

eMIPS, A Dynamically Extensible Processor

Richard Neil Pittman, Nathaniel Lee Lynch, Alessandro Forin
Microsoft Research

October 2006

Technical Report
MSR-TR-2006-143

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

 - 2 -

 - 3 -

eMIPS, A Dynamically Extensible Processor

Richard Neil Pittman, Nathaniel Lee Lynch, Alessandro Forin
Microsoft Research

Abstract

The eMIPS architecture can realize the performance
benefits of application-specific hardware optimizations in
a general-purpose, multi-user system environment using a
dynamically extensible processor architecture. It allows
multiple secure Extensions to load dynamically and to
plug into the stages of a pipelined data path, thereby
extending the core instruction set of the microprocessor.
Extensions can also be used to realize on-chip
peripherals and if area permits even multiple cores. The
new functionality can be exploited by patching the
binaries of the existing applications, without requiring
any changes to the compilers. A working FPGA prototype
and a flexible simulation system demonstrate speedups of
2x-3x on a set of applications that include games, real-
time programs and the SPEC2000 integer benchmarks.
eMIPS is the first realized workstation based entirely on a
dynamically extensible processor that is safe for general
purpose, multi-user applications. By exposing the
individual stages of the data path, eMIPS allows
optimizations not previously possible. This includes
permitting safe and coherent accesses to memory from
within an Extension, optimizing multi-branched blocks,
and throwing precise and restartable exceptions from
within an Extension.

1 Introduction

Most of the many modern available microprocessors
implement the Reduced Instruction Set Computer
architecture, or RISC, which is based on fixed instruction
sets. Many different types of RISC microprocessors
populate the market based on these different sets of
instructions including, MIPS, ARM and PowerPC to
name some of the more popular. These microprocessors
are realized in the form of application specific integrated
circuits, or ASIC, made up of logic fixed at design time
that cannot be altered after the chip fabrication process is
complete. When designing instruction sets, computer
engineers attempt to capture all the instructions necessary
to cover the largest space of potential applications, while
keeping in mind factors such as size, cost and power.
This set of instructions form the blue print for the

instruction set architecture, or ISA, to be implemented on
the new microprocessor. Despite all efforts, the quest for
the ‘optimal fixed instruction set architecture’ is an
impossible one because the space of applications to which
the designers apply general purpose processors evolves
constantly. In addition, the trends that govern this
evolution shift periodically in response to changes in
consumer lifestyles and demands. For example, the need
to process more audio and video data has led to
extensions for all of the suindicated RISC architectures.
Therefore, the selection of instructions for a ‘general
purpose’ microprocessor designed to meet the demands of
today’s market place may be ill equipped to handle the
applications of future markets. We can also argue that the
quest for the ‘optimal general purpose’ microprocessor
for today’s market does not make sense anymore,
especially in the embedded market place. In the
embedded market, system designers work within the
strictest constraints of size, cost and power. The systems
they design apply to a specialized and significantly
reduced space of potential applications. In this context, a
‘general purpose’ microprocessor is inefficient and under-
utilized when the majority of applications never use a
large subset of the capabilities it provides. For instance,
many embedded systems rarely if ever use floating point
operations but most ‘general purpose’ microprocessors
include them. For these applications, a popular solution is
to use custom microprocessors with reduced instruction
sets but with customized instructions added specifically
for the intended application space. This requires
redesigning the microprocessor architecture and
fabricating custom microprocessors for each of the
desired application domains; still they suffer from the
inflexibility previously discussed. Therefore,
manufacturers cannot offset the cost in design and
fabrication of the new custom chip if the market for the
given application is not large enough. As demonstrated in
this discussion, the problem of this inflexible ‘general
purpose’ microprocessor architecture becomes a severe
hindrance. What is needed in the embedded application
space and potentially in all areas of microprocessor
hardware design is a new technology that can provide for
flexibility and customization, allowing the
microprocessors to evolve with their target markets at all
stages of their life cycles.

 - 4 -

The Field Programmable Gate Array, or FPGA, is a
digital semiconductor device often used for prototyping.
Developers use FPGAs in prototyping for the ability to
configure or program their electrical interconnects to
realize an expansive space of applications from glue logic
to application coprocessors. As the name indicates,
developers are free to apply modifications to the design
implemented on the FPGA in the field, after deployment.
Developers synthesize the configurations from a hardware
description language, like Verilog or VHDL, for the
targeted FPGA device. Eventually, the configuration file
downloads to the chip through an interface such as JTAG.
This flexibility comes with a price. The configurable
logic of the FPGA experiences significantly lower
performance, currently clocking at frequencies up to 500
MHz, than the modern ASIC, currently clocking at
frequencies over 3 GHz. Despite this limit, FPGA
technology has evolved to the point where developers can
implement fixed logic microprocessors with performance
levels competitive with their ASIC counterparts in the
embedded market. These future microprocessors will
have the advantage that they can be dynamically updated
after deployment to meet new demands. This approach to
microprocessor design leads to a new class of
microprocessors termed the “dynamically extensible
processor”. Using modern FPGAs it is possible to
partition the FPGA into sections containing a standard
fixed logic processor core with interconnects to blocks
termed ‘Extensions’ that contain customized instructions
and functionality that loads, modifies and enables while
the fixed logic continues to function without interruption.
In this way, the dynamically extensible processor, using a
library of Extensions from which it can draw, adapts to
the changing application needs in the field. By using
these dynamically extensible processor cores, a
“reconfigurable central processing unit” becomes
possible. The eMIPS project described in this document
argues that such a device is feasible today and proves this
thesis by means of an example prototype implementation.

The standard RISC architecture lacks the
infrastructure to allow for the kind of flexibility and
extensibility possible through the use of FPGAs. This
new extensible instruction set computer architecture
provides this infrastructure. The FPGA is partitioned into
fixed and reconfigurable regions. The fixed logic region
constitutes the base functionality of the processor
including security sensitive resources such as the system
coprocessor and the systems used by the microprocessor
to control its configuration. The Extensions to the base
processor make up the reconfigurable region of the
FPGA. Alternatively, the fixed logic region can be
implemented using ASIC technology and only the
reconfigurable region as FPGA or CPLD, with the added
benefits of extra security, speed and reduced area. The

eMIPS architecture provides the flexibility and
adaptability lacking in the RISC architecture.

The Extensions can take the form of new instructions
developed to meet the changing computing needs of the
market. The Extensions can be thought of similarly to
firmware updates in other devices that load when
applications requiring those updated instructions are
loaded or of added optional features such as floating point
operations. In addition, Extensions can implement
optimized instructions that can take the place of blocks of
code with the same semantics. In the case of the
optimized instructions, these instructions are added to the
software binaries immediately before the blocks they
replace. If the ‘Extension’ associated with that instruction
has been configured to one of the available extension
slots in the reconfigurable region of the FPGA, the
Extension executes the optimized instruction and the
block it replaced is skipped. Otherwise, the data path
contained within the fixed region of the FPGA interprets
the optimized instruction as a NOP and the original block
that is still in the software binary executes normally. The
Extension’s custom logic implements the block’s
functionality more efficiently than a sequence of
instructions that reuses the same execution units to
perform the block’s function step by step. For this
reason, the Extension executing the same function as the
block completes the operation faster. If the block
constitutes a large enough percentage of the execution
count of the application software the overall performance
on this microprocessor is significantly improved. The
inclusion of these new instructions requires minimal
changes to software binaries, as little as adding the
instructions immediately before the blocks they replace.

The eMIPS architecture also addresses the waste
associated with including functionality in systems where
they are never used. The Extensions of the eMIPS
architecture do not load when the microprocessor powers
up. The fixed logic system only includes the minimum
functionality (system management, reconfiguration
support, load, store, arithmetic and logical functions), the
Extensions provide any additional functions required by
the applications running on the microprocessor. For
instance, the floating point co-processor or the media or
vector co-processors can be loaded only if and when
software applications use them. When applications do not
require these functions the Extensions are not loaded,
providing for potentially large power savings because the
unused Extension slots may have their clocking resources
and power disabled to reduce the power consumption.
Area savings are also possible because not all Extensions
need to be present at all times, as is the case instead for an
ASIC implementation. This waste reduction may increase
by dynamically loading and unloading not only the co-

 - 5 -

processors but also the on-chip peripherals that are part of
an embedded microcomputer. Rather than including all
possible peripherals in the ASIC we can load them on an
extensible processor as Extensions, again with power and
area reductions.

The software design techniques for multi-core
systems must become more mature before applications
can take full advantage of the large-grain parallelism they
require. When this happens, the eMIPS technology can be
leveraged to realize even greater speedups by providing
multiple customized processors executing in parallel.
Each processor may additionally execute the instruction
blocks that it is best suited for. If the chip area devoted to
the Extensions is abundant we can use the eMIPS
architecture to realize a more complex and more
adaptable multiprocessing system by allowing Extensions
to include additional complete data paths, or some other
custom processor design. These additional data paths can
be loaded on-demand to increase overall throughput. In
this way we can convert the eMIPS into a multi-core
system when the system is under heavy computational
demand. When the system is lightly loaded the Extensions
are disabled to save energy and the system reverts to a
uni-core system.

Through the use of FPGA configuration technology,
the eMIPS architecture addresses the inflexibility,
performance growth and waste of the modern RISC
architecture. We have realized the architecture in a
working prototype, exposing the five stages of the base
pipeline to the dynamically loaded Extensions. We have
implemented the dynamic loading of Extensions
leveraging the Partial Reconfiguration tools and processes
provided with the manufacturer’s synthesis tools. The
ML401 board we used has enough peripherals that we
could create a complete eMIPS workstation and
experiment with a multi-user application environment.
The flexibility and performance benefits of the
architecture have been demonstrated by patching the
binaries of a number of software applications and
measuring the resulting speedups. We used several
software systems, ranging from an object oriented real-
time operating system for embedded applications, video
games, and the SPEC2000 benchmarks. We find that
simple Extensions can easily achieve speedups factors of
2x-3x over the original application binaries, using a very
small number of Extended Instructions per application.

The eMIPS system makes the following specific
contributions. eMIPS is the first realized workstation
based entirely on a dynamically extensible processor that
is safe for general purpose, multi-user applications. By
exposing the individual stages of the data path, eMIPS
allows optimizations not previously possible. This
includes permitting safe and coherent accesses to memory

from within an Extension, optimizing multi-branched
blocks, and throwing precise and restartable exceptions
from within an Extension.

The remainder of this document is structured as
follows. Section 2 presents the most relevant background
information before introducing the eMIPS architecture in
Section 3. The implementation of a first prototype is
presented in Section 4, the testing and verification
processes are illustrated in Section 5. Section 6 reports
the current status of the implementation. Section 7
presents related work.

2 Background

2.1 Shortcomings of Modern ASICS

The classical microprocessors have grown

exponentially in speed and complexity while maintaining
relative constrained their costs, in a fashion characterized
by Moore’s Law. Moore’s Law states that the complexity
of modern integrated circuits with respect to cost doubles
every two years. One may observe this trend as the
various microprocessor manufacturers; including Intel
and AMD, vie for supremacy in the market by delivering
increasingly faster and more complex microprocessors
with new features that augment their capabilities while
maintaining fairly level costs over time. As
manufacturers reach the limits of the physical constraints
of the materials available in terms of speed, conductivity,
size and reliability, they also reach the end of this level of
growth under current microprocessor design paradigms.
With eMIPS the performance gains do not come
exclusively from higher clock rates but effectively from
devoting more and more area resources to specialized
implementations of frequently executed software
operations.

The current trend in the quest for additional
execution speed provides additional processing cores in
the central processing unit and to parallelize the execution
of as much of the software as possible. This paradigm
has potential, but its effectiveness has been limited by the
difficulties involved in parallelizing software that was
written for sequential execution, resulting in cumbersome
dependencies. These dependencies require extensive
changes in the software design paradigms if this approach
means to reach its full potential. The eMIPS processor
departs from the current techniques for attaining
microprocessor execution speedups because it does not
require any changes in software design and it is hidden
from developers at the software level. To utilize the

 - 6 -

Extensions, only minimal changes are required at the
assembly/binary level.

2.2 MIPS Instruction Set

The MIPS instruction set [10] provides a good

example of a modern RISC instruction set architecture,
although it is but one of many. There are other RISC
ISAs available such as the ARM and PowerPC that
arguably could be better than the MIPS ISA.
Unfortunately, these ISAs fall under proprietary controls
that removes them from consideration in research projects
such as this. The MIPS documentation for the MIPS
R16000 is widely available and by residing in the public
domain where most other instruction sets are proprietary,
it makes MIPS an ideal choice for research in
microprocessor architecture and design. The MIPS
instruction set architecture like all fixed RISC
architectures has experienced growth, modification and
expansion in order to keep up with the changing needs of
the microprocessor market. The architecture is currently
in its ninth generation with the MIPS R16000. For this
reason, the MIPS R4000 was chosen as the basis of the
eMIPS processor. In order to consider a device a MIPS
microprocessor, all the basic instructions must be
implemented. Software compiled using this base
instruction set must run on the eMIPS microprocessor and
existing compilers for high-level programming languages
that target the R4000 should remain usable without
change.

The MIPS architecture is pipelined to provide
improved throughput at higher clock frequencies. One
can increase the clocking frequency by breaking the
instruction execution within the processor into stages that
require less time to execute. Each stage of the pipeline
works on different instructions at different times and then
passes the instruction to the next stage to continue
execution. After the pipeline is full, the microprocessor
completes execution of one instruction per clock cycle
just like the non-pipelined version except at a much
higher clock rate. This architecture results in a net
increase in throughput despite the overhead that the
architecture experiences with flow control, hazards and
exceptions. The time to fill the pipeline is negligible.[9]

The classic implementation of the RISC pipeline
architecture [9] includes five pipeline stages: Instruction
Fetch (IF), Instruction Decode (ID), Instruction Execute
(IE), Memory Access (MA) and Writeback (WB). The
functions of these stages are as follows:

• Instruction Fetch (IF) – Update the program
counter, or PC, and fetch the instruction located
in memory at the address stored in the PC.

• Instruction Decode (ID) – Using wired logic,
decode the instruction passed from IF into
control signals that control the remainder of the
pipeline. Read any data required by the
instruction from the general purpose register file.
Test branch conditions and calculate the memory
location of the next instruction to be executed.

• Instruction Execute (IE) – Using an Arithmetic
Logic Unit, or ALU, and other special purpose
logic perform operations on data based on the
control signals passed from ID.

• Memory Access (MA) – In case of a load or store
instruction, the output of IE is used as the
memory location to be read from or written to.
Otherwise, the output of IE is passed through.

• Writeback (WB) – In the event a register in the
general purpose register file is modified by the
instruction, the output of MA is written to the
desired register.

To realize greater throughput at higher frequency,

some microprocessor implementations have utilized as
many as eight pipeline stages. The deeper the pipeline is
the greater the overhead in the event of a branch event,
hazards and exceptions on execution. To further offset
this overhead, microprocessor designers have developed a
variety of features, including branch predictors and
speculated execution. These features have highly
complex implementations and exist beyond the scope of
this project. For this reason, the architecture of the
eMIPS processor omits these features and has just the
basic five pipeline stages.

2.3 FPGA Architecture, Self and Partial
Reconfiguration

Some of the new ‘state of the art’ FPGAs, which

have come to market in recent years, have added features
that further augment their flexibility and power. First,
modern FPGAs, such as the Virtex series from Xilinx Inc.
and the Stratix series from Altera Corp., have included a
feature called ‘dynamic partial reconfiguration’. FPGAs
that include this feature may have their configurations
partitioned and later allow individual partitions within the
design to continue operations while a new configuration
downloads to another partition.[14] FPGA
configuration solutions allow for FPGAs to be configured
at runtime by other devices or by themselves. An
example of one of these solutions is the System ACE
Compact Flash configuration solution. This is an IC chip
set that provides five interfaces: JTAG to host PC, JTAG
to FPGA, external to a Compact Flash chip, and Control
from either the Microprocessor or the FPGA. Using these

 - 7 -

interfaces a system can configure one or multiple FPGAs
using the JTAG from a PC or reading a configuration
from the Compact Flash and streaming it to the FPGAs on
the JTAG chain.

Figure 1: Xilinx ML401 Evaluation Board with Virtex

4 LX25[20]

The FPGA selected for the development and
experimentation of this project is the Xilinx Virtex 4
product line1. The Virtex series rates among the most
powerful FPGA devices in the market in terms of density,
feature set and speeds. These FPGAs clock commonly at
frequencies of 100 MHz but the specifications indicate
they could operate at much higher frequencies, the
specifications claim 500 MHz. These frequencies fall
significantly short of modern ASIC frequencies
approaching multiple gigahertzes but the FPGAs continue
to grow in speed with each new generation. The Virtex 4
high-end FPGAs come in three flavors denoted by LX,
SX and FX. Each flavor includes a set of special features
to allow developers to select an FPGA with the feature set
that best fits their application domain. The Virtex 4 LX
targets logic design applications. For this reason, the
Virtex 4 LX provides the largest number of logical blocks
for implementation. Given the floor planning
requirements of partial reconfiguration, having more logic
area to work with is preferred. Therefore, the
implementation of the eMIPS processor targets the Xilinx
ML401 Evaluation board with the Virtex LX25.[20]

The eMIPS processor uses the dynamic partial
reconfiguration feature of the Xilinx FPGAs to implement
the dynamic loading of Extensions to the core
microprocessor architecture. During the design phase, the
core microprocessor architecture resides in the fixed logic

1 The choice of one manufacturer over others was based
solely on the author’s familiarity with the tools and
devices. For instance, Altera’s devices [53] should work
equally well.

region of the FPGA configuration. The configurable
partition(s) constitute the area dedicated to the loading of
Extensions after the processor has begun operation. After
design implementation completes, the process produces a
binary file containing the default configuration. Later the
process generates the binary files used to alter the
configuration of the extension slots using the default
configuration and the hardware description of the
Extension as a starting point. At power up, the default
configuration contains the implementation of the core
microprocessor architecture and the region allocated for
the Extensions is empty, or actually contains the
minimum logic needed to prevent the synthesis tool from
removing it during optimization. When the processor
starts an application that requires an Extension, it loads
the Extension using a JTAG chain provided by the
System ACE configuration solution.

Figure 2: Examples partitioning of a Reconfigurable

FPGA design.[14][5]

The System ACE configuration solution provides

functionality needed for the Xilinx FPGA to control and
change its configuration. The System ACE configuration
solution includes a JTAG configuration chain capable of
dynamically configuring the Extensions of the processor.
The processor stores the default configuration and the

 - 8 -

Extensions in the Compact Flash card interfaced to the
System ACE chipset. At power up, the System ACE
configuration solution reads the default configuration
from the Compact Flash card and streams it on the JTAG
chain implementing it on the FPGA. The processor
running on the FPGA requests changes to the extension
configurations by requesting the loading of a
configuration from System ACE through the chip control
interface. In this event, System ACE reads the requested
extension configuration from the Compact Flash Card.
Then like the default configuration at power up, System
ACE streams the configuration on the JTAG chain. In the
case of a partial reconfiguration, the signals on the JTAG
chain only modify the region of the FPGA where the
Extension is located. The remainder of the FPGA
continues to function normally. Consequently, the
processor may continue to execute instructions while the
configuration process alters the extension configuration.
In this way, the processor power up using the default
configuration and modifies its own configuration using
the partial extension configurations stored in the Compact
Flash Card.

2.3.1 Partial Reconfiguration of Xilinx FPGAs

Xilinx has supported partial reconfiguration since its

Virtex II chip [14] and that feature continues in the more
modern Virtex 4 and Spartan III. Despite the continued
support of this feature on their hardware, Xilinx continues
to under-emphasize this feature in the tool suite, the ISE
Foundation. Xilinx recently released the latest release of
the ISE, release 8.2i. In the past, hardware designers
performed the partial reconfiguration design flow using
command line instructions to the tools in the ISE. Xilinx
did not integrate the design flow into the graphical user
interface, or GUI of the ISE Project Navigator. This
results in a large amount of tedious repetitive steps one
must perform to run the design flow. Project
management and organization becomes crucial, a large set
of files is required for each stage of the design flow. In
recent months, Xilinx made a greater effort to provide
tool support for the partial reconfiguration and to make it
more accessible to developers. A new tool that Xilinx has
developed is called Planahead and attempts to provide
improved floor planning utilities and to integrate the
partial reconfiguration design flow into a project structure
managed by a GUI. Planahead currently has limited
availability in advanced access beta program.

The smallest reconfigurable unit of the FPGA
configuration fabric is called the ‘frame’. When
partitioning the FPGA into different independently
reconfigurable and static regions the boundaries between
these regions must coincide with the boundaries of these

‘frames’. Multiple frames may be grouped together into a
single rectangular region. Regions cannot be smaller than
a ‘frame’. In the Virtex and Virtex II architectures a
frame constituted a column of logic cells called slices that
spanned the height of the chip. In the Virtex 4, a column
of sixteen slices makes up the ‘frame’. In this way, each
column of the Virtex 4 contains multiple frames. In the
case of the LX25, which has 192 rows of slices, each
column contains twelve frames. This architecture
provides the Virtex 4 the advantage of allowing for
rectangular regions in the form of tiles on the FPGA
configuration fabric as opposed to strictly columns as in
the previous architectures.[5]

Figure 3: Logical connections of signals cross region

boundary.[5]

Hardware designers must also consider the routing of
signals crossing the boundaries of the various regions.
Only the region containing the reconfigurable module
changes when reconfiguration occurs. The remaining
configuration fabric remains unchanged. Therefore any
inconsistency from one configuration to the next will
result in unpredictable results.

One potential inconsistency can occur when a signal
crosses the module boundaries. Consider for instance the
case of a signal that crosses the boundary and in one
configuration the signal routes through row four but the
same signal is routed in row five in another configuration.
When the system undergoes reconfiguration, the signal
will not line up on the boundary where the
reconfiguration occurred, therefore cutting the signal. To
prevent this inconsistency we can restrict the routing of
such signals to fixed locations along the region
boundaries. This is done by passing the signals through a
‘bus macro’ or a hard pre-routed macro positioned on the
module boundary and by forcing the router program to
route the signal through a given location in each
configuration. For the eMIPS processor, bus-macros are
placed between the interfaces of the fixed instruction set
logic and the dynamic Extensions.

In the Virtex and Virtex II architectures Xilinx
provided ‘bus macros’ based on tri-state buffers, or

 - 9 -

TBUF. Figure 4 shows an example of a TBUF-based bus
macro used to interface two modules, module B and
module C. TBUFs are not included in the Virtex 4 and
Xilinx provided no alternative ‘bus macros’ when the
device was released. Researchers intending to do partial
reconfiguration created ‘bus macros’ of their own during
this time. Most of these bus macros ended up being based
on look-up tables, or LUT. Researchers and developers
would use the FPGA Editor tool available in the Xilinx
ISE to route and generate these hard macros. Figure 5
shows an example of a LUT-based bus macro.

Figure 4: TBUF based Bus Macro.[14]

When Xilinx released Planahead in beta, they also

released LUT based ‘bus macros’ for all their products
including the partial reconfiguration feature. Planahead
takes the required routing consistency a step further by
recording the routing of all fixed logic that passes through
reconfigurable regions in a routing database. Planahead
incorporates these routing patterns in the place-and-route
phase of compilation, so that the reconfigurable regions
will maintain consistency.

Figure 5: LUT Based Macro.[5]

The partial reconfiguration design flow includes four
phases as documented by Xilinx. These phases are
Design Entry, Initial Budgeting, Active Module, and
Final Assembly. Full details can be found in [5][13][
14]. The following is a brief description of each phase:

1. Design Entry – This phase involves setting up the

project by targeting the desired FPGA device, decide
on design partitioning and performing some design
planning. Before Planahead, this phase also included
manually setting up the project directory structure.
Planahead now handles this in project setup. In large
projects including multiple engineers, this phase is
usually carried out by the team lead.

2. Initial Budgeting – In this phase the design
engineers write the top level module and
implementation constraint files. The constraint files
include information such as pin assignments, area
definitions, assignment of modules to areas and
clocking constraints. The top level module defines
the ports of the design and instantiates all second
level modules and defines their interfaces to each
other and to the system ports. This top level should
be minimal in its contents. There should be as little
logic in this layer as possible and contain only the
modules that will be implemented at this layer. Any
top level logic that is present goes through place and
route and this data is written to the routing database
for future use. In most cases, a team lead also carries
out this phase.

3. Active Module – Design engineers execute this
phase of the design flow for each module instantiated
in the top level in parallel. The team lead assigns
hardware designers to implement the different
modules using the interface outlined in the top level
written in the previous phase. In the case of
reconfigurable modules, hardware designers
implement two or more versions of this module. In
some cases, designers write module level constraints
into the implementation constraint file. The
Planahead tool, synthesizes each module
independently of the rest of the design and performs
place and route within the region designated for it
while taking the contents of the routing database into
account.

4. Final Assembly – This is the final phase of the
design flow. In this phase, the team lead collects the
module implementation of each module from the
hardware designers and uses Planahead to integrate
them together. The team lead creates a floor plan of
the system for each possible configuration or
combination of modules. Using these floor plans
Planahead completes any additional place and route
required and generates configurations files for the

 - 10 -

desired default configuration and other files for the
reconfigurable regions that change dynamically.

We used these phases in the eMIPS project. Through

Planahead the eMIPS processor was synthesized, floor
planned, components placed, signals routed, and
configuration files generated.

2.3.2 System ACE Compact Flash Solution

The System Advanced Configuration Environment,

or System ACE [12], attempts to fill a niche for pre-
engineered configuration solutions of multiple FPGA
systems. The system applies to the eMIPS processor’s
need to control and modify its extensible configuration
architecture. System ACE works through the interaction
of four interfaces: JTAG to host PC, JTAG to FPGA, and
Compact Flash & Control from Microprocessor or FPGA.
Using the host JTAG interface a configuration file can be
downloaded manually to the system and used to configure
one or multiple FPGAs. This feature is excellent for
debugging, it allows the developer to download test
configuration and run code before including the new
configuration in the system. When configuring the
system from the host JTAG the System ACE reads the
bits stream on the host interface and transfers it to the
system JTAG chain it controls. After the configuration
design completes and the system is ready for deployment,
system controlled configuration can be performed via
microcontroller or FPGA control. In the case of a single
FPGA system, like the eMIPS processor, the
microcontroller interface can be integrated in the FPGA
to allow it to control its own configuration. The Compact
Flash is a portable, permanent storage device that stores
the configuration files and inserts into a reader integrated
with the System ACE. Using the control interface the
FPGA or microcontroller can initiate configuration of the
system by selecting a configuration file stored in the
Compact Flash that the System ACE drives on the system
JTAG chain. The System ACE also provides an interface
similar to IDE disk interface commonly found on PCs to
allow the controller to read and write to the Compact
Flash.

The System ACE controller interface provides a 3-bit
configuration selection input to allow the controller to
select one of eight potential configurations. Note that the
Compact Flash can store more than eight configurations,
as illustrated in Figure 6. The configurations are grouped
into sets of no more than eight and placed in directories
on the Compact Flash. In the root directory there exists a
file called ‘xilinx.sys’. This file tells System ACE which
directory containing configuration files should be
considered ‘active’. The controller can only use

configuration files from the ‘active’ directory. The
‘xilinx.sys’ file also assigns to each file the numerical
designation zero through seven for the configuration
selection. To change which set of configurations is
considered active, one must change the assignment in the
‘xilinx.sys’ file. System software can do this dynamically
using the IDE interface to the Compact Flash.[12]

Figure 6: System ACE File structure.[12]

2.4 Profiling & Identification of Basic Blocks

While CPU designers seek generality in their designs,

all application programs spend most of their execution
time in small sections of the code that make up the
executable file image. This observation holds regardless
of platform or application, from personal computers to
embedded systems to entertainment consoles and devices.
Analysis of software execution profiles revealed that in
many cases the two to three most executed sequences of
code in the applications program account for more than
80% of the total instruction execution count. Based on
this observation, if we can somehow optimize the
execution of these few select sequences we can attain an
overall improvement of the performance of the entire
application.

These sequences are termed the “basic blocks” of the
software application. Technically, a basic block is a
sequence of instructions that ends in a (conditional)
branch and is not branched-to anywhere but at the first
instruction. In our work, the basic blocks are identified
using the tools distributed with Microsoft Giano [22 24].
Giano has been used internally at Microsoft Corp. for
system verification for some years now. The profiling
tool outputs a database of basic block and basic block
patterns that manifest in the (set of) application
program(s). Roughly speaking, a basic block pattern is the
set of all basic blocks that perform the same function but
differ in their register assignments or in the embedded
constants. Once the database is generated, it is updated

 - 11 -

by the simulator each time the profiled application is run.
Each basic block is uniquely identified by a hash value,
there are no duplicates in the database. Each entry also
contains counters for the static and dynamic repetition
counts of the block. The static count indicates how many
times the block is repeated in the application binary itself,
or possibly across more than one binary, according to the
user’s preference. The dynamic count is maintained by
the execution simulator and counts the times the block has
been actually executed during one or possibly more
executions of the application. It is possible to obtain the
distribution of dynamic counts against time by
checkpointing the database with a certain frequency. This
can capture the behavior of programs that exhibit
“phases” during their execution.

Figure 7: Execution Counts of Individual Basic Blocks

in XQuake, on the Xbox360.

Figure 7 shows the distribution of the top 100 basic
blocks in the XQuake video game on the Xbox360
gaming platform. On the Y axis is the dynamic execution
count of the individual basic blocks, numerically indexed
on the X axis. Other profiling data demonstrate the same
two basic traits shown in Figure 7: the graphs drop
exponentially and have a rather long tail. In the XQuake
case for instance, there are more than 12,500 basic blocks
that are executed at least once, against a total population
of more than 38,500 individual basic blocks.

To demonstrate the potential speedups that
optimizing these basic blocks would deliver, “Extended
Instructions” with the same semantics as the basic blocks
are added to the simulation of the CPU. Then the profiled
application program is ran again, this time with the
optimized instructions for the basic blocks inserted into
the binary of the software at locations immediately
preceding the basic blocks. When the CPU reaches these
instructions, it executes the optimized instructions and
skips the following block. The idea is that these optimized
instructions in the simulation will then become the basis
for hardware Extensions of the eMIPS processor. As
shown in Figure 8, in the XQuake case this results in a
three-fold improvement in the game’s frame rate. Similar

results are obtained with the Doom video game, this time
using eMIPS and system software from the Microsoft
Invisible Computing, or MIC [63].

Figure 8: Speedups from Extended Instructions.

Figure 8 then shows the results from the execution of
a series of over 40 tests programs that are part of the MIC
system. Only one basic block was optimized in these
tests, the same in all cases and shown in Figure 9. This
optimization is also applicable to the Doom case. The
third column shows the speedup for the individual test
that benefits the most from this optimization. The fourth
column shows the cumulative speedup across all tests.

Column five and six in Figure 8 report the speedups
for two benchmarks from the SPEC2000 suite that were
run on eMIPS with MIC. Porting of other benchmarks is
in progress. Other experiments reported in the literature [
28 , 29 , 31 , 33 , 37] similarly show that replacing basic
block sequences with optimized instructions results in a
speedup from factors of two to factors of five and in some
cases over a factor of ten.

In the practice, the basic block sequences are given to
hardware design engineers as specifications, so that they
can create a hardware module that implements the
semantics of that sequence in the most optimized way
possible and in a manner that conforms to the Extension
interface of the processor. Automatic generation of the
Extension appears feasible [31 60] but it is beyond the
scope of this project and we will assume manual
generation. The engineers create the design for the
Extension and generate the FPGA configuration file. The
configuration file integrates into the application software
package. When the application starts up on a platform
that supports it the Extension is loaded in a free Extension
Slot, provided one is available. If the platform does not
support Extensions, or if the security settings of the
platform disallow it or if the configuration file is damaged

 - 12 -

the Extended Instruction is ignored and the basic block
sequence executes normally.

Figure 9: A Basic Block Augmented with an Extended

Instruction

The implementation of the Extension and its use in
the application is abstracted and hidden at the software
level. No change to the higher level compiler is
necessary. After the basic block is identified,
implemented and encoded into an Extended Instruction,
another tool independent of the compiler augments the
executable image. The tool scans the assembly binary
image for occurrences of the basic block pattern identified
in the profile database; it encodes the new Extended
Instruction to match the register assignments and
constants, and inserts the new Extended Instruction
immediately before the instance of the basic block
pattern. In this way, the software is not aware of the
hardware acceleration and need not be aware of it.

Figure 9 shows the basic block that was found to be
the most frequently executed during the tests of Figure 8.
This block was the dynamically most frequent one, it was
not the statically most frequent. It was only through actual
execution profiling that we found it to be the best
candidate for optimization. Simple inspection of the
binary code base pointed to a completely different block.
The first instruction in Figure 9 is the Extended
Instruction, inserted before the block itself. The block is
part of a software implementation of a 64-bit division. It
shifts left by one the 128-bit number contained in the
register quad t0-t1-a0-a1, then makes a conditional branch
depending on register t1 being greater than register a2.

The Extended Instructions must conform (at least in
part) to the instruction format restrictions of the ISA from
which they are derived. In the case of the MIPS ISA,
instructions consist of a 32-bit value including an opcode,
up to two operand registers and a destination register or
data immediate. If this single instruction must replace a
possibly long sequence of several instructions with as few

as two operands per instruction, one destination and data,
the question becomes how to encapsulate all that
information into a 32 bit instruction. One way is to
leverage the relationships that exist between operands,
destinations and immediate values. For instance, if the
register operand of one instruction is the same as the
destination of a previous instruction it only needs to be
encoded once. Scratch registers need not be encoded, for
instance in Figure 9 we can skip the scratch register t3.
Notice though that in the implementation of the Extension
care should be taken to maintain the same semantics as
the original sequence and to write this new value to the
register file even if nothing else uses it. When registers
differ, the relationships between register numbers can be
built into the instruction decoding phase of the Extension.
For instance, if there are two registers used by different
instructions in a sequence but the second is always one
away from the first, the Extension designers only require
one of the register numbers to encode both of them. In
Figure 9 this is the case both for t0-t1 and for a0-a1-a2. It
is up to the binary patching tools to verify that these
constants are met. Encoding of destination registers can
be performed in the same way. In the case of immediate
values, if the value is the same every time the block is
executed, then this may be encoded directly into the
Extension. This is not the case in the example of Figure 9
and the immediate field must be used, reducing the
number of available slots for register numbers by one.

Similar relationships can be identified amongst
operand registers to reduce the number of bits (register
numbers and the like) needed to encode the required data
in the instruction format. If hardware designers cannot
reduce the required register numbers to two operands and
one destination they could violate the ISA rules and use
any of the bits other-than the opcode as they see fit. The
only penalty is that a disassembler will not be able to
provide any meaningful decoding of the Extended
Instruction. Yet another possibility is to further break up
the sequence into two or more Extended Instructions.
More information, including the means to automatically
identify patterns of instruction sequences and applying
such patterns to modify executable binaries is presented
in [36].

Using the eMIPS mean of execution acceleration
requires no change in software design or practice.
Modifications are applied after the software development
process is complete, to the finished product. This is in
sharp contrast to multi-core parallel systems that require
parallelization of the software design at the highest levels
to benefit from the hardware feature. Future business
models for platform manufacturers that utilize processors
include independent services to profile and augment

 - 13 -

application software binaries with an Extension to fully
utilize hardware acceleration.

3 Dynamically Extensible Processors

The eMIPS processor is a ‘dynamically extensible

microprocessor’ because it is based on a new, extensible
architecture. The architecture is extensible because it
allows additional logic to interface and interact with the
basic data path at all stages of the pipeline. The additional
logic, which we term Extensions, can be loaded on-chip
dynamically during execution by the processor itself. The
architecture therefore possesses the unique ability to
extend its own ISA at run-time. To explain this more in
detail, we will first describe the ‘classical’ CPU RISC
architecture in Section 3.1 and then show where the
processor architecture departs from it in Section 3.2 and
Section 3.3. The overall functioning of a complete
system based on an eMIPS microprocessor is then
described in Section 3.4.

3.1 The ‘Classic’ RISC CPU

Figure 10 presents a block diagram of a ‘classic’

RISC CPU organization, including five pipeline stages, a
general purpose register file, a memory interface that
includes the interface to the peripherals and a system
coprocessor. The five pipeline stages include Instruction
Fetch (IF), Instruction Decode (ID), Instruction Execute
(IE), Memory Access (MA) and Writeback (WB). The
stages are as described in Section 2.2. It is important to
note the inclusion in this organization of two Floating
Point Units, or FPU, depicted as operating in parallel with
the IE block. Execution of floating point arithmetic and
other operations require considerably longer execution
times to complete than most integer operations performed
by the Arithmetic Logic Unit, or ALU, inside of the IE
block. These FPUs operate on data in register files that
are independent of the general purpose register file used
by the rest of the CPU. Independence of the data in these
units removes potential conflicts and dependencies and
allows these functional units to execute in parallel with
the rest of the CPU. Parallel execution limits the latency
effects of these floating point operations to those tasks
dependent on their outputs. The presence of two FPUs in
the diagram denotes the established practice of including
multiple instances of functional units on a single chip to
achieve a higher rate of instruction throughput. Several
other functional units available in modern high-
performance microprocessors have been omitted from this
diagram for simplicity. These functional units go beyond

the scope of this project and have been omitted from the
design.

Figure 10: Block diagram of a typical pipelined CPU

architecture.

Figure 10 depicts the FPUs using different colors to
signify that it differs from the other blocks in important
ways. In the first place, unlike the other blocks in the
diagram the processor does not require these units to
function correctly. Floating point operations could be
performed in software, using the ALU, although at a
significant execution time penalty. Many applications in
embedded systems never use floating point operations and
it is fairly common to omit these functional units from
simpler microprocessors. The omission results in smaller
chips, lower power and reduced costs for the embedded
market. In the second place, system software has the
capability of disabling access to these functional units
when switching between software tasks and of restricting
use of these units to particular tasks. When restricting
access to the FPUs the state of the FPU is preserved
across context switches for the benefit of that particular
task. This eliminates the swapping of the FPU register file
in and out to memory and increases overall system
performance.

3.2 The eMIPS Architecture

Figure 11 presents a block diagram of the eMIPS

processor organization. The pipeline stages, general
purpose register file and memory interface match those
depicted for the ‘classic’ CPU and are depicted in lighter
color in the diagram. These pipeline stages constitute the
Trusted ISA or TISA, the core portion of the architecture
that is required for initial operation and to provide a level
of trust in the functioning of the processor. These blocks
cannot be removed or disabled and must be present at
startup of the system. These blocks constitute the fixed
partition of the architecture and include all resources that
are of a security sensitive nature, such as the system

 - 14 -

coprocessor. The TISA also includes all the facilities for
self-extension, including instructions for loading,
unloading, disabling and controlling the unallocated
blocks in the microprocessor. At a functional level the
pipeline blocks operate similarly to the ‘classic’ CPU,
except their interconnections with respect to each other
and other blocks differs. Their implementations differ as
well and this will be explained later.

Figure 11: Block diagram of the eMIPS architecture.

In place of the FPUs Figure 11 shows two sets of
blocks labeled “Extensions”. These Extensions
distinguish the processor architecture from the established
RISC architecture from which it is derived. Through the
Extensions the processor overcomes two major
shortcomings of the RISC architecture; inflexibility and
inability to evolve with changing needs. Using the partial
reconfiguration design flow described in Section 2.3 the
processor is partitioned into fixed and reconfigurable
regions. The TISA is included in the fixed region; the
Extensions are included in the reconfigurable regions and
are interconnected with the TISA by means of the bus
macros described in Section 2.3.1. By implementing
different Extensions for the reconfigurable regions, it
becomes possible to adapt the functionality of the
processor. The processor may apply these adaptations
after deployment, dynamically while the applications
continue executing.

Examples of possible Extensions include but are not
limited to FPUs, Digital Signal Processors, or DSP,
Encryption Coprocessors, Vector Processors and the
application specific instructions of Section 2.4. Using
application execution profiling, engineers identify the
Extended Instructions and implement them as hardware
modules synthesized for the target device. More than one
Extended Instruction might be included in a single
Extension. A successful implementation of an Extended
Instruction runs in fewer clock cycles than the original
instruction sequence it replaces. If the instruction is

executed a sufficient number of times, even a single clock
cycle reduction in execution could significantly improve
performance.

Let us compare an Extension with the FPU available
in the ‘classic’ architecture. In the first place, in the
eMIPS context a FPU is indeed implemented as an
Extension. The second difference between the FPU and
the Extension is that the Extension is not available as a
chip resource at power up, because Extensions are only
loaded and unloaded dynamically during execution by the
TISA. A third difference is that the blocks of an
Extension overlap with ID, IE and MA whereas the FPUs
only overlap with IE. The Extension blocks must overlap
with ID in order to recognize their instructions. The
Extension may not require access to memory and
therefore can extend into the MA block of the pipeline as
well. In this way, if an Extended Instruction only requires
two clock cycles to complete but does not access memory,
no stall is necessary and it can pass its outputs to WB to
update the necessary registers without creating any
pipeline bubbles.

The diagram of Figure 11 depicts only two Extension
blocks but more can be included, depending on space and
other limitations imposed by the physical chip. If Moore’s
Law continues to hold we can project that tens and
possibly even hundreds of Extensions might be available
in future chips.

3.3 Execution Data Paths: MIPS vs. eMIPS

In the case of the ‘classic’ RISC CPU architecture,

the IF block fetches the instruction indicated by the
current value of the program counter, or PC. That
instruction passes to the ID block that decodes the
instruction into the appropriate control signals for the
remainder of the pipeline. If the ID does not recognize
the instruction, the ID throws a reserved instruction
exception to the system coprocessor. The ID also
calculates the next PC based on the current PC and the
instruction being decoded. In the case of a non-branching
instruction, the next PC is the current PC plus four. In the
case of a branch, the ID tests the branch condition. If the
branch condition is true, the next PC is the current PC
plus an offset, otherwise it is the same as a standard
instruction. In the case of a jump, the next PC is the
current PC plus an offset or the content of a register. For
all instructions, the ID fetches operand data from the
general purpose register file. Using the control signals
and data from the ID block, the remainder of the pipeline
executes the decoded instruction. In the case of an
operation instruction, the IE block modifies the operands
fetched by ID using the operation indicated by the
instruction decoding. In the case of a load or store

 - 15 -

instruction, the IE calculates the address to be loaded or
written to and passes it to the MA block. Using the
address calculated by the IE, the MA loads the contents of
that address from memory or modifies it using data read
from a register in ID. For operation instructions, the MA
block passes the result of IE directly to WB. Finally, if
the instruction modifies a register in the general purpose
register, WB writes the new value of the register to the
register file.

The eMIPS follows a similar execution path for
instructions included in the TISA. For instructions not in
the TISA, the processor departs from this execution path
in the ID phase where the ID blocks of the Extensions
operate in parallel with the one in the TISA. After the IF
block fetches the current instruction from memory, the
instruction is sent in parallel to the ID blocks of the TISA
and of each Extension. Each ID of the blocks attempts to
decode the instruction in parallel. If the TISA recognizes
the instruction, the execution path is the same as the
previous example of the ‘classic’ CPU. In the case that
none of the ID blocks recognize the instruction, the TISA
ID block will throw a reserved instruction exception to
the system coprocessor like the ‘classic’ CPU model.

 If one of the Extensions recognizes the instruction,
its ID requests to take over execution of the instruction.
The ID arbitration logic sends a NOP to the TISA
pipeline stages and to those of the other Extensions. The
arbitration logic also passes control of the read ports of
the general purpose register file to the ID of the Extension
that recognized the instruction. The ID of the Extension
that recognized the instruction finishes decoding the
instruction and passes the operand data from the register
file and control signals to the IE block of the Extension.
In general, the instruction decoding may be implemented
in logic but for a more flexible design a content
addressable memory, or CAM, is preferred. The IE block
of the Extension may span the IE and MA block of the
TISA, allowing it an additional clock signal of execution
time to complete the designated operation. When
operations require additional clock cycles an IE of the
Extension sends a signal to the hazard detection unit of
the TISA to stall the processor until the Extension has
completed operations. The IE of the Extension completes
execution of its implemented instruction and passes the
results to the WB block of the TISA. Other issues exist
arbitrating between the TISA and the Extensions and in
controlling this more complex data path and they will be
identified and addressed in Section 4.

3.4 The eMIPS Workstation

Figure 12 illustrates the two ways in which a

workstation based on the eMIPS processor differs from a

regular workstation. In the first place, at power up time
the TISA is loaded in the FPGA if it is implemented as
the default configuration. If it is implemented in fixed
logic this step is not necessary. If the step is necessary, a
secure component verifies the validity and integrity of the
configuration bitfile and loads it on the FPGA [25]. In
the second place, when a user starts a program that uses
an Extension the Operating System asks the TISA to
verify and load the Extension Bitfile and enables it for
that particular process. Other processes can later share the
Extension. For those Extensions that are in fact
peripherals the corresponding software entity is a device
driver. A multi-core Extension is loaded directly by the
operating system, automatically as appropriate.

Figure 12: The eMIPS Workstation, Concept

When the execution reaches a basic block accelerated
by an Extension, the Extension will execute its optimized
Extended Instruction and skip the block that the
instruction replaced. If for any reason the Extension is
not available the Extended Instruction is ignored and the
software executes normally. To accomplish this evolution
of the eMIPS processor within a system some software
support is required. Some of this software support was
described in Section 2.4, namely the software profiling
tools used to identify the basic blocks to be implemented
as Extensions. Additional changes to the operating
system software are required to control the loading of
Extensions and to activate them when they are available.

The operating system is notified of the Extension
requirements at application loading time, either explicitly
by invoking some API, or implicitly by information
contained in the executable file image. The operating
system keeps track of the Extension information on a per-
process and per-processor basis, as part of its protected
state. Figure 13 depicts the additional state that is
required for a dual-multiprocessor using the extensible
processor of Figure 11. Notice that it is necessary to keep

 - 16 -

track of which Extension is loaded in which slot of each
available processor, as is depicted in Figure 13. This
knowledge is necessary to load Extensions from different
application programs at the same time.

Figure 13: Required Additions to the OS-managed

Protected State, Processes and Processors

The operating system loader is the module
responsible for providing the Extension data to the
operating system, at application launch time. The loader
can be used to help sharing Extensions among
applications. Every Extended Instruction is defined by the
binary patching tool using opcodes that all start at some
value and progress in the same manner. This leads with
certainty to collisions between opcodes among
independently developed Extensions. What the loader
can do instead is to modify the opcodes in a newly loaded
image such that they minimize the conflict with other
previously loaded images. Figure 13 shows the effects of
this optimization. Because Process-A and Process-B use
different opcodes they could both be scheduled on
Processor-1 without incurring any management trap, and
Process-B can be scheduled on both processors. If we try
to schedule Process-1 on Processor-2 we will instead
incur a trap.

An extensible processor has only a limited number of
slots for currently-loaded Extensions. The actual number
could be as small as depicted in Figure 11 or much larger,
but it will always be finite. The operating system is the
arbiter that manages this limited resource on behalf of the
application program(s), sharing it in an efficient manner.
This management problem is similar to the problem of
handling a floating-point coprocessor and the state left in
it by multiple application programs. Well known
algorithms can be applied here, with one crucial
difference. In the floating-point coprocessor case
execution cannot proceed unless the coprocessor is made
available because there is state left in it and only the
coprocessor is capable of executing the floating-point
instructions. In the case of Extensions, we are subject to
neither of these constraints. In the first place, the
application state is held in the general purpose registers

and not in a special unit, unless the Extension provides
extra register state, which is a special case similar to the
floating-point case. Notice that the Extension bitfile is not
changeable and does not need to be preserved across
context switches. Secondly, the code of the original basic
block is still available; therefore the operating system has
the option of skipping the extended instructions and
simply falling-through to the original code. This is the
reason why we require the extensible processor to leave it
to software to decide whether to trap or not on an
Extended Instruction.

Having the option to continue execution “without the
coprocessor” opens the door to new and more elaborate
software management algorithms, some ideas are as
follows. The operating system could exclusively assign
the resource to the application that is observed to make
the most use of it or is selected by a human user; and/or
disable all Extensions on interrupts, assuming that
interrupt service routines will not make use of them, or to
guarantee predictable response times; and/or load as many
Extensions as there are available slots and fall-back to the
non optimized basic blocks otherwise; and/or use a least-
recently-used algorithm to handle what is effectively a
cache of Extension data.

Executable images that use Extensions can
potentially pose a security threat to the guest OS. A
certification authority, such as the OS vendor must sign
such images to attest to their safety. If the Extension uses
the technique described in Figure 9 there is no security
threat because the semantic of the Extension instruction is
the same as the block of instructions it replaces.
Nonetheless, certification is still required to prove that the
Extension bitfile does indeed match the intended
semantics.

4 Implementation

One way to realize the eMIPS processor is to start

from an existing data path implementation and to modify
it as indicated in Section 3.3. Xilinx and other FPGA
manufacturers provide examples of so called “soft-core”
microprocessors, which are also easily retargetable to
different devices. Unfortunately, implementing the
interconnections between the individual pipeline stages of
the eMIPS processor data path and the Extensions
requires access to the inputs and outputs of each pipeline
stage. Due to the proprietary nature of soft-core
microprocessors used in FPGA system designs this is not
readily available. For this reason, it becomes necessary to
implement a full MIPS data path from scratch to provide
these needed connections for the TISA.

The pipeline has five stages like the classic CPU and
processor models previously discussed. The pipeline

 - 17 -

stages include instruction fetch (IF), instruction decode
(ID), instruction execution (IE), memory access (MA) and
Writeback (WB). The descriptions of these pipeline
stages have been outlined in previous sections. The output
of the IF block routes to the ID stage of the TISA, the ID
stages of each Extension slot and to a CAM. The input to
the CAM is the opcode field of the instruction, the output
is a set of enable lines, one per Extension slot. Each ID
attempts to decode the instruction in parallel using
combinatorial logic. The output of the IDs and of the
CAM route to an arbitration module that determines
which ID has recognized the instruction and who should
control execution from that point on. The CAM output is
used to arbitrate conflicts between the IDs. Additional
logic from the system coprocessor can disable individual
IDs.

The general purpose register file connects to the IDs
through the arbitration module to allow the winning ID to
gather operand data for executing the instruction. The
number of read ports on the general purpose register file
increases to eight to cope with cases where the Extended
Instruction requires more than two operands. The top two
read port outputs route to the TISA IE block and all eight
route to each of the Extension blocks. The remaining
pipeline stages in the TISA remain as they would be for
the classic CPU, except the connections between the EX
and MA and MA WB pipeline stages are multiplexed
with connections to the Extensions. This allows
execution in the Extensions to re-enter the normal
pipeline at any point.

The data forward and hazard modules of the pipeline
are scaled to incorporate connections to the extension
slots. The write ports of the general purpose register file
and the logic within the WB stage are expanded to
accommodate four write ports instead of the standard one.
This supports Extensions that produce more than one
result and keeps the ratio between read and write ports
constant.

The functionality of the system coprocessor increases
to let software manage the processor’s extension slots.
Additional register numbers, not previously allocated, in
the system coprocessor or CP0 are defined to control the
state of the Extensions. Bits in these register may enable
or disable a given extension slot, and define the behavior
when an Extended Instruction is recognized by an
Extension that is currently disabled. Two alternatives are
to treat the instruction as a NOP or to generate an illegal
instruction exception. Some registers are defined to
control access to the opcode CAM, in ways similar to the
MMU interface. Yet other registers are used to set the
priority of the extension slots. If more than one Extension
recognizes the same instruction, the Extension with the
higher priority wins the arbitration. In this way, if the

Extension has higher priority than the TISA, the
Extension may mask an instruction in the TISA. For
instance, consider the case of multiplication. If an
application requires a lot of multiplications to the point
that developers want a more optimized multiplier than
what is available in the TISA, an Extension could be
developed that includes a faster multiplier but perhaps
uses a larger area.

The Extensions have ports that interface to the IF,
MA and WB stages of the TISA pipeline. These
interfaces conform to a standard that must be applied to
all Extensions in order for them to be applicable to the
processor’s hardware. These interfaces include control
signals from the arbitration unit derived from the outputs
of the ID blocks and the status enable/disable bits of the
Extension Control Registers in the system coprocessor.
The Extensions use the interfaces to the other pipeline
stages to pass data to those stages in order to reenter the
TISA pipeline and continue normal execution. Extensions
requiring more than two clock cycles to complete may
stall the pipeline through the hazard detection unit. The
status registers in the system coprocessor controls the
clocks to the Extensions to reduce power consumption
from a disabled Extension.

To realize a complete microcontroller capable of
executing test applications the system requires some
peripherals integrated on chip in addition to the data path.
The minimum set of required peripherals includes the
universal serial synchronous asynchronous receiver
transmitter, or USART, the interrupt controller, timers,
the SRAM interface, the FLASH interface, the parallel
input/output interface, or PIO, and the Block RAM
interface. The data path accesses these peripherals
through the memory interface. The microprocessor’s
peripherals map to the memory locations in accordance to
a memory map stored in the Block RAM. The Block
RAM is a pre-initialized memory element internal to the
FPGA that may be used to store data or implement other
functions. In this case, the Block RAM is interfaced to
the microprocessor as a small internal memory that stores
the memory map and the boot loader for the system.

The eMIPS processor at power up or reset starts
execution in the boot loader in the Block RAM. The boot
loader initializes the peripherals that are available and
determines where to jump to begin operation. In our
prototype system, after initializing the peripherals the
boot loader checks the PIO for the status of a button. If
the button is asserted, the boot loader attempts to
download the application from the serial line and to write
it to the SRAM. After download completes the boot
loader jumps to the base address of the application it
received to begin execution. If the button is not asserted,

 - 18 -

the boot loader jumps to the FLASH and begins executing
there.

The rest of this section delves into more details for
specific aspects of the implementation that posed us non-
trivial challenges.

4.1 Scaling

Many area and complexity issues rise out of the need

to scale up some of the components of the data path for
the Extensions to work efficiently. Since some
Extensions require more than the standard two operand
registers allowed in the standard RISC architecture the
register file must be scaled up to allow for additional read
ports so the Extension may gather all its operand data in
parallel and prevent the delay resulting from multiple
register accesses to gather all the data. A similar problem
exists for the write ports. Most Extensions will modify
more than one register in Writeback so additional write
ports are needed. In the first prototype the register file
has been scaled by four (eight read ports and four write
ports) and has significantly grown in size. This
disproportionate increase in size versus port numbers is a
direct consequence of the modular architecture of the
FPGA. The FPGA slices can be easily combined and
cascaded to build larger components, but there is an
overhead generated by the interconnected blocks.
Consider building a 5:1 mux using only 4:1 muxes as the
building blocks. It is necessary to route two inputs into
one mux and ground the others. The output of the mux is
input to a second mux, along with the remaining inputs.
In this way it takes two 4:1 muxes to realize a 5:1 mux,
three for an 8:1 mux and four for a 12:1 mux. Additional
logic is needed to control the switching of these muxes. It
is plain to see how this poor scaling results in such
growth.

In addition to the register file read and write ports,
the hazard detection and data-forwarding units must also
be scaled to meet the increased data throughput and they
create similar scaling issues.

4.2 Area Challenges

The limited physical resources available on the

Virtex 4 LX25 FPGA impose considerable constraints on
the design and implementation of the eMIPS processor.
In the first place, the FPGA contains only 10752 slices for
realizing the logic of the design. [18] As the processor
grows in complexity additional logic is required to realize
it. The minimum components to realize the eMIPS
processor include the baseline data path (including five
pipeline stages, registers, exception handler and pipeline
registers), memory interface (including memory mapped

peripherals) and room for the Extensions. To realize a
functional device, peripherals such as the SRAM memory
interface, USART, Timers, and interrupt controller are
required. An interface to the System ACE chipset for
reconfiguration is also required. These components in
some cases are fairly complex requiring a large number of
slices. The reconfigurable feature of the design further
constrains use of the physical resources area-wise by
requiring the use of bus macros, or pre-routed macros.
Bus macros maintain the connections between fixed and
reconfigurable logic by forcing all signals that cross the
boundary to route a certain way in every configuration.
These bus macros are fixed and cannot be optimized
away, and their placement is important. For this reason,
the bus macros have the potential to create considerable
overhead in the design.

Figure 14: Input Coupling Bus Module.

To minimize the impact of the bus macros on the
design and to reduce area overall, we strive in the
implementation of each module to optimize each
component as it is designed. Sometimes this requires
revisiting a component to squeeze out a few more slices.
To deal the with bus macros themselves, a method of
feed-forward input-coupling/output-decoupling is used.
Each component has input and outputs that must be
routed to multiple other components. In an effort to
minimize the number of signals that cross from one
component to the next, the inputs of each component are
coupled together into a bus-like module that collects all
inputs to a component together and then passes them to
the component. Inside this bus-like module, signals can
be consolidated and optimized to reduce the number of
signals that must be passed to the component. In the case
of a component that is reconfigurable this reduces the
number of signals that must pass through a bus macro and
thus reduces the number of bus macros required.

4.3 Pipeline Issues

For the eMIPS it is necessary to address issues that

occur in all RISC architectures but that here take on
additional requirements. These include pipeline control,
exceptions, branches and hazards. The pipeline control is
assigned to the ID of the Extension that takes control of
the pipeline and these controls propagate through the

 - 19 -

pipeline by the pipeline registers as in the standard RISC
architecture. The eMIPS diverges from this by adding
muxes ahead of the EX, MA, and WB stages. These are
needed for path exit and reentry when an Extension is
used.

eMIPS uses an exception handling coprocessor to
control the state of the microprocessor and to store
information about exceptions for later software
processing. The coprocessor is augmented with
additional registers for controlling the Extension blocks.
From the exception handler the Extension may be
enabled, disabled and assigned priority. To minimize the
number of instructions in the pipeline that are fetched
before a branch is tested, RISC processors perform all
branch tests and jumps from the ID phase. This explains
the strange behavior of branch instructions forcing the
execution of the instruction that immediately follow the
branch (delay slot) whether the branch is taken or not. A
problem arises when data from EX is needed for ID. The
data is not guaranteed to be ready in time for it be used in
ID so the pipeline must be stalled until the end of EX and
forwarded in MA. When the hazard detection unit detects
this, it signals a stall to the pipeline. There are two ways
to handle data hazards, forward the data and stall. The
eMIPS processor utilizes both. If data for a register being
written to is in MA or WB, the data is forwarded to ID or
EX as appropriate.

The eMIPS pipeline is more complex than the
standard RISC pipeline that most readers are familiar
with. In addition to the standard issues of the RISC
architecture the eMIPS adds the issue of arbitration
between the baseline data path and the Extensions. A
pipeline arbiter is used as the gateway to the pipeline.
When an instruction is decoded the arbiter decides
whether the baseline data path or the Extensions will take
control. The arbiter receives acknowledgements from the
instruction decoders of the baseline data path and the
Extensions whether or not an instruction has been
recognized. If only one instruction decoder recognizes
the instruction the path that is associated with that
decoder will normally take control, but there are some
special cases that must be addresses. If the instruction is
only recognized by a disabled exception, the arbiter must
not allow that Extension to take control and prevent the
baseline data path from throwing a reserved instruction
(RI) exception. When this occurs the microprocessor
must interpret the instruction as a NOP. In this case the
arbiter uses control registers in the exception handler to
verify which Extensions are enabled and which are not. It
is also necessary to prevent generation of a false RI
exception by baseline data path, and the arbiter is
therefore the one responsible for throwing the exception
when none of the Extensions recognizes the instruction.

A similar solution is implemented in the case of
multiple instruction decoders recognizing the same
instruction. In this case the Extension Control Registers
assign a priority to each Extension and to the baseline
data path. By default, a daisy chain priority is assigned
starting from the baseline data path. When conflicts do
occur, the Extension or the baseline data path with the
highest priority wins control of the pipeline. Finally, if
none of the instruction decoders recognize the instruction,
the pipeline arbiter should throw a RI exception, except
when the application running on the microprocessor uses
an Extension and for whatever reason that Extension is
not available in the chip. There are two potential
solutions for this in hardware and software. In software,
the exception handling routing could check a table of
Extension op codes and if the op code matches one that is
in use, ignore the exception. Otherwise, handle normally.
In hardware a similar look up table could be implemented
and checked by the pipeline arbiter before throwing the
exception.

Figure 15: Pipeline Arbitration Hardware.

In addition to these arbitration issues, the pipeline
must include a way for the data control signals traveling
down the Extension path to return to the baseline path at
some point to complete execution of the instruction by
either performing a memory operation or writing back to
the register file. The Extension ID determines where the
Extension path reenters the baseline path based on the
instruction encoding. To reenter the baseline path at
either MA or WB the Extension uses a large multiplexer
that outputs to the proper pipeline stage where it will
reenter the pipeline. These are two to one multiplexers,
with the Extension and the previous pipeline stage as
inputs. In the case of the a simple Extension, one that
requires less than two clock cycles with no memory
access, no change in the pipeline clocking pattern is

 - 20 -

required. The instruction can execute in step with the
pipeline and reenter at the appropriate point. However, in
the case of an Extension requiring three or more clock
cycles to complete the pipeline will have to stall until the
execution is complete and the result is written back.
Stalling the pipeline is necessary due to potential
dependencies. Any performance penalties this creates
could be alleviated by further complicating the pipeline
controls. The hazard detection could check for
dependencies and only stall if one exists. The pipeline
could continue in parallel while the Extension is
executing and then the Extension would only have to stall
the pipeline long enough to insert the results to be written
back to the register file if the a dependency has not
already caused the pipeline to stall. This method
however, involves considerably more complexity and in
this case the commit of instructions would no longer be in
order.

Figure 16: Data path Reentry Hardware.

4.4 Exception Processing

Replacing an arbitrary sequence of instructions with a

single Extended Instruction can create exceptions (such as
TLB misses) at a number of points during execution of
the extended instruction. Consider the case of a load
instruction that is the third instruction in the original
sequence. Should the effective address of the load fail to
translate an exception must be reported, according to the
MIPS ISA, for a PC at the fourth address in the sequence.
The address that failed translation must also be made
available to software. If any register was modified by the
first or second instructions they must be written back to
the register file.

In some cases it is possible to implement this type of
Extensions in a transactional style. All resources and
address translations are gathered before the instruction

starts and any failure is reported at the starting address.
No write-backs are needed and this simplifies exception
reporting. Once the instruction starts it is guaranteed to
complete and to reach the Writeback stages without
incidents.

Figure 17: Instruction Decoding with a CAM.

In more complicated cases this scheme is not

feasible, for instance if an effective address is the result of
a preceding load instruction in the same sequence. In
these cases the Exception can maintain a virtual PC
register that follows the progress of execution, mimicking
the progress of the PC in the original sequence. The
instruction will proceed to the Writeback regardless,
using the partial results. When an exception is reported
execution will restart from within the original basic block.
This is the main reason why the preferred mean of
patching binaries for eMIPS is to insert the Extended
Instruction, without damaging the original basic block.

4.5 CAM-based Decoding

A more flexible implementation of the instruction

decoding would include a CAM to hold the allowed op
codes and control signals stored within. The CAM would
be loaded with all the instructions supported by the base
line data path. Support for Extended Instructions is
implemented by loading the Extension into the FPGA and
then writing a new entry into the CAM. The output of the
CAM when presented with an instruction will indicate to
the pipeline arbiter if the instruction is recognized and if
so, whether the baseline data path or one of the
Extensions will carry out execution. The same data and
control signals are inputted to each of the execution
blocks and only the one that is enabled by the pipeline

 - 21 -

arbiter executes. The baseline data path is given a NOP
when it loses the arbitration like before.

Use of a CAM solves the problem of the limited
number of opcodes available to the Extensions and the
resulting conflicts as illustrated in Section 3.4.

5 Testing and Verification

Tools are needed to ensure that the design and the

prototype of the processor are correct, using both testing
and verification. The complexity of the system makes
unit testing of individual components insufficient,
especially since the interactions between components is of
particular interest. The data path derives from a
collection of components such as an ALU, shift registers,
multiplexers, decoders, etc. Most of these individual
components are fairly simple in their implementations.
Therefore, interconnects and timing between these
components becomes the focus for debugging any
improper behavior of the system.

We integrated multiple tools in order to leverage their
strengths and to better assist in the verification and the
functional testing of the processor. These tools include
Mentor Graphics’ ModelSim 6 Xilinx Edition [21] and
Microsoft Giano [22], the same tool previously used for
software profiling.

Figure 18: Atmel EB63 Evaluation Board[2]

Giano simulates a full microprocessor system,
initially the Atmel EB63 Evaluation Board depicted in
Figure 18. The simulation of this board provided the
initial operating environment for the processor. Both
Microsoft Research and the Microprocessor Design
course at Texas A&M University (CPSC 462) have used
this platform for research and educational purposes for

some time, since before 2004. Software for this board
was already publicly available and easy to modify, [63]
this well-known platform therefore is a good baseline for
comparisons. Later on in the project the processor
module and the software have been extended and
simulated in a configuration that more closely resembles
the target ML401 board from Xilinx. This configuration
is shown in Figure 20.

Figure 19: Testing eMIPS with Giano.

In the test environment depicted in Figure 19, two
instances of the Giano simulation run in parallel. Both
instances run a slightly modified model of the EB63
board. One instance (shown at right) runs with a verified
functional model of a MIPS data path in place of the
ARM core used in the real evaluation board. This
instance records its execution history and sends it to the
eMIPS ModelSim simulation. It acts as an ‘Oracle’,
providing the correct execution stream of the software
application for comparison with the system being tested.
The second instance (left) replaces the ARM core with an
interface to the ModelSim hardware simulator (center).
Inside of ModelSim, a Verilog implementation of the
eMIPS data path being tested is running within a wrapper
module providing a simulated clock. The data path
simulation interacts with Giano through the Verilog
Programming Language Interface [11], or PLI, using
memory requests. The data path fetches instructions from
the memory simulated in Giano and interacts with the
peripherals according to the EB63 memory map. These
peripherals are simulated by Giano to better isolate errors
in the data path itself. Each time the data path running in
ModelSim commits an instruction it checks its internal
state against the state reported by the ‘Oracle’ instance of
Giano. This allows the Verilog implementation of the data
path to verify if it is behaving correctly. When a
discrepancy is found the simulation can stop immediately,
and the history trace most likely contains all necessary
data to find the cause of the error. In this configuration
we can execute arbitrary long sequences of instructions,
including the bootstrapping of an entire operating system
and the loading of application programs.

 - 22 -

Figure 20: Peripherals for the ML401 Board.

In addition to the EB63 Oracle environment, another
environment was assembled for more exhaustive testing.
This environment is called the TestGenerator environment
and is shown in Figure 21. This simulation includes the
same ModelSim interface (labeled “FPGA” in the picture)
and the simulated MIPS processor (“MipsOracle”) used in
the previous setup except they are now present in the
same Giano instance, connected to the same test pattern
generator (“TestGenerator”) that acts as a memory bus
interface to both simulated cores. The test pattern
generator feeds the simulated cores with the same
sequence of instructions and data, and captures the
addresses and values of any data written to memory. As
the Verilog implementation running in ModelSim
commits instructions it compares its state to that of the
‘Oracle’ like in the previous example. The TestGenerator
scans the entire core instruction set of the processor (the
TISA) and for each instruction generates a sufficient
number of tests to guarantee coverage both with respect to
the instruction encoding and with respect to the functional
results given a set of test values in registers.

Figure 21: The TestGenerator Environment

The data path can be verified using these two
simulation environments. Application testing performed
by the EB63 and ML401 environments provides
confidence that the processor executes the application
software like the real eMIPS processor. The exhaustive
functional tests performed by the Test Generator ensure
that all corner cases operate within specification.

As the data path is tested and verified for correctness,
implementation of the on-chip peripherals begins. These
peripherals have the potential of becoming complex
systems on their own. Unit testing must be performed on
some of these peripherals using ModelSim. After the
peripherals have been verified in simulation, debugging
continues on the FPGAs using test benches based on the
simulation. Xilinx Chipscope Pro, an on-chip debugging
and verification tool, allows us to monitor the internal
signals of the FPGA for this purpose. Using Chipscope,
integration testing follows unit testing as these peripherals
become interconnected with the data path through the
memory map. Eventually, a full system is assembled on
the ML401 board using the same software binaries used
in the ML401 simulation with Giano.

6 Progress to Date

At the time of this writing, development work on the

project is on-going. To date, the data path blocks that
constitute the TISA of this first implementation of the
eMIPS processor are complete and in the process of being
tested. The system can already execute simple test
programs. Support for exceptions and interrupts
throughout the system is under test by attempting to boot
the operating system. Extensions are synthesized but
untested. Development of the on chip peripherals
continues and testing is being performed as they
complete. The implemented peripherals undergoing
testing include the universal serial synchronous
asynchronous receiver transmitter, or USART, interrupt
controller, timers, SRAM interface, and Block RAM
interface. Additional peripherals in development include
a FLASH interface, Peripheral Input/Output, or PIO,
System ACE interface, Watchdog timers, IDE interface
and pulse width modulation generators. Each peripheral
integrates into the processor’s memory map as it is
completed and it is simulated and unit tested before
performing integration testing on the FPGA.

Figure 22: eMIPS on the Virtex4-LX25 FPGA Device.

When synthesized for the Xilinx Virtex4 LX25
FPGA a complete eMIPS microcontroller uses the area
resources indicated in Figure 22. The data path uses 31-
36% of the available area resources, the on-chip
peripherals use 21-23%, and the sample Extension of
Figure 9 uses 7-9%. The target clock frequency is 100
MHz.

 - 23 -

7 Related Work

The concept of using reconfigurable logic to improve

application performance is certainly not new [47] but to
date not enough progress has been made towards an
actual implementation of this and related concepts in a
complete, usable and safe multi-user system.

One difficult point is addressing the security risk
posed by the potentially tamperable FPGA execution
engine [42]. Bossuet et al. [25] looked at FPGA
security in the sense of securing the reconfiguration bitfile
and protecting the IP contained therein. This is a good
contribution, but only solves one aspect of the problem.
There are a number of FPGA-based “accelerator”
products [56 57 55] that restrict the use of the
accelerator to a single process. This conservative
approach still fails to secure other users from a virus
injected into the one process that uses the accelerator.
Dales [35] simulates a system that can leverage the
FPGA acceleration in a general purpose workstation
environment, switching the device among many
applications. The FPGA is interfaced as a co-processor,
security issues are not really addressed. Many other
projects have simulated similar systems [40 39 43 44
45], ours is the first attempt to actually build a FPGA-
based extensible microprocessor and a workstation that is
safe for general, multi-user application loads.

One way to classify the various designs is in the way
they interface the configurable logic to the main
processor. Some use a memory mapped interface or
FIFO, most likely over an I/O bus [56 57 55 17], some
use separate co-processors and explicit communication [
17 41 39 40 44 46 61] others implicitly communicate
using hints in regular (branch) instructions [7]. In
eMIPS the programmable logic plugs directly into the
pipeline and is accessed by explicit, per-application
instructions.

Razdan and Smith [39] designed and simulated the
PRISC system, the first system to use the idea of
augmenting the pipeline of a MIPS processor with special
instructions that are actually executed (on a per-process
basis) in a reconfigurable logic array, the Programmable
Function Unit, or PFU. They did not consider letting the
PFU stall the pipeline, or access memory. They
envisioned using the compiler to leverage the new,
generic instructions but actually just patched binary
objects in their experiments. The required system support
was not addressed and PRISC was never physically
realized. Garp [40] was also not realized; it improved on
the PRISC design by considering system support, albeit in
the expensive form of swapping the content of the entire
logic array in and out to main memory at context switch
time. The logic array was controlled using a clock counter

to enable/disable its clock and to synchronize with the
main processor’s instruction stream. This results in a
heterogeneous multiprocessor of sorts that requires both
sophisticated compiler support and parallel programming
expertise. The security threat of a direct path to memory
was not considered but it does permit (physically
addressed!) load/store operations that most other designs
cannot handle. Borgatti et al. [99] have recently realized
a system similar to Garp, using a mixture of ASIC and
embedded FPGAs. This system is reminiscent of the
eMIPS if we map the ASIC component to the TISA and
the FPGA to the extension slots. Unlike eMIPS though,
the interface between FPGA and datapath is limited to
stopping the clock to the ASIC module when the slower
FPGA needs more time. There is no access to the register
file, memory accesses are only to a local buffer, and there
is no MMU and no consideration to multi-user safety.
Borgatti’s work does study the practical problems that
arise from integrating the slower and larger FPGAs into a
90 nm ASIC process, but the actual prototype chip only
runs at about 100 MHz like our ML401 board.

Lysecky et al. [45] imagine a processor that is
capable of auto-optimizing itself. Much like eMIPS, the
Warp processor would optimize the frequently executed
blocks of code by keeping frequency counts to detect the
most frequently executed ones, automatically generate
custom logic for their direct execution through micro-
CAD on-chip tools, and patch the binaries of the
executing programs to execute faster. While certainly
ambitious and rather impractical, this approach still does
not address issues that are important in a practical system,
such as security, multiprogramming and virtual memory
support.

Clark et al. [7] propose using a reconfigurable
dataflow engine as a co-processor that semi-transparently
augments a regular RISC processor. This approach uses a
hardware accelerator that identifies execution patterns
based on execution tree compression and some compiler
help. Using this pattern recognition, the accelerator
controller configures the reconfigurable dataflow engine
to realize the pattern in a fixed number of cycles rather
than in the data path. This approach falls short of this
work in three respects. In the first place, it requires
considerable modification of the software compiler to
recognize the candidate code fragments and generate
basic blocks that are recognizable by the runtime engine.
The eMIPS does not require any change in the software
tools and processes. In the second place, the dataflow
engine has limited depth and applicability and this limits
the performance benefits achievable with this approach.
With eMIPS the pipelined can be stalled and all blocks
are accessible, including memory accesses. In the third
place, the approach was only tested using a modified

 - 24 -

SimpleScalar simulator [23] and did not result in a
practically usable prototype. We intend for our prototype
to be freely available to the research community for full
evaluation and modification, thereby allowing the
practical testing of this and other approaches.

Athanas and Silverman [3] did produce a prototype,
the PRISM I. This approach also focuses attention on the
compiler, specifically a C compiler that produces both
software and hardware binaries targeted to the platform.
According to [3] there are several limitations in the
implementation that do not apply to this work. These
include the inability of the PRISM I to support global
variables in its hardware extensions, exit conditions for
for-loops must be determined in advance, not all of the C
functions have been implemented and floating point
operations are not supported. These limitations are now
largely addressed by more recent systems that use a
similar architecture and a similar software approach. For
instance, Altera Corp. C2H compiler [41] targets an
FPGA with a hard-core CPU and lets the user easily
partition a C application in functions running on one or
the other engine. The eMIPS processor provides
transparency to users at the software level and uses a
deeper coupling between custom logic and the data path.
Any MIPS compiler can be used for the eMIPS, for any
programming language. Similar considerations apply to
the many other C-to-gates flows [62] and, at least in
part, to Anderson’s HThreads hybrid system [52].

Sawitzki et al. [48] realized CoMPARE, a simple
and cheap 8-bit extensible processor similar to
Davidson’s RM [59]. The limitations of these practical
systems illustrate very well the gap between simulation
and reality in this field of research.

Chow et al. [43 44 58] introduce OneChip,
motivating the need for a close coupling of the data path
and reconfigurable logic. While the basic idea is similar
to those explored in eMIPS, the three different
implementations of OneChip differ each in its own way.
OneChip-96 [43] is a small subset that does not provide
reconfiguration other than at boot time, processor and
extensions are literally compiled together. Interestingly,
one of the two examples provided is for a peripheral, a
USART. OneChip-98 [58] uses a dedicated path to
memory like Garp and suffers from the same memory
coherency and security problems. The instruction
encoding is now fixed and based on the notion of copying
data in and out of the FPGA array, similar to the PRISM I
based systems. One extended opcode is reserved for
FPGA use, four additional bits select the specific
Extension. The actual implementation is very constrained
and does not provide dynamic reconfiguration or memory
coherence. There is no system software, or interrupts of
any type. Two test programs demonstrate 10x-32x

speedups. OneChip-01 [44] does away with an actual
implementation and is simulated using SimpleScalar.

The Xtensa architecture [51 , 54] has similarities
with eMIPS and two important differences. In the first
place, Xtensa processors are realized as ASICs, based on
the customer’s application requirements. They are
statically extensible processors and are therefore subject
to the limitations previously illustrated for a classic RISC
processor. In the second place, the suggested approach is
to identify via profiling and simulation new additional
instructions that are described (as GCC’s RTL patterns) to
the automated compiler generation system. The new
compiler is then used to recompile the application
program. We favor instead leveraging the predictable
nature of the compiler’s working, which manifests itself
in repeated patterns of instructions (basic blocks). We
optimize the basic blocks at the binary level, on a per
application binary basis. This does not preclude
leveraging the compiler but it does not mandate it, either.

In this paper we pessimistically assume that
Extensions are manually generated and we consider
automatic synthesis an orthogonal problem. Some
complementary efforts are nonetheless worth mentioning.

Yehia [31] describes a semi-automated approach for
realizing sequences of dependent instructions using
combinatorial logic directly rather than some form of
dataflow graph. These are then added to a superscalar
processor and evaluated by simulation against a set of
benchmarks. The rePLay tool [38] automatically
generates the logic. The best result is a speedup of 40%
over baseline in the Spec2000 benchmarks. This approach
cannot handle load/store instructions, which limits the
size of the blocks optimized. Faruque [27] looks at the
problem of automatically recognizing patterns of
instructions that can benefit the application performance
if realized directly as ASIP instructions. Bracy et al. [33
] look at the problem of generating mini-graphs, small
coupling of instructions that can be tightly integrated into
the micro-architecture of a super-scalar microprocessor.
Mini-graphs are limited to two register inputs, one output,
one memory operation and one branch. Mini-graphs are
automatically generated from application profiling. Over
a large set of simulated benchmarks this approach leads to
a peak gain of 40% over a baseline processor. Sun [32]
attacks the problem of automatically generating a
complete multiprocessor system, built out of ASIPs, that
optimally executes a fixed set of applications.

Brisk et al. [34] describe a technique for collapsing
multiple specialized instructions into a single data path,
thereby reducing the area requirement by as much as
83%. Hauck et al. with Chimaera [61] and Totem [60]
look at the possibility of designing the reconfigurable
logic array that is attached to the main processor in ways

 - 25 -

that are more amenable to realizing domain-specific
operations, in a fully automated way.

Extensible processors are not to be confused with
micro-programming, WLIW processors or regular co-
processors. A micro-programmed processor uses a fixed
set of components (ALUs, memory busses, registers etc
etc) and interconnects them directly with the micro-
instructions. The eMIPS can use arbitrary logic in its
Extensions, down to a single AND gate. WLIW
processors are a restricted form of micro-programming, in
a way, and therefore dissimilar to the eMIPS approach.
The co-processor approach differs because it is
implemented in fixed logic, it requires compiler support,
and cannot plug into the data path but operates entirely
separately from it.

The eMIPS approach is evolutionary, not
revolutionary and differs from attempts to fundamentally
redefine the core execution engine. For instance,
Goldstein et al. [49] designed and Schmit et al.
implemented [50] PipeRench, a reconfigurable
architecture that uses a (virtual) reconfigurable pipeline to
accelerate computationally intensive kernels.

8 Conclusions

We argue that dynamically extensible processors can

address the inflexibility, sub-optimality, lack of
performance growth and waste of area and power of a
traditional, fixed RISC architecture. We have designed
and implemented a prototype of the proposed
architecture, the eMIPS processor. eMIPS augments a
core MIPS data path with dynamically loaded Extensions
that can plug into the individual stages of the pipeline.
We have realized both a flexible simulation system and an
FPGA implementation of eMIPS. We have demonstrated
the use of Extensions to transparently improve the
performance of a set of applications by identifying
candidate patterns of instructions (basic blocks), realizing
an equivalent Extension directly in fixed logic and
automatically patching the binaries of the applications to
use the Extended Instructions. At this time the FPGA
prototype is in the final debugging phase. We intend for
our prototype to be freely available to the research
community for further evaluation, experimentation, and
practical testing of the dynamically extensible processors
approach.

Our prototype shows that the approach is indeed
flexible. The core data path only needs to implement the
set of instructions that provides for self-extension and to
manage the security sensitive resources. Anything else
can be an Extension, including multiplication and

division, floating point and other co-processor based
instruction sets, on-chip peripherals and eventually even
multiple cores. For closed systems, a processor can be
fully optimized to include only the resources actually
needed by the applications. This includes the instruction
set, peripherals and area that are required and nothing
else. Further Extensions can still be added later when/if
the application requirements change, even after
deployment in the field. A number of applications
demonstrate speedups of 2x-3x simply by optimizing the
top-three basic block patterns. Our tests have used video
games, real-time programs, and the SPEC2000 integer
benchmarks. This proves that a dynamically extensible
processor can easily outperform a traditional one that
implements the same ISA. . It is worth noting that the
performance gains reported in this paper were collected
from applications that have a broad range of computing
needs. The broad range of benchmark testing is important
in order to examine the sustainability of the performance
gains based on Extended Instructions. Games tend to
compute intensively over large arrays and matrices. The
operating system must handle resource management,
pointers, links, and other complex data structures. The
SPEC2000 benchmarks are representative of a large set of
general purpose computing applications. Experimental
results show that substantial performance gains can be
sustained even with a small number of Extended
Instructions.

Early indications point to the available on-chip area
as the limiting factor for this approach, not the clock. The
basic data path can be implemented in as little as 36% of
the resources of a Xilinx XC4LX25 device, leaving the
majority of the device free for the Extensions. An
Extension can take as little as 10% of the area and still
provide a factor of 2x-3x speedup in a video game and in
an embedded OS test set. On the negative side, the set of
on-chip peripherals required to realize a complete eMIPS
Workstation using the Xilinx ML401 development board
is rather large. Even the minimal usable set requires 24%
of the area resources, leaving only 40% of the chip for all
other Extensions. In this area we can conceivably place
one additional core, but certainly not much more.

Acknowledgements
We would like to thank Mihai Budiu for graciously

providing help with the Spec2000 benchmarks; to Steve
Liu and other reviewers for help in improving this paper.

References

[1] Atmel ARM Thumb Microcontrollers: AT91M63200. Atmel

Corporation, 1999. Available at
http://www.atmel.com/dyn/resources/prod_documents/DOC1028.P
DF

 - 26 -

[2] Atmel AT91EB63 Evaluation Board User Guide. Atmel
Corporation, 2001. Available at
http://www.atmel.com/dyn/resources/prod_documents/DOC1359.P
DF#search=%22AT91EB63%20Evaluation%20Board%20User%2
0Guide%22

[3] Athanas, P.. Silverman, H. Processor Reconfiguration through
Instruction-Set Metamorphosis. Computer Vol. 26, March 1993,
pp. 11-18.

[4] Xilinx Development System Reference Guide, Chapter 4, Modular
Design. Xilinx Inc., December 2005, pp. 75-112. Available at
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf

[5] Xilinx Development System Reference Guide, Chapter 5, Partial
Reconfiguration. Xilinx Inc., December 2005, pp. 113-140,
Available at
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf

[6] Xilinx Chipscope Pro Software and Cores User Guide. Xilinx Inc.,
October 2005, Available at
http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_8
_1i_ug029.pdf

[7] Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner, K. An
Architecture Framework for Transparent Instruction Set
Customization in Embedded Processors. ISCA 2005, pp. 272-283.

[8] Xilinx FPGA Editor Guide. Xilinx Inc., June 1999. Available at
http://www.xilinx.com/support/sw_manuals/2_1i/download/fpedit.
pdf

[9] Hennessy, J. L., Patterson, D.A. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann
Publishers, San Francisco, CA. 1998.

[10] Kane, G., Heinrich, J. MIPS RISC Architecture. Prentice Hall,
Upper Saddle River, NJ. 1992.

[11] Sutherland, S. The Verilog PLI Handbook, 2nd ed. Kluwer
Academic Publishers, Norwell, MA. 2002.

[12] Xilinx System ACE Compact Flash Solution. Xilinx Inc., April
2002. Available at
http://www.xilinx.com/bvdocs/publications/ds080.pdf

[13] Xilinx Two Flows for Partial Reconfiguration: Module Based or
Difference Based. Xilinx Inc., November 2003. Available at
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

[14] Xilinx Using Partial Reconfiguration to Time Share Device
Resources in Virtex II and Virtex II Pro. Xilinx Inc., May 2005.

[15] Xilinx Virtex 4 Configuration Guide. Xilinx Inc., January 2006.
Available at http://direct.xilinx.com/bvdocs/userguides/ug071.pdf

[16] Xilinx Virtex 4 Datasheet: DC and Switching Characteristics.
Xilinx Inc., February 2006. Available at
http://direct.xilinx.com/bvdocs/publications/ds302.pdf

[17] Xilinx Virtex 4 Family Overview. Xilinx Inc., June 2005.
Available at
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[18] Xilinx Virtex 4 Packaging and Pinout Specification. Xilinx Inc.,
September 2005.Available at
http://direct.xilinx.com/bvdocs/userguides/ug075.pdf

[19] Xilinx Virtex 4 User Guide. Xilinx Inc., September 2005.
Available at http://direct.xilinx.com/bvdocs/userguides/ug070.pdf

[20] Xilinx. Virtex-4 Development Boards. Xilinx Inc., 2005. At
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virte
x4/index.htm

[21] Mentor Graphics ModelSim at
http://www.mentor.com/products/fpga_pld/simulation/index.cfm

[22] Microsoft Giano at http://research.microsoft.com/downloads/ and
http://www.ece.umd.edu/~behnam/giano.html

[23] Burger, D., Austin, T. M. The SimpleScalar Tool Set, Version 2.0.
Technical Report 1342, June 1997, University of Wisconsin-
Madison.

[24] Forin, A., Neekzad, B., Lynch, N., L. Giano: The Two-Headed
Simulator. Microsoft Research Technical Report MSR-TR-2006-
130, September 2006.

[25] Bossuet, L., Gogniat, G., Burleson, W. Dynamically Configurable
Security for SRAM FPGA Bitstreams. International Journal of
Embedded Systems, 2006.

[26] Bartzoudis, N., G., et al. Reconfigurable Computing and Active
Networks. ERSA ’03, Las Vegas, NV pp. 27-33.

[27] Al Faruque, M., A. Fine Grained Application Profiling for
Guiding Application Specific Instruciton Set Processor (ASIPs)
Design. Master Thesis, 2004, Aachen University.

[28] Clark, N., Zhong, H., Mahlke, S. Processor Acceleration Through
Automated Instruction Set Customization. Micro ’03, 2003.

[29] Clark, N. et al. Application-Specific Processing on a General-
Purpose Core via Transparent Instruction Set Customization.
Micro ’04, 2004.

[30] Yehia, S. et al. Exploring the Design Space of LUT-based
Transparent Accelerators. CASES ’05, 2005.

[31] Yehia, S., Teman, O. From Sequences of Dependent Instructions
to Functions: An Approach for Improving Performance without
ILP or Speculation" ISCA ’04, 2004.

[32] Sun, F. et al. Synthesis of Custom Processors Based On Extensible
Platforms. ICCAD ’02, 2002.

[33] Bracy, A., Prahlad, P., Roth, A. Dataflow Mini-Graphs: Aplifying
Superscalar Capacity and Bandwidth. MICRO ’04, 2004.

[34] Brisk, P., Kaplan, A., Sarrafzadeh, M. Area-Efficient Instruciton
Set Synthesis for Reconfigurable System-on-Chip Designs" DAC
’04, 2004.

[35] Dales, M. Managing a Reconfigurable Processor in a General
Purpose Workstation Environment. DATE ’03, 2003.

[36] Forin, A., Lynch, N., L., Pittman, R. N. Software Support for
Dynamically Extensible Processors. Microsoft Research Technical
Report MSR-TR-2006-147, October 2006.

[37] Yu, P, Mitra, T. Characterizing Embedded Applications for
Instruction-Set Extensible Processors. DAC 2004, San Diego CA.

[38] Fahs, B. et al. Performance Characterization of a Hardware
Framework for Dynamic Optimization. 34th ISM, December 2001.

[39] Razdan, R., Smith, M. D. High-Performance Microarchitectures
with Hardware-Programmable Functional Units. 27th ISM, pagg.
172-180, November 1994.

[40] Hauser, J. R., Wawrzynek, J. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. FCCM’97 pagg 12-21, April 1997.

[41] Lau, D., Pritchard, O., Molson, P. Automated Generation of
Hardware Accelerators with Direct Memory Access from
ANSI/ISO Standard C Functions. FCCM’06, pagg. 45-54, April
2006.

[42] Hadžić, I., Udani, S., Smith, J. M. FPGA Viruses. FPLA’99,
pagg291-300, September 1999.

[43] Wittig, R. D., Chow, P. OneChip: An FPGA Processor With
Reconfigurable Logic. FCCM’96, pagg. 126-135, 1996.

[44] Carrillo, J. E., Chow, P. The Effect of Reconfigurable Units in
Superscalar Processors. FPGA’01, pagg. 141-150, February 2001.

[45] Lysecky, R., Stitt, G., Vahid, F. Warp Processors. DAES
Transactions, pagg659-681, July 2006.

[46] Lysecky, R., Vahid, F. A Configurable Logic Architecture for
Dynamic Hardware/Software Partitioning. DATE’04, 2004.

[47] Estrin, G. Organization of computer systems: The fixed plus
variable structure computer. Proc. Western Joint Computer
Conference, pagg 33-40, New Yowrk 1960.

[48] Sawitzki, S., Köhler, S., Spallek, R. Prototyping Framework for
Reconfigurable Processors. FPL’01, pagg. 6-16, 2001.

[49] Goldstein, S. C., et al. PipeRench: A Reconfigurable Architecture
and Compiler. IEEE Computer, 2000.

[50] Schmit, H. Et al. PipeRench: A Virtualized Programmable Data
path in 0.18 Micron Technology. IEEE CICC’02, 2002.

[51] Rowen, C, Maydan, D. Automated Processor Generation for
System-on-Chip. ESSCIRC’01, 2001.

[52] Anderson, E. et al. Enabling a Uniform Programming Model
across the Software/Hardware Boundary. FCCM’06, pagg. 89-98,
April 2006.

 - 27 -

[53] Altera Corp. Excalibur Embedded Processor Solutions, 2005.
 .http://www.altera.com/products/devices/excalibur/excindex.html,
[54] Stretch, Inc. http://www.stretchinc.com 2006.
[55] Tarari, Inc. http://www.tarari.com 2002.
[56] SRC Computers Inc. http://www.srccomp.com 1996.
[57] Mitrionics, Inc. http://www.mitrionics.com 2001.
[58] Jacob, J., A., Chow, P. Memory Interfacing and Instruction

Specification for Reconfigurable Processors. FPGA’99, 1999.
[59] Davidson, J. FPGA Implementation of a reconfigurable

microprocessor. CICC’93, May 1993.
[60] Hauck, S. et al. Totem: Domain-Specific Reconfigurabel Logic.

IEEE Transs VLSI.
[61] Hauck, S. et al. The Chimaera Reconfigurable Functional Unit.

IEEE VLSI, 2004.
[62] Hauck, S., Agarwal, A. Software Technologies for Reconfigurable

Systems. NW Univ. Technical Report, 1996.
[63] Helander, J., Forin, A. MMLite: A Highly Componentized System

Architecture. Eight ACM SIGOPS European Workshop, Sintra,
Portugal, September 1998.
Download at http://research.microsoft.com/invisible/

[64] Y. Lai, and P. Wang, “Hierarchical interconnection structures for
field programmable gate arrays,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Volume: 5 Issue: 2, June 1997
Page(s): 186 –196.

[65] Aggarwal, A.A.; Lewis, D.M. Routing architectures for
hierarchical field programmable gate arrays, Computer Design:
VLSI in Computers and Processors, 1994. ICCD '94. Proceedings.,
IEEE International Conference on, 10-12 Oct. 1994 Page(s): 475 –
478.

[66] W. Li, D.K. Banerji, “Routability prediction for hierarchical
FPGAs”, Ninth Great Lakes Symposium on VLSI, pp. 256 –259 4-
6 March 1999

[67] V. Betz, “Architecture and CAD for the Speed and Area
Optimization of FPGAs,” Ph.D. Dissertation, University of
Toronto, 1998.

[68] Mark Nelson, Fast String Searching With Suffix Trees, Dr. Dobb's
Journal, August, 1996. At
http://www.dogma.net/markn/articles/suffixt/suffixt.htm

[69] K. Sarrigeorgidis, and J. M. Rabaey, "Massively Parallel Wireless
Reconfigurable Processor Architecture and Programming," 10th
Reconfigurable Architectures Workshop, Nice, France, April 22,
2003.

[70] H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect
Architecture Exploration for Low-Energy Reconfigurable Single-
Chip DSPs,”. IEEE Computer Society Workshop on VLSI '99 pp.
2-8, April 1999.Optimization by DAG Matching,” Proc. of DAC
1987 Available at:
http://cs.nyu.edu/cs/faculty/shasha/papers/papers.html

[71] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous,
and J. M. Rabaey, “A 1-V Heterogeneous

Reconfigurable DSP IC for Wireless Baseband Digital Signal
Processing,” IEEE Journal of Solid-State Circuits, 35 (11), pp.
1697-1704, November 2000.

[72] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu,
and J. M. Rabaey, “Design Methodology of a Low-Energy
Reconfigurable Single-Chip DSP System,” Journal of VLSI Signal
Processing Systems, 28, pp. 47-61, May-June 2001.

[73] J. Becker, and M. Glesner, “A Parallel Dynamically
Reconfigurable Architecture Designed for Flexible Application-
Tailored Hardware/Software Systems in Future Mobile
Communication,” The Journal of Supercomputing,19(1), pp. 105-
127, 2001.

[74] Atmel Corp. FPSLIC (AVR with FPGA), 2005. At:
http://www.atmel.com/products/FPSLIC/.

[75] Berkeley Design Technology, Inc. , 2004. Available at:
http://www.bdti.com/articles/info_eet0207fpga.htm#DSPEnhanced
%20FPGAs.

[76] Böhm, W., J. Hammes, B. Draper, M. Chawathe, C. Ross, R.
Rinker, and W. Najjar. Mapping a Single Assignment
Programming Language to Reconfigurable Systems. The Journal of
Supercomputing, Vol. 21, pp. 117-130, 2002.

[77] Chen, W., P. Kosmas, M. Leeser, C. Rappaport. An FPGA
Implementation of the Two-Dimensional Finite-Difference Time-
Domain (FDTD) Algorithm, International Symposium on Field-
Programmable Gate Arrays (FPGA), 2004.

[78] Critical Blue, http://www.criticalblue.com, 2005.
[79] Ernst, R., J. Henkel, T. Benner. Hardware-Software Cosynthesis

for Microcontrollers. IEEE Design & Test of Computers, pages 64-
75, October/December 1993.

 [80] Gokhale, M., J. Stone. NAPA C: Compiling for hybrid
RISC/FPGA architectures. IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), 1998.

[81] Gordon-Ross, A., F. Vahid. Frequent Loop Detection Using
Efficient Non-Intrusive On-Chip Hardware. Conference on
Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2003.

[82] Guo, Z., B. Buyukkurt, W. Najjar and K. Vissers. Optimized
Generation of Data-Path from C Codes. ACM/IEEE Design
Automation and Test Europe (DATE), 2005.

[83] Keane, J., C. Bradley, Clark, C. Ebeling. A Compiled Accelerator
for Biological Cell Signaling Simulations, International
Symposium on Field-Programmable Gate Arrays (FPGA), 2004.

[84] Triscend Corp. http://www.triscend.com, 2003.
[85] Venkataramani, G., W. Najjar, F. Kurdahi, N. Bagherzadeh, W.

Bohm. A Compiler Framework for Mapping Applications to a
Coarse-grained Reconfigurable Computer Architecture.
Conference on Compiler, Architecture, and Synthesis for
Embedded Systems (CASES), 2001.

[86] Zagha, M., B. Larson, S. Turner, and M. Itzkowitz. Performance
Analysis Using the MIPS R10000 Performance Counters.
Supercomputing, Nov. 1996.

[87] Zhang, X., et al. System Support for automatic Profiling and
Optimization. Proceedings of the 16th Symposium on Operating
Systems Principles, 1997.

[88] Zilles, C.B. and G.S. Sohi. A Programmable Co-processor for
Profiling. International Symposium on High-Performance
Computer Architectures, 2001.

[89] Dean, J., et al. ProfileMe: Hardware Support for Instruction-Level
Profiling on Out-of-Order Processors. MICRO, 1997.

[90] Graham, S.L., P.B. Kessler and M.K. McKusick. gprof: a Call
Graph Execution Profiler. SIGPLAN Symp. on Compiler
Construction, pp. 120-126, 1982.

[91] Fu, W., K. Compton. An Execution Environment for
Reconfigurable Computing. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2005.

[92] Tensilica, Inc. http://www.tensilica.com, 2006.
[93] Cong, J. et al. Instruction set extension with shadow registers for

configurable processors FPGA’05, pagg 99-106, Monterey CA
2005.

[94] Cong , J. et al. Application-specific instruction generation for
configurable processor architectures FPGA’04, Monterey CA
2004.

[95] Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L. Performance
and Energy Benefits of Instruction Set Extensions in an FPGA Soft
Core VLSID’06, pag. 651-656

[96] Simat, M., Cotofana, S., van Eijndhoven, J.T.J., Vassiliadis,
S., Vissers, K., An 8x8 IDCT Implementation on an FPGA-
Augmented TriMedia FCCM’01, Pagg. 160-169.

[97] Simat, M., Cotofana, S., Vassiliadis, S van Eijndhoven,
J.T.J.,., Vissers, K., MPEG-compliant entropy decoding on
FPGA-augmented TriMedia/CPU64 FCCM’02, pagg. 261- 270.

[98] Guo, Z. et al. A Quantitative Analysis of the Speedup Factors of
FPGAs over Processors FPGA’04, Monterey CA.

 - 28 -

[99] Borgatti, M., et al. A Reconfigurable System Featuring
Dynamically Extensible Embedded Microprocessor, FPGA, and
Customizeable I/O IEEE Journal of Solid-State Circuits, March
2003, Vol. 38, pagg 521-529.

[100] Cali, L., Lertora, F., Tazzina, C., Besana, M., Borgatti , M.
Platform IC with Embedded Via Programmable Logic for Fast
Customization CICC’04, pagg. 419-422.

[101] Lertora, F., Borgatti, M. Handling Different Computational
Granularity by a Reconfigurable IS Featuring Embedded FPGAs
and a Network-On-Chip FCCM’05, pagg. 45-54.

 [102] DeHon, A., DPGA-coupled microprocessors: commodity ICs for
the early 21stCentury FCCM’94, pagg. 31-39.

 [103] Hauck, S. The roles of FPGAs in reprogrammable systems
Proceedings of the IEEE, April 1998, Vol. 86, pagg.615-638.

