to new and more elaborate 
software management algorithms, some ideas are as 
follows. The operating system could exclusively assign 
the resource to the application that  is observed to make 
the most use of it or is selected by a human user; and/or 
disable all Extensions on interrupts, assuming that 
interrupt service routines will not make use of them, or to 
guarantee predictable response times; and/or load as many 
Extensions as there are available slots and fall-back to the 
non optimized basic blocks otherwise; and/or use a least-
recently-used algorithm to handle what is effectively a 
cache of Extension data. 

Executable images that use Extensions can 
potentially pose a security threat to the guest OS. A 
certification authority, such as the OS vendor must sign 
such images to attest to their safety.  If the Extension uses 
the technique described in Figure 9 there is no security 
threat because the semantic of the Extension instruction is 
the same as the block of instructions it replaces. 
Nonetheless, certification is still required to prove that the 
Extension bitfile does indeed match the intended 
semantics. 

4 Implementation 
 
One way to realize the eMIPS processor is to start 

from an existing data path implementation and to modify 
it as indicated in Section 3.3. Xilinx and other FPGA 
manufacturers provide examples of so called “soft-core” 
microprocessors, which are also easily retargetable to 
different devices. Unfortunately, implementing the 
interconnections between the individual pipeline stages of 
the eMIPS processor data path and the Extensions 
requires access to the inputs and outputs of each pipeline 
stage.  Due to the proprietary nature of soft-core 
microprocessors used in FPGA system designs this is not 
readily available.  For this reason, it becomes necessary to 
implement a full MIPS data path from scratch to provide 
these needed connections for the TISA. 

The pipeline has five stages like the classic CPU and 
processor models previously discussed.  The pipeline 
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stages include instruction fetch (IF), instruction decode 
(ID), instruction execution (IE), memory access (MA) and 
Writeback (WB).  The descriptions of these pipeline 
stages have been outlined in previous sections. The output 
of the IF block routes to the ID stage of the TISA, the ID 
stages of each Extension slot and to a CAM.  The input to 
the CAM is the opcode field of the instruction, the output 
is a set of enable lines, one per Extension slot. Each ID 
attempts to decode the instruction in parallel using 
combinatorial logic.  The output of the IDs and of the 
CAM route to an arbitration module that determines 
which ID has recognized the instruction and who should 
control execution from that point on.  The CAM output is 
used to arbitrate conflicts between the IDs. Additional 
logic from the system coprocessor can disable individual 
IDs.  

The general purpose register file connects to the IDs 
through the arbitration module to allow the winning ID to 
gather operand data for executing the instruction. The 
number of read ports on the general purpose register file 
increases to eight to cope with cases where the Extended 
Instruction requires more than two operands.  The top two 
read port outputs route to the TISA IE block and all eight 
route to each of the Extension blocks.  The remaining 
pipeline stages in the TISA remain as they would be for 
the classic CPU, except the connections between the EX 
and MA and MA WB pipeline stages are multiplexed 
with connections to the Extensions.  This allows 
execution in the Extensions to re-enter the normal 
pipeline at any point. 

The data forward and hazard modules of the pipeline 
are scaled to incorporate connections to the extension 
slots.  The write ports of the general purpose register file 
and the logic within the WB stage are expanded to 
accommodate four write ports instead of the standard one. 
This supports Extensions that produce more than one 
result and keeps the ratio between read and write ports 
constant. 

The functionality of the system coprocessor increases 
to let software manage the processor’s extension slots.  
Additional register numbers, not previously allocated, in 
the system coprocessor or CP0 are defined to control the 
state of the Extensions.  Bits in these register may enable 
or disable a given extension slot, and define the behavior 
when an Extended Instruction is recognized by an 
Extension that is currently disabled. Two alternatives are 
to treat the instruction as a NOP or to generate an illegal 
instruction exception. Some registers are defined to 
control access to the opcode CAM, in ways similar to the 
MMU interface. Yet other registers are used to set the 
priority of the extension slots. If more than one Extension 
recognizes the same instruction, the Extension with the 
higher priority wins the arbitration.  In this way, if the 

Extension has higher priority than the TISA, the 
Extension may mask an instruction in the TISA.  For 
instance, consider the case of multiplication.  If an 
application requires a lot of multiplications to the point 
that developers want a more optimized multiplier than 
what is available in the TISA, an Extension could be 
developed that includes a faster multiplier but perhaps 
uses a larger area. 

The Extensions have ports that interface to the IF, 
MA and WB stages of the TISA pipeline.  These 
interfaces conform to a standard that must be applied to 
all Extensions in order for them to be applicable to the 
processor’s hardware.  These interfaces include control 
signals from the arbitration unit derived from the outputs 
of the ID blocks and the status enable/disable bits of the 
Extension Control Registers in the system coprocessor.  
The Extensions use the interfaces to the other pipeline 
stages to pass data to those stages in order to reenter the 
TISA pipeline and continue normal execution. Extensions 
requiring more than two clock cycles to complete may 
stall the pipeline through the hazard detection unit.  The 
status registers in the system coprocessor controls the 
clocks to the Extensions to reduce power consumption 
from a disabled Extension.  

To realize a complete microcontroller capable of 
executing test applications the system requires some 
peripherals integrated on chip in addition to the data path. 
The minimum set of required peripherals includes the 
universal serial synchronous asynchronous receiver 
transmitter, or USART, the interrupt controller, timers, 
the SRAM interface, the FLASH interface, the parallel  
input/output interface, or PIO, and the Block RAM 
interface.  The data path accesses these peripherals 
through the memory interface.  The microprocessor’s 
peripherals map to the memory locations in accordance to 
a memory map stored in the Block RAM.  The Block 
RAM is a pre-initialized memory element internal to the 
FPGA that may be used to store data or implement other 
functions.  In this case, the Block RAM is interfaced to 
the microprocessor as a small internal memory that stores 
the memory map and the boot loader for the system. 

The eMIPS processor at power up or reset starts 
execution in the boot loader in the Block RAM.  The boot 
loader initializes the peripherals that are available and 
determines where to jump to begin operation.  In our 
prototype system, after initializing the peripherals the 
boot loader checks the PIO for the status of a button.  If 
the button is asserted, the boot loader attempts to 
download the application from the serial line and to write 
it to the SRAM.  After download completes the boot 
loader jumps to the base address of the application it 
received to begin execution.  If the button is not asserted, 
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the boot loader jumps to the FLASH and begins executing 
there. 

The rest of this section delves into more details for 
specific aspects of the implementation that posed us non-
trivial challenges. 

4.1 Scaling 
 
Many area and complexity issues rise out of the need 

to scale up some of the components of the data path for 
the Extensions to work efficiently.  Since some 
Extensions require more than the standard two operand 
registers allowed in the standard RISC architecture the 
register file must be scaled up to allow for additional read 
ports so the Extension may gather all its operand data in 
parallel and prevent the delay resulting from multiple 
register accesses to gather all the data.  A similar problem 
exists for the write ports.  Most Extensions will modify 
more than one register in Writeback so additional write 
ports are needed.  In the first prototype the register file 
has been scaled by four (eight read ports and four write 
ports) and has significantly grown in size.  This 
disproportionate increase in size versus port numbers is a 
direct consequence of the modular architecture of the 
FPGA.  The FPGA slices can be easily combined and 
cascaded to build larger components, but there is an 
overhead generated by the interconnected blocks.  
Consider building a 5:1 mux using only 4:1 muxes as the 
building blocks.  It is necessary to route two inputs into 
one mux and ground the others.  The output of the mux is 
input to a second mux, along with the remaining inputs.  
In this way it takes two 4:1 muxes to realize a 5:1 mux, 
three for an 8:1 mux and four for a 12:1 mux.  Additional 
logic is needed to control the switching of these muxes.  It 
is plain to see how this poor scaling results in such 
growth. 

In addition to the register file read and write ports, 
the hazard detection and data-forwarding units must also 
be scaled to meet the increased data throughput and they 
create similar scaling issues. 

4.2 Area Challenges 
 
The limited physical resources available on the 

Virtex 4 LX25 FPGA impose considerable constraints on 
the design and implementation of the eMIPS processor.  
In the first place, the FPGA contains only 10752 slices for 
realizing the logic of the design. [ 18 ]  As the processor 
grows in complexity additional logic is required to realize 
it.  The minimum components to realize the eMIPS 
processor include the baseline data path (including five 
pipeline stages, registers, exception handler and pipeline 
registers), memory interface (including memory mapped 

peripherals) and room for the Extensions.  To realize a 
functional device, peripherals such as the SRAM memory 
interface, USART, Timers, and interrupt controller are 
required.  An interface to the System ACE chipset for 
reconfiguration is also required.  These components in 
some cases are fairly complex requiring a large number of 
slices.  The reconfigurable feature of the design further 
constrains use of the physical resources area-wise by 
requiring the use of bus macros, or pre-routed macros.  
Bus macros maintain the connections between fixed and 
reconfigurable logic by forcing all signals that cross the 
boundary to route a certain way in every configuration.  
These bus macros are fixed and cannot be optimized 
away, and their placement is important.  For this reason, 
the bus macros have the potential to create considerable 
overhead in the design. 
 

 
Figure 14: Input Coupling Bus Module. 

To minimize the impact of the bus macros on the 
design and to reduce area overall, we strive in the 
implementation of each module to optimize each 
component as it is designed.  Sometimes this requires 
revisiting a component to squeeze out a few more slices.  
To deal the with bus macros themselves, a method of 
feed-forward input-coupling/output-decoupling is used.  
Each component has input and outputs that must be 
routed to multiple other components.  In an effort to 
minimize the number of signals that cross from one 
component to the next, the inputs of each component are 
coupled together into a bus-like module that collects all 
inputs to a component together and then passes them to 
the component.  Inside this bus-like module, signals can 
be consolidated and optimized to reduce the number of 
signals that must be passed to the component.  In the case 
of a component that is reconfigurable this reduces the 
number of signals that must pass through a bus macro and 
thus reduces the number of bus macros required. 

4.3 Pipeline Issues 
 
For the eMIPS it is necessary to address issues that 

occur in all RISC architectures but that here take on 
additional requirements.  These include pipeline control, 
exceptions, branches and hazards.  The pipeline control is 
assigned to the ID of the Extension that takes control of 
the pipeline and these controls propagate through the 
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pipeline by the pipeline registers as in the standard RISC 
architecture.  The eMIPS diverges from this by adding 
muxes ahead of the EX, MA, and WB stages.  These are 
needed for path exit and reentry when an Extension is 
used.   

eMIPS uses an exception handling coprocessor to 
control the state of the microprocessor and to store 
information about exceptions for later software 
processing.  The coprocessor is augmented with 
additional registers for controlling the Extension blocks.  
From the exception handler the Extension may be 
enabled, disabled and assigned priority.  To minimize the 
number of instructions in the pipeline that are fetched 
before a branch is tested, RISC processors perform all 
branch tests and jumps from the ID phase.  This explains 
the strange behavior of branch instructions forcing the 
execution of the instruction that immediately follow the 
branch (delay slot) whether the branch is taken or not.  A 
problem arises when data from EX is needed for ID.  The 
data is not guaranteed to be ready in time for it be used in 
ID so the pipeline must be stalled until the end of EX and 
forwarded in MA.  When the hazard detection unit detects 
this, it signals a stall to the pipeline. There are two ways 
to handle data hazards, forward the data and stall.  The 
eMIPS processor utilizes both.  If data for a register being 
written to is in MA or WB, the data is forwarded to ID or 
EX as appropriate. 

The eMIPS pipeline is more complex than the 
standard RISC pipeline that most readers are familiar 
with.  In addition to the standard issues of the RISC 
architecture the eMIPS adds the issue of arbitration 
between the baseline data path and the Extensions.  A 
pipeline arbiter is used as the gateway to the pipeline.  
When an instruction is decoded the arbiter decides 
whether the baseline data path or the Extensions will take 
control.  The arbiter receives acknowledgements from the 
instruction decoders of the baseline data path and the 
Extensions whether or not an instruction has been 
recognized.  If only one instruction decoder recognizes 
the instruction the path that is associated with that 
decoder will normally take control, but there are some 
special cases that must be addresses.  If the instruction is 
only recognized by a disabled exception, the arbiter must 
not allow that Extension to take control and prevent the 
baseline data path from throwing a reserved instruction 
(RI) exception.  When this occurs the microprocessor 
must interpret the instruction as a NOP.  In this case the 
arbiter uses control registers in the exception handler to 
verify which Extensions are enabled and which are not.  It 
is also necessary to prevent generation of a false RI 
exception by baseline data path, and the arbiter is 
therefore the one responsible for throwing the exception 
when none of the Extensions recognizes the instruction. 

A similar solution is implemented in the case of 
multiple instruction decoders recognizing the same 
instruction.  In this case the Extension Control Registers 
assign a priority to each Extension and to the baseline 
data path.  By default, a daisy chain priority is assigned 
starting from the baseline data path.  When conflicts do 
occur, the Extension or the baseline data path with the 
highest priority wins control of the pipeline.  Finally, if 
none of the instruction decoders recognize the instruction, 
the pipeline arbiter should throw a RI exception, except 
when the application running on the microprocessor uses 
an Extension and for whatever reason that Extension is 
not available in the chip.  There are two potential 
solutions for this in hardware and software.  In software, 
the exception handling routing could check a table of 
Extension op codes and if the op code matches one that is 
in use, ignore the exception.  Otherwise, handle normally.  
In hardware a similar look up table could be implemented 
and checked by the pipeline arbiter before throwing the 
exception.  

 
Figure 15: Pipeline Arbitration Hardware. 

In addition to these arbitration issues, the pipeline 
must include a way for the data control signals traveling 
down the Extension path to return to the baseline path at 
some point to complete execution of the instruction by 
either performing a memory operation or writing back to 
the register file.  The Extension ID determines where the 
Extension path reenters the baseline path based on the 
instruction encoding.  To reenter the baseline path at 
either MA or WB the Extension uses a large multiplexer 
that outputs to the proper pipeline stage where it will 
reenter the pipeline.  These are two to one multiplexers, 
with the Extension and the previous pipeline stage as 
inputs.  In the case of the a simple Extension, one that 
requires less than two clock cycles with no memory 
access, no change in the pipeline clocking pattern is 
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required.  The instruction can execute in step with the 
pipeline and reenter at the appropriate point.  However, in 
the case of an Extension requiring three or more clock 
cycles to complete the pipeline will have to stall until the 
execution is complete and the result is written back.  
Stalling the pipeline is necessary due to potential 
dependencies.  Any performance penalties this creates 
could be alleviated by further complicating the pipeline 
controls. The hazard detection could check for 
dependencies and only stall if one exists.  The pipeline 
could continue in parallel while the Extension is 
executing and then the Extension would only have to stall 
the pipeline long enough to insert the results to be written 
back to the register file if the a dependency has not 
already caused the pipeline to stall.  This method 
however, involves considerably more complexity and in 
this case the commit of instructions would no longer be in 
order. 

 

Figure 16: Data path Reentry Hardware. 

4.4 Exception Processing 
 
Replacing an arbitrary sequence of instructions with a 

single Extended Instruction can create exceptions (such as 
TLB misses) at a number of points during execution of 
the extended instruction. Consider the case of a load 
instruction that is the third instruction in the original 
sequence. Should the effective address of the load fail to 
translate an exception must be reported, according to the 
MIPS ISA, for a PC at the fourth address in the sequence. 
The address that failed translation must also be made 
available to software. If any register was modified by the 
first or second instructions they must be written back to 
the register file. 

In some cases it is possible to implement this type of 
Extensions in a transactional style. All resources and 
address translations are gathered before the instruction 

starts and any failure is reported at the starting address. 
No write-backs are needed and this simplifies exception 
reporting. Once the instruction starts it is guaranteed to 
complete and to reach the Writeback stages without 
incidents. 

 
Figure 17: Instruction Decoding with a CAM. 

 
In more complicated cases this scheme is not 

feasible, for instance if an effective address is the result of 
a preceding load instruction in the same sequence. In 
these cases the Exception can maintain a virtual PC 
register that follows the progress of execution, mimicking 
the progress of the PC in the original sequence. The 
instruction will proceed to the Writeback regardless, 
using the partial results. When an exception is reported 
execution will restart from within the original basic block. 
This is the main reason why the preferred mean of 
patching binaries for eMIPS is to insert the Extended 
Instruction, without damaging the original basic block. 

4.5 CAM-based Decoding 
 
A more flexible implementation of the instruction 

decoding would include a CAM to hold the allowed op 
codes and control signals stored within.  The CAM would 
be loaded with all the instructions supported by the base 
line data path.  Support for Extended Instructions is 
implemented by loading the Extension into the FPGA and 
then writing a new entry into the CAM.  The output of the 
CAM when presented with an instruction will indicate to 
the pipeline arbiter if the instruction is recognized and if 
so, whether the baseline data path or one of the 
Extensions will carry out execution.  The same data and 
control signals are inputted to each of the execution 
blocks and only the one that is enabled by the pipeline 
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arbiter executes.  The baseline data path is given a NOP 
when it loses the arbitration like before. 

Use of a CAM solves the problem of the limited 
number of opcodes available to the Extensions and the 
resulting conflicts as illustrated in Section 3.4. 

 

5 Testing and Verification 
 
Tools are needed to ensure that the design and the 

prototype of the processor are correct, using both testing 
and verification.  The complexity of the system makes 
unit testing of individual components insufficient, 
especially since the interactions between components is of 
particular interest.  The data path derives from a 
collection of components such as an ALU, shift registers, 
multiplexers, decoders, etc.  Most of these individual 
components are fairly simple in their implementations.  
Therefore, interconnects and timing between these 
components becomes the focus for debugging any 
improper behavior of the system. 

We integrated multiple tools in order to leverage their 
strengths and to better assist in the verification and the 
functional testing of the processor.  These tools include 
Mentor Graphics’ ModelSim 6 Xilinx Edition [ 21] and 
Microsoft Giano [ 22], the same tool previously used for 
software profiling.   

 
Figure 18: Atmel EB63 Evaluation Board[ 2 ] 

Giano simulates a full microprocessor system, 
initially the Atmel EB63 Evaluation Board depicted in 
Figure 18. The simulation of this board provided the 
initial operating environment for the processor. Both 
Microsoft Research and the Microprocessor Design 
course at Texas A&M University (CPSC 462) have used 
this platform for research and educational purposes for 

some time, since before 2004.  Software for this board 
was already publicly available and easy to modify, [ 63 ] 
this well-known platform therefore is a good baseline for 
comparisons.  Later on in the project the processor 
module and the software have been extended and 
simulated in a configuration that more closely resembles 
the target ML401 board from Xilinx. This configuration 
is shown in Figure 20. 

 
Figure 19: Testing eMIPS with Giano. 

In the test environment depicted in Figure 19, two 
instances of the Giano simulation run in parallel.  Both 
instances run a slightly modified model of the EB63 
board. One instance (shown at right) runs with a verified 
functional model of a MIPS data path in place of the 
ARM core used in the real evaluation board.  This 
instance records its execution history and sends it to the 
eMIPS ModelSim simulation. It acts as an ‘Oracle’, 
providing the correct execution stream of the software 
application for comparison with the system being tested.  
The second instance (left) replaces the ARM core with an 
interface to the ModelSim hardware simulator (center).  
Inside of ModelSim, a Verilog implementation of the 
eMIPS data path being tested is running within a wrapper 
module providing a simulated clock.  The data path 
simulation interacts with Giano through the Verilog 
Programming Language Interface [ 11 ], or PLI, using 
memory requests.  The data path fetches instructions from 
the memory simulated in Giano and interacts with the 
peripherals according to the EB63 memory map.    These 
peripherals are simulated by Giano to better isolate errors 
in the data path itself.  Each time the data path running in 
ModelSim commits an instruction it checks its internal 
state against the state reported by the ‘Oracle’ instance of 
Giano. This allows the Verilog implementation of the data 
path to verify if it is behaving correctly.  When a 
discrepancy is found the simulation can stop immediately, 
and the history trace most likely contains all necessary 
data to find the cause of the error.  In this configuration 
we can execute arbitrary long sequences of instructions, 
including the bootstrapping of an entire operating system 
and the loading of application programs. 
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Figure 20: Peripherals for the ML401 Board. 

In addition to the EB63 Oracle environment, another 
environment was assembled for more exhaustive testing.  
This environment is called the TestGenerator environment 
and is shown in Figure 21.  This simulation includes the 
same ModelSim interface (labeled “FPGA” in the picture) 
and the simulated MIPS processor (“MipsOracle”) used in 
the previous setup except they are now present in the 
same Giano instance, connected to the same test pattern 
generator (“TestGenerator”) that acts as a memory bus 
interface to both simulated cores.  The test pattern 
generator feeds the simulated cores with the same 
sequence of instructions and data, and captures the 
addresses and values of any data written to memory.  As 
the Verilog implementation running in ModelSim 
commits instructions it compares its state to that of the 
‘Oracle’ like in the previous example. The TestGenerator 
scans the entire core instruction set of the processor (the 
TISA) and for each instruction generates a sufficient 
number of tests to guarantee coverage both with respect to 
the instruction encoding and with respect to the functional 
results given a set of test values in registers. 

 
Figure 21: The TestGenerator Environment 

The data path can be verified using these two 
simulation environments.  Application testing performed 
by the EB63 and ML401 environments provides 
confidence that the processor executes the application 
software like the real eMIPS processor.  The exhaustive 
functional tests performed by the Test Generator ensure 
that all corner cases operate within specification. 

As the data path is tested and verified for correctness, 
implementation of the on-chip peripherals begins.  These 
peripherals have the potential of becoming complex 
systems on their own.  Unit testing must be performed on 
some of these peripherals using ModelSim.  After the 
peripherals have been verified in simulation, debugging 
continues on the FPGAs using test benches based on the 
simulation.  Xilinx Chipscope Pro, an on-chip debugging 
and verification tool, allows us to monitor the internal 
signals of the FPGA for this purpose.  Using Chipscope, 
integration testing follows unit testing as these peripherals 
become interconnected with the data path through the 
memory map.  Eventually, a full system is assembled on 
the ML401 board using the same software binaries used 
in the ML401 simulation with Giano. 

6 Progress to Date 
 
At the time of this writing, development work on the 

project is on-going.  To date, the data path blocks that 
constitute the TISA of this first implementation of the 
eMIPS processor are complete and in the process of being 
tested. The system can already execute simple test 
programs. Support for exceptions and interrupts 
throughout the system is under test by attempting to boot 
the operating system. Extensions are synthesized but 
untested. Development of the on chip peripherals 
continues and testing is being performed as they 
complete.  The implemented peripherals undergoing 
testing include the universal serial synchronous 
asynchronous receiver transmitter, or USART, interrupt 
controller, timers, SRAM interface, and Block RAM 
interface.  Additional peripherals in development include 
a FLASH interface, Peripheral Input/Output, or PIO, 
System ACE interface, Watchdog timers, IDE interface 
and pulse width modulation generators. Each peripheral 
integrates into the processor’s memory map as it is 
completed and it is simulated and unit tested before 
performing integration testing on the FPGA.   

 
Figure 22: eMIPS on the Virtex4-LX25 FPGA Device. 

When synthesized for the Xilinx Virtex4 LX25 
FPGA a complete eMIPS microcontroller uses the area 
resources indicated in Figure 22. The data path uses 31-
36% of the available area resources, the on-chip 
peripherals use 21-23%, and the sample Extension of 
Figure 9 uses 7-9%. The target clock frequency is 100 
MHz. 
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7 Related Work 
 
The concept of using reconfigurable logic to improve 

application performance is certainly not new [ 47 ] but to 
date not enough progress has been made towards an 
actual implementation of this and related concepts in a 
complete, usable and safe multi-user system.   

One difficult point is addressing the security risk 
posed by the potentially tamperable FPGA execution 
engine [ 42 ]. Bossuet et al. [ 25 ] looked at FPGA 
security in the sense of securing the reconfiguration bitfile 
and protecting the IP contained therein. This is a good 
contribution, but only solves one aspect of the problem. 
There are a number of FPGA-based “accelerator” 
products [ 56  57  55 ] that restrict the use of the 
accelerator to a single process. This conservative 
approach still fails to secure other users from a virus 
injected into the one process that uses the accelerator. 
Dales [ 35 ] simulates a system that can leverage the 
FPGA acceleration in a general purpose workstation 
environment, switching the device among many 
applications. The FPGA is interfaced as a co-processor, 
security issues are not really addressed. Many other 
projects have simulated similar systems [ 40  39  43  44  
45 ], ours is the first attempt to actually build a FPGA-
based extensible microprocessor and a workstation that is 
safe for general, multi-user application loads. 

One way to classify the various designs is in the way 
they interface the configurable logic to the main 
processor.  Some use a memory mapped interface or 
FIFO, most likely over an I/O bus [ 56  57  55  17 ], some 
use separate co-processors and explicit communication [ 
17  41  39  40  44  46  61 ] others implicitly communicate 
using hints in regular (branch) instructions [ 7 ].  In 
eMIPS the programmable logic plugs directly into the 
pipeline and is accessed by explicit, per-application 
instructions. 

Razdan and Smith [ 39 ] designed and simulated the 
PRISC system, the first system to use the idea of 
augmenting the pipeline of a MIPS processor with special 
instructions that are actually executed (on a per-process 
basis) in a reconfigurable logic array, the Programmable 
Function Unit, or PFU. They did not consider letting the 
PFU stall the pipeline, or access memory. They 
envisioned using the compiler to leverage the new, 
generic instructions but actually just patched binary 
objects in their experiments. The required system support 
was not addressed and PRISC was never physically 
realized. Garp [ 40 ] was also not realized; it improved on 
the PRISC design by considering system support, albeit in 
the expensive form of swapping the content of the entire 
logic array in and out to main memory at context switch 
time. The logic array was controlled using a clock counter 

to enable/disable its clock and to synchronize with the 
main processor’s instruction stream. This results in a 
heterogeneous multiprocessor of sorts that requires both 
sophisticated compiler support and parallel programming 
expertise. The security threat of a direct path to memory 
was not considered but it does permit (physically 
addressed!)  load/store operations that most other designs 
cannot handle. Borgatti et al. [ 99 ] have recently realized 
a system similar to Garp, using a mixture of ASIC and 
embedded FPGAs. This system is reminiscent of the 
eMIPS if we map the ASIC component to the TISA and 
the FPGA to the extension slots. Unlike eMIPS though, 
the interface between FPGA and datapath is limited to 
stopping the clock to the ASIC module when the slower 
FPGA needs more time. There is no access to the register 
file, memory accesses are only to a local buffer, and there 
is no MMU and no consideration to multi-user safety. 
Borgatti’s work does study the practical problems that 
arise from integrating the slower and larger FPGAs into a 
90 nm ASIC process, but the actual prototype chip only 
runs at about 100 MHz like our ML401 board. 

Lysecky et al. [ 45 ] imagine a processor that is 
capable of auto-optimizing itself. Much like eMIPS, the 
Warp processor would optimize the frequently executed 
blocks of code by keeping frequency counts to detect the 
most frequently executed ones, automatically generate 
custom logic for their direct execution through micro-
CAD on-chip tools, and patch the binaries of the 
executing programs to execute faster. While certainly 
ambitious and rather impractical, this approach still does 
not address issues that are important in a practical system, 
such as security, multiprogramming and virtual memory 
support. 

Clark et al. [ 7 ] propose using a reconfigurable 
dataflow engine as a co-processor that semi-transparently 
augments a regular RISC processor.  This approach uses a 
hardware accelerator that identifies execution patterns 
based on execution tree compression and some compiler 
help.  Using this pattern recognition, the accelerator 
controller configures the reconfigurable dataflow engine 
to realize the pattern in a fixed number of cycles rather 
than in the data path.  This approach falls short of this 
work in three respects.  In the first place, it requires 
considerable modification of the software compiler to 
recognize the candidate code fragments and generate 
basic blocks that are recognizable by the runtime engine.  
The eMIPS does not require any change in the software 
tools and processes. In the second place, the dataflow 
engine has limited depth and applicability and this limits 
the performance benefits achievable with this approach. 
With eMIPS the pipelined can be stalled and all blocks 
are accessible, including memory accesses. In the third 
place, the approach was only tested using a modified 
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SimpleScalar simulator [ 23 ] and did not result in a 
practically usable prototype. We intend for our prototype 
to be freely available to the research community for full 
evaluation and modification, thereby allowing the 
practical testing of this and other approaches. 

Athanas and Silverman [ 3 ] did produce a prototype, 
the PRISM I.  This approach also focuses attention on the 
compiler, specifically a C compiler that produces both 
software and hardware binaries targeted to the platform.  
According to [ 3 ] there are several limitations in the 
implementation that do not apply to this work.  These 
include the inability of the PRISM I to support global 
variables in its hardware extensions, exit conditions for 
for-loops must be determined in advance, not all of the C 
functions have been implemented and floating point 
operations are not supported.  These limitations are now 
largely addressed by more recent systems that use a 
similar architecture and a similar software approach. For 
instance, Altera Corp. C2H compiler [ 41 ] targets an 
FPGA with a hard-core CPU and lets the user easily 
partition a C application in functions running on one or 
the other engine. The eMIPS processor provides 
transparency to users at the software level and uses a 
deeper coupling between custom logic and the data path. 
Any MIPS compiler can be used for the eMIPS, for any 
programming language. Similar considerations apply to 
the many other C-to-gates flows [ 62 ] and, at least in 
part, to Anderson’s HThreads hybrid system [ 52 ]. 

Sawitzki et al. [ 48 ] realized CoMPARE, a simple 
and cheap 8-bit extensible processor similar to 
Davidson’s RM [ 59 ]. The limitations of these practical 
systems illustrate very well the gap between simulation 
and reality in this field of research. 

Chow et al. [ 43  44  58 ] introduce OneChip, 
motivating the need for a close coupling of the data path 
and reconfigurable logic. While the basic idea is similar 
to those explored in eMIPS, the three different 
implementations of OneChip differ each in its own way. 
OneChip-96 [ 43 ] is a small subset that does not provide 
reconfiguration other than at boot time, processor and 
extensions are literally compiled together. Interestingly, 
one of the two examples provided is for a peripheral, a 
USART.  OneChip-98 [ 58 ] uses a dedicated path to 
memory like Garp and suffers from the same memory 
coherency and security problems. The instruction 
encoding is now fixed and based on the notion of copying 
data in and out of the FPGA array, similar to the PRISM I 
based systems. One extended opcode is reserved for 
FPGA use, four additional bits select the specific 
Extension. The actual implementation is very constrained 
and does not provide dynamic reconfiguration or memory 
coherence. There is no system software, or interrupts of 
any type. Two test programs demonstrate 10x-32x 

speedups. OneChip-01 [ 44 ]  does away with an actual 
implementation and is simulated using SimpleScalar. 

The Xtensa architecture [ 51 , 54 ] has similarities 
with eMIPS and two important differences. In the first 
place, Xtensa processors are realized as ASICs, based on 
the customer’s application requirements. They are 
statically extensible processors and are therefore subject 
to the limitations previously illustrated for a classic RISC 
processor. In the second place, the suggested approach is 
to identify via profiling and simulation new additional 
instructions that are described (as GCC’s RTL patterns) to 
the automated compiler generation system. The new 
compiler is then used to recompile the application 
program. We favor instead leveraging the predictable 
nature of the compiler’s working, which manifests itself 
in repeated patterns of instructions (basic blocks). We 
optimize the basic blocks at the binary level, on a per 
application binary basis. This does not preclude 
leveraging the compiler but it does not mandate it, either. 

In this paper we pessimistically assume that 
Extensions are manually generated and we consider 
automatic synthesis an orthogonal problem. Some 
complementary efforts are nonetheless worth mentioning.  

Yehia [ 31 ] describes a semi-automated approach for 
realizing sequences of dependent instructions using 
combinatorial logic directly rather than some form of 
dataflow graph. These are then added to a superscalar 
processor and evaluated by simulation against a set of 
benchmarks. The rePLay tool [ 38 ] automatically 
generates the logic. The best result is a speedup of 40% 
over baseline in the Spec2000 benchmarks. This approach 
cannot handle load/store instructions, which limits the 
size of the blocks optimized.  Faruque [ 27 ] looks at the 
problem of automatically recognizing patterns of 
instructions that can benefit the application performance 
if realized directly as ASIP instructions.  Bracy et al. [ 33 
] look at the problem of generating mini-graphs, small 
coupling of instructions that can be tightly integrated into 
the micro-architecture of a super-scalar microprocessor. 
Mini-graphs are limited to two register inputs, one output, 
one memory operation and one branch. Mini-graphs are 
automatically generated from application profiling. Over 
a large set of simulated benchmarks this approach leads to 
a peak gain of 40% over a baseline processor. Sun [ 32 ]  
attacks the problem of automatically generating a 
complete multiprocessor system, built out of ASIPs, that 
optimally executes a fixed set of applications. 

Brisk et al. [ 34 ] describe a technique for collapsing 
multiple specialized instructions into a single data path, 
thereby reducing the area requirement by as much as 
83%. Hauck et al. with Chimaera [ 61 ] and Totem [ 60 ] 
look at the possibility of designing the reconfigurable 
logic array that is attached to the main processor in ways 
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that are more amenable to realizing domain-specific 
operations, in a fully automated way. 

Extensible processors are not to be confused with 
micro-programming, WLIW processors or regular co-
processors. A micro-programmed processor uses a fixed 
set of components (ALUs, memory busses, registers etc 
etc) and interconnects them directly with the micro-
instructions. The eMIPS can use arbitrary logic in its 
Extensions, down to a single AND gate. WLIW 
processors are a restricted form of micro-programming, in 
a way, and therefore dissimilar to the eMIPS approach. 
The co-processor approach differs because it is 
implemented in fixed logic, it requires compiler support, 
and cannot plug into the data path but operates entirely 
separately from it. 

The eMIPS approach is evolutionary, not 
revolutionary and differs from attempts to fundamentally 
redefine the core execution engine. For instance, 
Goldstein et al. [ 49 ] designed and Schmit et al. 
implemented [ 50 ] PipeRench, a reconfigurable 
architecture that uses a (virtual) reconfigurable pipeline to 
accelerate computationally intensive kernels. 

 

8 Conclusions 
 
We argue that dynamically extensible processors can 

address the inflexibility, sub-optimality, lack of 
performance growth and waste of area and power of a 
traditional, fixed RISC architecture. We have designed 
and implemented a prototype of the proposed 
architecture, the eMIPS processor. eMIPS augments a 
core MIPS data path with dynamically loaded Extensions 
that can plug into the individual stages of the pipeline. 
We have realized both a flexible simulation system and an 
FPGA implementation of eMIPS. We have demonstrated 
the use of Extensions to transparently improve the 
performance of a set of applications by identifying 
candidate patterns of instructions (basic blocks), realizing 
an equivalent Extension directly in fixed logic and 
automatically patching the binaries of the applications to 
use the Extended Instructions. At this time the FPGA 
prototype is in the final debugging phase. We intend for 
our prototype to be freely available to the research 
community for further evaluation, experimentation, and 
practical testing of the dynamically extensible processors 
approach. 

Our prototype shows that the approach is indeed 
flexible. The core data path only needs to implement the 
set of instructions that provides for self-extension and to 
manage the security sensitive resources. Anything else 
can be an Extension, including multiplication and 

division, floating point and other co-processor based 
instruction sets, on-chip peripherals and eventually even 
multiple cores. For closed systems, a processor can be 
fully optimized to include only the resources actually 
needed by the applications. This includes the instruction 
set, peripherals and area that are required and nothing 
else. Further Extensions can still be added later when/if 
the application requirements change, even after 
deployment in the field. A number of applications 
demonstrate speedups of 2x-3x simply by optimizing the 
top-three basic block patterns. Our tests have used video 
games, real-time programs, and the SPEC2000 integer 
benchmarks. This proves that a dynamically extensible 
processor can easily outperform a traditional one that 
implements the same ISA. . It is worth noting that the 
performance gains reported in this paper were collected 
from applications that have a broad range of computing 
needs. The broad range of benchmark testing is important 
in order to examine the sustainability of the performance 
gains based on Extended Instructions. Games tend to 
compute intensively over large arrays and matrices. The 
operating system must handle resource management, 
pointers, links, and other complex data structures. The 
SPEC2000 benchmarks are representative of a large set of 
general purpose computing applications. Experimental 
results show that substantial performance gains can be 
sustained even with a small number of Extended 
Instructions. 

Early indications point to the available on-chip area 
as the limiting factor for this approach, not the clock. The 
basic data path can be implemented in as little as 36% of 
the resources of a Xilinx XC4LX25 device, leaving the 
majority of the device free for the Extensions. An 
Extension can take as little as 10% of the area and still 
provide a factor of 2x-3x speedup in a video game and in 
an embedded OS test set. On the negative side, the set of 
on-chip peripherals required to realize a complete eMIPS 
Workstation using the Xilinx ML401 development board 
is rather large. Even the minimal usable set requires 24% 
of the area resources, leaving only 40% of the chip for all 
other Extensions. In this area we can conceivably place 
one additional core, but certainly not much more. 
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