

The Design and Implementation of P2V, An Architecture for
Zero-Overhead Online Verification of Software Programs

Hong Lu

Texas A&M University

Alessandro Forin

Microsoft Research

August 2007

Technical Report

MSR-TR-2007-99

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

The Design and Implementation of P2V, An Architecture
for Zero-Overhead Online Verification of Software

Programs
Hong Lu

Department of Computer Science
Texas A&M University

College Station, TX 77843
+1-979-8478609

luhong@tamu.edu

Alessandro Forin
Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1-425-7061841

sandrof@microsoft.com

ABSTRACT
The PSL-to-Verilog (P2V) compiler can translate a set of

assertions about a block-structured software program into a

hardware design to be executed concurrently with the execution

of the software program. The assertions validate the correctness of

the software program without altering its temporal behavior in

any way, a result that has never been previously achieved by any

online model-checking system. The technique and the

implementation apply to any general purpose program and the

absence of execution overheads makes the system ideal for the

verification and debugging of real-time systems.

The assertions are expressed in the simple subset of the Property

Specification Language PSL, an IEEE standard originally

intended for the behavioral specification of hardware designs.

The target execution system is the eMIPS processor, a

dynamically self-extensible processor realized with an FPGA. The

system can concurrently execute and check multiple programs at a

time. Assertions are compiled into eMIPS Extensions, which are

loaded by the operating system software into a portion of the

FPGA at program loading time, and discarded once the program

terminates. If an assertion is violated the program receives an

exception, otherwise it executes fully unaware of its verifier. The

software program does not need to be modified in any way, it can

be compiled separately with full optimizations and executes with

or without the corresponding hardware checker.

The P2V compiler is implemented in Python. It generates code for

the implementation of the eMIPS processor running on the Xilinx

ML401 development board. It is currently used to verify software

properties in such areas as testing and debugging, intrusion

detection, and the behavioral verification of concurrent and real-

time programs.

1. INTRODUCTION
Software program monitoring is an effective approach for the

runtime validation of system requirement, usually described in a

temporal logic formalism such as LTL formula. In this report, we

concern ourselves with transparent monitors, the class of monitors

whose execution does not interfere with target programs.

Transparent monitoring involves passive observation and online

verification. Passive observation refers to the non-intrusive

collection of relevant information from an executing program, and

online verification refers to the detection of requirement

violations in a timely fashion, using the collected information.

Most existing observation techniques are based on code

instrumentation. Such software based techniques cause the

unavoidable probe effect which changes the timing behavior of

the target program. Hardware based observation have been

attempted in the past with various degrees of success, but to the

best of our knowledge, none of them is deployed together with

online verification. In this report, we introduce project P2V, a

PSL-to-Verilog compilation system, which aims at the runtime

verification of real-time as well as general purpose software by

automatic generation of the hardware design of a transparent

monitor from its sPSL [8] specification.

Figure 1: Block diagram of eMIPS architecture

In project P2V, the execution platform for the target software

program and its monitor is eMIPS, a dynamically extensible

processor [17] implemented on FPGAs. eMIPS allows multiple

extensions of a MIPS processor to load dynamically and to plug

into the stages of a pipelined CPU data path. Figure 1 illustrates

the architecture of the eMIPS platform with two extensions. The

transparent monitor unit, abbreviated as MU from this point on, is

deployed as one of the extensions. MU has two major

components, an observing unit OU and a verification unit VU, as

shown in Figure 2. OU is closely integrated with the eMIPS core

datapath, and can passively access all relevant signals and

registers, including the program counter, the stack pointer, the

current instruction register, memory write addresses and values,

and the general purpose registers. In Figure 2, this interaction is

depicted by the input signals PC, INSTR and MEMVAL among

others. VU verifies sPSL assertions using the observations

collected by OU. It takes a list of atomic propositions a1, a2, …,

an as inputs (generated by OU), and outputs two signals

VIOLATED and SATISFIED. A concrete example will be given

shortly in Section 3 to describe the MU in more details.

Besides being completely transparent, the other distinctive feature

of P2V is its flexibility. As an extension to eMIPS core, the logic

of MU can be synthesized on a per-program basis. Furthermore,

MU is loaded and executed at runtime together with the target

program. More than one program can be executing on the same

microprocessor under system software control. This flexibility is

achieved via the dynamic partial reconfiguration capabilities of

modern FPGAs, something that is simply not possible for ASIC

platforms.

Figure 2: MU architecture

Software correctness specifications are expressed in sPSL [8], a

language based on PSL and adapted for C requirement

specifications. P2V translates sPSL assertions into Verilog code.

The compiled Verilog code is loaded and executed in parallel with

the software C program. P2V uses debugging information

generated by the C compiler to keep track of the mapping between

C and assembly code, and as a result, the binary of the compiled

target C program does not need to be instrumented or modified in

any way. The dataflow of P2V is shown in Figure 3. The top side

of the diagram depicts the normal compilation flow for C, using

the standard compiler and tools and resulting in an executable

image file. The bottom part of the diagram shows the symmetric

flow for the sPSL specifications, compiled by the P2V compiler

and resulting into the Verilog source for an eMIPS extension. The

manufacturer’s FPGA tools then take this file and create the

binary file used for partial configuration of the FPGA.

Figure 3: P2V data flow

The remainder of this document is structured as follows. In

Section 2 we review the related literature. In Section 3, we use an

example to illustrate the design of P2V. A few practical P2V

usage cases are presented in Section 4. Section 5 discusses the

limitations of our approach, and Section 6 concludes this report.

2. RELATED WORK
Program monitoring has been studied extensively in the past and

numerous monitoring systems have been developed and deployed.

Existing monitoring approaches can be roughly divided into two

groups: software based and hardware based. In this section, we

review related work in these two categories.

2.1 Software-Based Monitoring
LTL properties can be translated into code that is added to the

target program to monitor it during execution, as with the

Temporal Rover and DBRover tools [10][11]. Temporal Rover is

a code generator which accepts source code from Java, C, C++,

Verilog or VHDL. The LTL assertions are expressed as comments

embedded in the source code. With the aid of a parser, the

assertions are inserted in the program’s source code that is then

compiled and executed.

Java-MaC [16] is a more limited system, restricted only to Java

programs. It contains a static phase and a run-time phase. At

program analysis time, it uses the Primitive Event Definition

Language (PEDL) to define events and their desired relationships.

At run-time, it continuously monitors and checks the executing

program with respect to the defined formal specifications. An

even simpler approach to detect software faults at runtime is to

use a pre-processor and assertions, as with ASAP [9]. ASAP is a

pre-processor for C programs, it extends the usage of assertions in

C programs by using partial functions and first order logic.

Inevitability, these assertions are embedded in the program source

code.

Roşu [20] suggests re-writing techniques to evaluate LTL

formulas. The execution of an instrumented program creates

traces of interesting events and the rewriter operates on such

traces. Some algorithms assume the entire trace is available for

(backward) analysis, others can process each event as it arrives.

Rosu’s algorithms make it possible to generate very efficient

monitors that can be used by practical tools such as the Java

PathExplorer (JPaX) [13]. P2V leverages from the work of Roşu

and Havelund, it uses their rewriting techniques at compile time

to create the monitors, which are then implemented in hardware.

The Java Modeling Language (JML) [15] is a behavioral interface

specification language for Java modules. The JML Compiler

(jmlc) compiles JML code into runtime checks of the class

contracts. In [7], the jmlc compiler is used in conjunction with an

Extended Static Checker for Java version2 (ESC/Java2). In [6]

this approach is used to perform verification of a full compiler.

ESC/Java2 makes additional use of static analysis, a technique

that does not require actually executing the program for fault

detection. The Spec# programming language[5] is a superset of

C# which provides method contracts in the form of pre-conditions

and post-conditions, as well as object invariants. The Spec#

compiler provides run-time checking for method contracts and

object invariants. A Spec# static program verifier generates the

logical verification for Spec# program and an automated theorem

prover analyzes the verification directives to prove the program’s

correctness. SLIC [3] is a language for specifying the low level

C

sPSL

C Compiler

P2V

compiler

Verilog

executable

Debugging

information

VU

a1 a2 an

PC

MU

MEMVAL

OU

VIOLATED SATISFIED

MEMADDR INSTR

temporal safety properties of Application Program Interfaces

(APIs) defined in the C programming language. It can be used

along with the companion tool SLAM [4] to perform validation.

All of the above systems insert instrumentation code into the

executing program to monitor events and check properties and

therefore introduce execution overhead that modifies the

program’s temporal behavior. This is not acceptable for Real-

Time programs and even a limited execution overhead is poorly

received by developers.

2.2 Hardware-Based Monitoring
MAMon [12] is a hardware monitoring system that gives non-

intrusive observability into the execution of hardware accelerated

RealTime Operating Systems. In MAMon, traditional RTOS

functions, such as process scheduling, management, and

communication are implemented as a hardware unit RTU, whose

execution is passively observed by an Integrated Probing Unit

IPU, also implemented as hardware. The collected system level

events, including task switches, service calls, interrupts, software

probes are sent by IPU through a parallel port to a separate host

for further processing. MAMon is designed for monitoring the

execution of a specific RTOS kernel, while P2V monitors general

purpose software at a fine level of granularity.

Noninterference monitoring architecture [21] targets monitoring

distributed real-time systems without interfering with their

execution by using additional hardware to collect observations of

the target system. The data to be captured is predetermined, such

as process creation, termination, synchronization, function call

and return. Data analysis is performed offline afterwards.

Compared with this approach, the type of data to be collected in

P2V is much finer grained and dynamically reconfigurable, and

data analysis is performed online in a synchronous manner.

ODYSSEY [14] is a system-level synthesis methodology for

embedded systems. Recently, an assertion-based verification

methodology has been integrated into ODYSSEY. Similar to our

approach, specifications of software properties are in PSL and

specifications are synthesized into hardware monitors. However,

in ODYSSEY, the temporal layer of PSL is only used to specify

the validity of a sequence of method calls, while in our system

PSL is used to describe the temporal behavior of the entire

program, including statements about global and local variables

and their values and interactions with other programs and I/O

peripherals. Furthermore, only a limited fraction of PSL is

supported in ODYSSEY (no until, eventually, and etc), and as a

result, the temporal properties that can be specified in ODYSSEY

are a very limited subset of those that can be specified in P2V.

int ACK = 0;

 int control(void)

 {

 REQ:

 device->CONTROL = 1;

 while(1)

 {

 ACK = device->STATUS;

 }

 }

Figure 4: device.c

3. P2V DESIGN
In this section we will use a simple example to illustrate the basic

architecture of P2V.

Figure 4 shows a fragment of a simple real-time C program

device.c. The program acts on the CONTROL of a peripheral

device and then loops checking on the STATUS, expecting an

acknowledge.

1. atom req := REQ

2. atom ack := ::ACK == 1

3. property P: always(req eventually(ack))

Figure 5: device.c specification

Figure 5 is a fragment of a PSL specification. Line 1 and 2 in

Figure 5 define two atomic proposition req and ack. The two

expressions REQ and ::ACK==1 (used to define req and ack) are

called atomic proposition expressions. The leading :: before ACK

indicates ACK is a global variable. Line 3 defines a temporal

property P, which asserts that a request must always lead to an

acknowledgement. In this example, we explicitly introduced

propositions req and ack to specify property P. This is only for

ease of later discussion. Otherwise, P can be written more

compactly as always(REQ  eventually(::ACK == 1)). A

complete description of the sPSL syntax and semantics can be

found in [8].

=40

=1

MEMADDR

MEMVAL
ack

PC =0x40000004 req

Figure 6: Observation Unit Circuit

3.1 Observation Unit
In the example of Figure 5, the atomic proposition req refers to

the label REQ in device.c, and analysis of the compiled

program’s binary and debugging information reveals that its

address is 0x40000004. The atomic proposition ack refers to the

variable ACK, which for simplicity we assume is a global variable

at address 40 in memory. It might be on the stack, in which case

40 would be the offset from the stack pointer register.

Figure 6 depicts a simplified version of the OU for this example,

generated by the P2V compiler. Signals MEMADDR, MEMVAL,

and PC come from the eMIPS core datapath. MEMADDR and

MEMVAL are compared against 40 and 1 respectively to produce

the atomic proposition ack, while the program counter PC is

compared with 0x40000004 to produce req. req and ack are later

fed to VU for further processing. OU also generates an entry and

an exit signals when the entry and exit of function foo are

detected. These two signals are omitted in Figure 6 for simplicity.

Based on this simple example, we can now discuss OU in more

detail. The main task of OU is execution trace generation. An

execution trace here is defined as a sequence of observations,

where an observation is a realization of one atomic proposition. In

what follows, we will discuss the two key aspects of execution

trace generation: scope detection and atomic proposition

evaluation. Note that the design of OU is inherently platform

dependent: OU collects the relevant information about a running

program that was originally written in high level programming

language by watching the stream of machine code flowing

through the CPU. In particular, to generate OU, P2V must have

sufficient knowledge of the target platform including the compiler

and the hardware architecture. Therefore, the following discussion

about OU is based on certain assumptions and conventions of the

MIPS platform and its compilers.

In sPSL, the start and the end of a local trace is defined as the

entry and the exit of a function invocation. Therefore, function

scope detection is one of the main tasks of OU. Assertions can

also be scoped globally or limited to a block within a function, but

those cases can easily be reduced the local trace case. Let foo be

the function of a single threaded C program which OU is

observing. Normally, C compilers allocate foo's code at a fixed

location in the text segment, and use a stack to organize function

invocations. When foo is called, an activation record is created on

the top of the stack, which will be discarded when foo returns. By

convention, register SP in the MIPS processor is used exclusively

to keep track of where the top of stack is. To detect the scope

entry of foo, OU simply checks the register PC against foo's

virtual address in the text segment. Notice that if foo is recursive

it might have multiple activation records on the stack. In this case,

the value of register SP at the time when foo is entered is used to

distinguish multiple invocations. Furthermore, SP is also used to

detect scope exit. For example, suppose the activation record of a

particular foo instance is located at memory address 100, then the

moment when SP falls below 100 is the moment that that instance

goes out of scope. The above simple rule for scope detection can

be easily extended to multithreaded programs. In such programs,

each thread is associated with a different stack, and as a result,

OU only needs to keep track of multiple stacks for correct scope

detection.

The primary step for atomic proposition evaluation is to collect

the addresses of C program variables, which can be done by

analyzing the program binary and debugging information.

Typically, C compilers allocate static and global variables at fixed

locations in the data segment. Local variables are dynamically

allocated on the stack. Function arguments could be allocated

either on the stack or in registers. In this report, the process of

deciding the location of a variable at the time when it is created

(by analyzing debugging information generated by the C

compiler) is called variable analysis. Variable analysis allows OU

to keep track of variables transparently by intercepting and

caching all the value written to the variable's location.

3.2 Verification Unit
The verification unit for the property P: always(req 
eventually(ack)) from Figure 5 implements the Moore finite

state machine (FSM) shown in Figure 7. For this reason, the terms

VU and verification FSM are used interchangeably in this

subsection. VU has four states INIT, REQ SEEN, SATISFIED,

VIOLATED, and is driven by signal req, ack, and exit outputted

by OU (the signal entry is omitted for simplicity of illustration).

The label of each transition in the verification FSM indicates the

values of the observations that trigger this transition. For example,

label 100 of transition INIT  REQ SEEN is a non-exit

transition triggered by the observation req=1, ack=0, and exit=0.

Label **1 of transition INIT  SATISFIED corresponds to an

exit observation where the value of req and ack could be either 1

or 0.

**1

*10 | 000

**1

req, ack, exit

100

*10

*00

INIT

SATISFIED VIOLATED

REQ SEEN

Figure 7: Verification FSM

Driven by the observations generated from the OU, VU verifies

the property P defined in example.psl. The moment when it

moves to the states SATISFIED/VIOLATED is the moment P is

violated/satisfied. For example, suppose VU is at state INIT, and

the following trace is observed (by OU):

 O1 = 100 O2 = 010 O3 = 100 O4 = 001

Driven by this trace, the action taken by VU is:

INITREQ SEENINITREQ SEENVIOLATED

and VU correctly stops at state VIOLATED because the last

request was not followed by an acknowledge. It is easy to verify

that according to the PSL semantic rules P indeed is violated by

this trace. The fact that property violation detection is performed

by an FSM is crucial for online verification because the execution

of the FSM is completely synchronized with the target program,

and the target program needs not be stalled.

The verification FSM in Figure 7 is generated by a property

rewriting algorithm proposed by Roşu and Haveland in [20]. The

basic idea of this algorithm is that to verify if P holds for a trace

starting with an observation O, one just needs to verify if P{O}

holds for the rest of the trace, where P{O} is the property

rewritten from P given O.

For example, consider the operator always. Notice that saying

that the property P = always Q holds for a trace starting with O it

is equivalent to saying that (1) Q holds for the same trace and, (2)

P holds for the rest of the trace.

Therefore, the recursive rewriting rule for an always property P

is:

P{O} = Q{O}  P.

However, if O is an exit observation, then according to the

semantics of always, P = always Q is satisfied, that is, P{exit} =
true. In summary, the rewriting rule for always properties is:

P{O} = P  Q{O}, if O is not exit

P{O} = false, if O is exit

Given their timeless nature, the rewriting rules for the Boolean

operators and, or, imply and not are much simpler compared

with the temporal operators. Take and as an example, P = Q and
R holds for a trace starting with O is simply equivalent to saying

Q holds and R holds for the same trace, therefore, the rewriting

rule for an and property P = Q and R is:

P{O} = Q{O}  R{O}

The rewriting rules for or, imply and not are similar. The

rewriting rules for atomic propositions are straightforward: the

property rewritten from proposition A given observation O is

simply the value of A in O, which is either true or false. Readers

can refer to [21] for a complete list of the rewriting rules.

Now, consider property P: always(req  eventually ack) from

our previous example. In what follows, we show how to generate

P's verification FSM by property rewriting. P's sub formulae are

summarized as follows:

P: always(P1) P1: P2  P3

P2: req P3: eventually P4

P4: ack

Suppose we want to check if P holds for trace 100,010,100,001,

which can be written more clearly as O1 = req, O2 = ack, O3 =
req, O4 = exit given that there is only one true atomic proposition

in each observation. P can be verified by the following property

rewriting process:

P{O1} = P{req}

= P  P1{req}

= P  (P2{req}  P3{req})

= P  (true  P3{req})

= P  P3{req}

= P  (P3  P4{req})

= P  (P3  false)

= P  P3

P{O1}{O2} = (P  P3){O2}

= P{ack}  P3{ack}

= P  P1{ack}  (P3  P4{ack})

= P  (P2{ack}  P3{ack})  (P3  true)

= P  (false  P3{ack})  true

= P

P{O1}{O2}{O3} = P{O3}

= P  P3

P{O1}{O2}{O3}{O4} = (P  P3){O4}

= P{exit}  P3{exit}

= true  false

= false

The above procedure keeps rewriting properties using new

observations. The resulting property P{O1}{O2}{O3}{O4}
produced at the end of the trace is false, indicating that the

property is violated at that moment. Notice that the above

property rewriting chain:

P{O1}PP3{O2}P{O3}P P3{O4}false

directly corresponds to the state-transition sequence in the FSM in

Figure 7:

INITREQ SEENINITREQ SEENVIOLATED

where property P corresponds to state INIT, PP3 corresponds to

REQ SEEN, and false corresponds to VIOLATED.

The set of properties that could be generated by rewriting a

property is called the closure of that property. It may seem that,

since there are an infinite number of possible traces and each trace

may lead to a new property by property rewriting, there could be

infinite number of properties in the closure. It is shown in [20]

that the closure of any property is actually finite and its size only

depends on the length of the property. The consequence is that the

size of the verification FSM is also finite. The algorithm to

generate the verification FSM for a property can be summarized

as follows:

1. Enumerate all possible observations

2. Compute the closure of the property against all possible

sequence of observations.

3. Synthesize the verification FSM such that (a) each state

corresponds to a property in the closure, and (b) each

transition corresponds to one step in the rewriting rules,

according to one observation.

4. APPLICATIONS
In the previous section, we have seen how P2V can monitor one

simple liveness property always(req eventually ack). In this

section, we use a few more examples to show how PSL can be

used to validate other practical applications.

4.1 Debugging and testing
Consider the C function swap in Figure 8, which takes two

pointer arguments x and y, and exchanges the values they point

to.

 void swap(int *x, int *y)

 {

 int temp = *x;

 L1:

 *x = *y;

 // some other computation

 *y = temp;

 L2:

 return;

 }

Figure 8: swap.c

The requirements that x and y should both be valid and point to

two different integers at the entrance of swap can be expressed in

sPSL as follows:

(x != NULL)  (y!=NULL)  (x!=y)

P2V also allows users to check pointer validity between two

specific points in a program. For example, the validity of pointer

x between L1 and L2 can be expressed as:

always (L1  (x!=NULL) until L2)

P2V can also be used in software testing. As an example, consider

a C program with two functions foo and bar. The requirement that

function bar must be called immediately after foo at least once in

a test suite can be specified as:

eventually (foo  next bar)

4.2 Real-time behavior verification
The PSL operators next_e and next_a are well suited for

specifying real-time properties. Specifically, property next_e
[i:j]F holds if F holds for every time instance between i and j from

now. Property next_a[i:j] holds if F holds at least once between

time i and j from now.

For instance, assume that it is critical in a real-time system that

interrupts should never be turned off for more than a short period

of time, say 10 microseconds. Assuming that intoff() and inton()

are the two functions to turn off and on the interrupts, we can

specify this requirement as follows:

always(intoff  next_e[0:10μs] inton)

next_e, when used together with the operator next_a, is also

useful to indicate periodic tasks-- operations that should happen at

a given frequency. For example, the requirement that the function

foo should be called approximately every 20 milliseconds can be

specified as:

always(foo  next_a[0:20ms] !foo)

always(foo next_e[0:21ms] foo)

4.3 Intrusion Detection
Stack based buffer overflow is a commonly used method to break

into computer systems. It usually exploits unbounded string

operations to replace the return address of a function on the stack

by the address of malicious code. In sPSL, we can detect this kind

of attack as follows:

never($writing == $return)

Here, $writing and $return are two special variables maintained

by MU. $writing holds the address of the memory cell that the

CPU is currently writing and $return holds the function return

address. The proposition $writing == $return evaluates true only

when the processor is trying to rewrite the function return address,

and the property asserts that this should never happen. In this

example, $return is basically a constant. In general, the special

variable $writing can also be used to detect attempts to modify

program variables that should remain constant. For example, the

requirement that variable c is a constant can be specified as

follows:

never($writing == &c)

5. P2V IMPLEMENTATION
The P2V compiler is written in Python. It consists of three major

components: a PSL parser, an image parser, and a Verilog code

generator. This section describes the implementation of each

component, using device.c, swap.c in Figure 4 and Figure 8, and

the following demo.psl as example.

vunit vunit1(device.c::control)
{
 atom req := REQ;
 atom ack := ::ACK == 1;
 property P := always(req imply eventually(ack));
}
vunit vunit2(swap.c::swap)
{
 atom a := x != 0;
 atom b := x != 0;
 atom c := x != y;
 property P := a and b and c;
}

Figure 9: demo.psl

5.1 PSL parser

The PSL parser is implemented in the source files psl.py and

property.py located in the folder psllib. The function psl.parse is

the entry point of psllib. It takes as input a PSL specification and

generates a data structure which is an internal representation of

the specification. For example, the result of parsing demo.psl (in

Figure 9) is shown in Figure 10.

[
 {
 'name': 'vunit1',
 'file_name': 'device.c',
 'func_name': 'control',
 'atoms': {
 'req': 'REQ',
 'ack': ('::ACK', '==', '1'),
 },
 'properties': [
 ('P', ['always',
 ['imply',
 'req',
 ['eventually', 'ack', 0]],
 1]),]
 },
 {
 'name': 'vunit2',
 'file_name': 'swap.c',
 'func_name': 'swap',
 'atoms': {
 'a': ('x', '!=', '0'),
 'b': ('x', '!=', '0'),
 'c': ('x', '!=', 'y')
 },
 'properties': [
 ('P', ['and', ['and','a', 'b'], 'c']),
],
 }
]

Figure 10: Output of psllib.parse

The function psl.parse calls psl.vunit_parse,

psl.property_parse, and psl.atom_parse to generate the above

output. As shown in Figure 10, psllib.parse extracts the name,

file_name, func_name, properties, and atoms for each vunit.

Each property in properties is an annotated abstract syntax tree

generated by property.parse. In this abstract syntax tree, each

temporal sub-property of the property is assigned a numerical id.

As an example, consider property P of vunit1, the id of its always

sub-property is 1, and the id of its until sub-property is 0. The id

of a temporal sub-property is used to define the notion of literal.

More specifically, a literal is either an atomic proposition or a

temporal sub-property id. The notion of literal is crucial to

compute the closure of a property. The other useful function in

property.py is atoms_of, which computes the sorted list of names

of atomic propositions referred to a property.

5.2 Image parser

The image parser is implemented in stab.py located in folder

stablib, which is currently still under construction. Stablib uses

the output of objdump to obtain the symbol information for all the

objects defined in multiple C files, including functions, global

variables, local variables, arguments, labels, and so on. The

symbol information is stored in a data structure to be consumed

by the Verilog generator. For example, stablib.parse generates

the following structure for device.c, and swap.c shown in Figure

11.

{
 "device.c":{
 # function scope
 "control":{
 "info": (0x80000378, 32, 12),
 "labels": {
 'REQ':0x80000388,
 }
 },
 # global scope
 "":{
 'ACK': (0x800005f4,32,'signed'),
 },
 },
 "swap.c":{
 "swap":{
 "info": (0x80000328, 16, 20),
 "locals": {
 'temp':(-24,32,'signed'),
 },
 "args": {
 'x':(0x10,32,'unsigned'),
 'y':(0x14,32,'unsigned')
 },
 "labels": {
 'L1':0x80000338,
 'L2':0x80000344,
 }
 },
 },
}

Figure 11: Output of stablib.parse

More specifically, the extracted information for a function

includes function name, address, frame_size, and

prologue_size, a locals section, an args (argument) section, an

arglocs section, and a labels section. For example, function

control in device.c has address 0x80000378, its frame size is 32,

and its prologue size is 12. Notice that global variables such as

ACK in this example are treated as local variables of a special

function with an empty name. This allows us to associate global

variables to individual source files. A global variable has name,

address, bit width, and sign.

Each local or argument variable has a name, an offset (to the stack

pointer), a bit width, and a sign. A label has a name and an

address.

5.3 Verilog Code Generator

The Verilog code generator is implemented in the source files

P2V.py, MU.py, OU.py, VU.py, and in common_module.py. The

entry point of the Verilog code generator is P2V.generate. This

function takes as input the output of psllib.parse and

stablib.parse, and compiles them into Verilog code.

P2V.generate calls to MU.generate, VU.generate, and

OU.generate to generate the VU, OU, and MU for each PSL

property defined in all PSL vunits. MU.generate is the simplest

of the three: it instantiates the OU and VU of a property. Below,

we give more details of OU.generate and VU.generate.

5.3.1 OU.py
The function OU.generate calls OU.generate_wires,

OU.generate_assigns, and OU.generate_modules to generate

the OU for a property given the vunit and stab information. For

example, the following Verilog code is generated for the property

P of the vunit1 defined in demo.psl, Figure 9.

module OU_vunit1_P(
 CLK,PCLK,RESET,GR,PC,
 REGWRITE1_RG,REGWRITE2_RG,
 WRREG1_RG,WRREG2_RG,
 WRDATA1_RG,WRDATA2_RG,
 ADDR_MEM,DATA_MEM,WE_MEM,
 SCOPE,OBSERVATION);

 input CLK, PCLK, RESET, GR;
 input REGWRITE1_RG, REGWRITE2_RG;
 input [4:0] WRREG1_RG, WRREG2_RG;
 input [31:0] WRDATA1_RG, WRDATA2_RG;
 input [31:0] PC;
 input [31:0] DATA_MEM,ADDR_MEM;
 input WE_MEM;

 output SCOPE;
 output [2:0] OBSERVATION;

 wire [31:0] SP,sp;
 wire RANGE, PROLOGUE;

 //wires
 wire atom_ack,atom_req;
 wire label_REQ;
 wire signed [31:0] global_ACK;

 //assigns

 assign OBSERVATION = {atom_ack,atom_req};
 assign atom_ack = (global_ACK == 1);
 assign atom_req = label_REQ;

 //modules

register_observer #(29) so(PCLK,GR,
 WRREG1_RG, WRDATA1_RG,
 WRREG2_RG,WRDATA2_RG,SP);
scope_detector #('h80000378,32,12) sd(PC,SP,
 RANGE,PROLOGUE,SCOPE,sp);
label_observer #('h80000388) lbo_REQ(CLK,
 PC,SCOPE,label_REQ);
global_observer #('h800005f4,32) go_ACK(
 DATA_MEM,ADDR_MEM,WE_MEM,global_ACK);

endmodule

Figure 12: Output of OU.generate

The value of the global variable ACK is captured by the Verilog

modules global_observer go_ACK. The value of register SP is

captured by module register_observer so. Scope detection for

function control is done by the module scope_detector sd.

label_observer lbo_REQ keeps track of register PC (the

program counter) and matches it with the address of label REQ.

Notice that, the Verilog modules global_observer,
register_observer, label_observer and scope_detector are

parameterized. In other words, they are designed to be generic

modules for any labels, variables, and functions. The definition of

these Verilog modules, as well as other common modules and AU

are located in common_module.py. AU stands for activation unit.

It asks permissions from the eMIPS pipleline arbiter to perform

snooping of various TISA signals, such as the PC and SP registers

above.

5.3.2 VU.py
VU.generate first calls VU.FSM (which calls VU.closure_of,
and VU.rewrite) and VU.FSM_terminal(which calls

VU.closure_of and VU.rewrite_terminal) to compute the main

and terminal section of the verification FSM of a property, and

then uses the result of these two functions to generate the

corresponding Verilog code. For example, the Verilog code

generated for property P of vunit1 defined in is as follows:

module VU_vunit1_P(CLK,SCOPE,OBSERVATION,
 SATISFIED,VIOLATED);
 input CLK;
 input SCOPE;
 // OBSERVATION = ack,req
 input [1:0] OBSERVATION;

 output SATISFIED,VIOLATED;
 reg SATISFIED,VIOLATED;
 reg [20:0] STATE;

 always @(posedge SCOPE)
 begin
 STATE = 0;
 SATISFIED = 0;
 VIOLATED = 0;
 end

 always @(negedge SCOPE)
 case (STATE)

 0: STATE=1;
 1: STATE=1;
 2: STATE=2;
 3: STATE=2;
 endcase

 always @(posedge CLK)
 if (SCOPE)
 case({STATE,OBSERVATION})
 {21'd0,2'b11}: STATE=0;
 {21'd0,2'b01}: STATE=3;
 {21'd0,2'b10}: STATE=0;
 {21'd0,2'b00}: STATE=0;
 {21'd3,2'b11}: STATE=0;
 {21'd3,2'b01}: STATE=3;
 {21'd3,2'b10}: STATE=0;
 {21'd3,2'b00}: STATE=3;
 endcase

 always @(posedge CLK)
 if (STATE == 1) SATISFIED = 1;

 always @(posedge CLK)
 if (STATE == 2) VIOLATED = 1;

endmodule

Figure 13: Output of VU.generate

As shown in Figure 13, state 0, 1, and 2 correspond to INIT,

SATISFIED and VIOLATED respectively.

5.4 TO-DO list

A proper implementation of an image parser is currently missing.

The implementation of the PSL parser has certain limitations. In

the first place, C expressions are not allowed in a property

definition. For example, let p be a C integer pointer, then always
(p!=NULL) is not a valid property definition. Instead, it should be

split into atoms and written as:

atom a := p != NULL

property P: always a

In the second place, at most one C operator is allowed in an

atomic proposition definition, and it must be a comparison

operator. For example, the following atomic proposition

definition is invalid:

atom a := (i == j + k)

The Verilog code generated by P2V has only been tested in a

Verilog simulator. It has been successfully run in ModelSim +

Giano, but not yet on the FPGA board.

6. LIMITATIONS
In this section, we discuss a few limitations with regard to

transparent monitoring and the expressiveness of sPSL.

6.1 Transparency
Transparent monitoring cannot be achieved without placing

restrictions on the atomic proposition expressions. Consider the

relatively extreme case where a program generates a sequence of

numbers, and its monitor must verify that each generated number

is prime. It is well known that primarity testing is computational

expensive, thus the target program may be generating numbers

much faster than its online monitor can consume. As a result, the

program needs to wait for its monitor, which results in a change of

the timing behavior. Note that this limitation is an inherent one

which applies not only to P2V, but also to all transparent

monitoring system.

Atomic proposition expressions involving pointer dereferencing

may also affect the monitor transparency. Consider an atomic

proposition expression **p, where p is a two level C pointer. The

value of this expression changes when the value of each level of

indirection changes. In general, to keep track of the value of an N-

level pointer dereferencing expression we can set a watch address

for each level of indirection. At level 0 it is the final object

pointed to, at level 1 a pointer, at level 2 a pointer-to-pointer and

so on. All transactions to level 0 memory can be transparently

intercepted by MU. If level 1 is changed we re-fetch the level 0

value and re-evaluate. And so on for the other levels, at level N

we need to dereference N pointers, the object, and re-evaluate.

However, the above process must stop the pipeline during these

fetches and that changes the program’s timing.

For the above reasons, we only allow relative simple

computations in atomic proposition expressions, such as equality

testing, addition/subtraction. Supported data types in atomic

proposition expressions are limited to machine native data types

such as byte, word etc.

6.2 sPSL Expressiveness
sPSL is designed for procedural languages. Various issues need to

be considered if we want to extend it to object oriented languages.

For instance, consider the following C++ code:

 class foo {

 public:

 void change_something(void);

 private:

 int A, B;

 }

Figure 14: C++ Example

and the corresponding sPSL property

always(A < B).

This property is what we might call a class level property. Unlike

function level properties, it asserts that A must be less than B for

every instance of class foo at all times. In this case, variables are

associated with an object instance instead of a function and the

definition of sPSL semantics has to be adjusted accordingly.

7. CONCLUSIONS
We have introduced project P2V, a PSL-to-Verilog compilation

system aimed at realizing an online, zero-overhead verification

system both for general purpose and for real-time software. We

use Assertion-Based Verification to check the properties of a

software program that are expressed in a C binding for PSL, an

IEEE standard property specification language. The temporal

logic behind PSL is Linear Temporal Logic, which is amenable to

online verification. In general, the basic principle of our approach

is applicable not only to software written in C, but also other

block structured languages.

8. REFERENCES
[1] Accellera and I. 1364, SystemVerilog. Accellera

Organization, Napa, CA.

[2] Accellera, IEEE P1850 PSL. Accellera Organization, Napa,

CA.

[3] Ball, T., and S. K. Rajamani, S., K. SLIC: A Specification

Language for Interface Checking (of C). Technical Report

MSR-TR-2001-21, Microsoft Research, Redmond, WA,

2001.

[4] Ball, T., and S. K. Rajamani, S., K. The SLAM Project:

Debugging System Software via Static Analysis. In

Proceedings of the 29th SIGPLAN-SIGACT symposium on

Principle Of Programming Languages (POPL’02) (Portland,

Oregon, January 16-18, 2002). ACM Press, New York, NY,

2002, 1-3.

[5] Barnett, M., Leino, K., R., M., and Schulte, W. The Spec#

Programming System: An Overview. In Proceedings of the

International Workshop on Construction and Analysis of

Safe, Secure and Interoperable Smart devices (CASSIS’04)

(Marseille, France, March 10-13, 2004). LNCS Volume

3362, Springer-Verlag, Berlin, Germany, 2005, 46-69.

[6] Chalin, P., Hurlin, C., and Kiniry, J. Integrating Static

Checking and Interactive Verification: Supporting Multiple

Theories and Provers in Verification. In Proceedings of the

International Conference on Verified Software: Theories,

Tools, Experiments (VSTTE’05) (Zurich, Switzerland,

October 10-13, 2005).

[7] Chalin, P., and James, P. Cross-Verification of JML Tools:

An ESC/Java2 Case Study. Technical Report MSR-TR-

2006-117, Microsoft Research, Redmond, WA, 2006.

[8] Cheung, P. H., and Forin, A. A C-language binding for PSL.

In Proceedings of the 3rd International Conference on

Embedded Software and Systems (ICESS’07) (Daegu, Korea,

May 14-16, 2007). LNCS Volume 4523, Springer-Verlag,

Berlin, Germany, 2007, 585-591.

[9] Curcio, I., D., D. A Simple Assertion Pre-processor. ACM

SIGPLAN Notices, 33 (December 1998), 44-51.

[10] Drusinsky, D. The Temporal Rover and the ATG Rover. In

Proceedings of the 7th SPIN Workshop on Model Checking

and Software Verification (SPIN’00) (Stanford, CA, August

30-31, 2000). LNCS Volume 1885, Springer-Verlag, Berlin,

Germany, 2000, 323-330.

[11] Drusinsky, D. Monitoring Temporal Rules Combined with

Time Series. In Proceedings of the 15th Computer Aided

Verification Conference (CAV’03).(Boulder, CA, July 8-12,

2003). LNCS Volume 2725, Springer-Verlag, Berlin,

Germany, 2003, 114-118.

[12] El Shobaki, M. On-Chip Monitoring of Single-and

Multiprocessor Hardware Real-Time Operating Systems. In

Proceedings of the 8th International Conference on Real-

Time Computing Systems and Applications (RTCSA’02).

(Tokyo, Japan, March 18-20, 2002).

[13] Havelund, K., and Roşu, G. Java PathExplorer --- A runtime

verification tool. In Proceedings of the 6th International

Symposium on Artificial Intelligence, Robotics and

Automation in Space(ISAIRAS'01). (Montreal, Canada, June

18-20, 2001).

[14] Hessabi, S., Gharehbaghi, A., M., Yaran, B., H., and

Goudarzi, M. Integrating assertion-based verification into

system-level synthesis methodology. In Proceedings of the

16th International Conference on Microelectronics(ICM

2004) (Tunis, Tunisia, December 6-8, 2004). IEEE Press,

Catalog 04EX918, New Brunswick, NJ, 2004, 232-235.

[15] Leavens, G., T., Poll, E., Clifton, C., Cheon, Y., Ruby, C.,

Cok, D., Muller, P., Kiniry, J., and Chalin, P. JML Reference

Manual. Iowa State University, Ames, IA, 2006.

[16] Lee, I., Kannan, S., Kim, M., Sokolsky, O., and

Viswanathan, M. Runtime assurance based on formal

specifications. In Proceedings of the International

Conference on Parallel and Distributed Processing

Techniques and Applications(PDPTA’99) (Las Vegas, NV,

June 28-30, 1999). CSREA Press, ISBN 1-892512-15-7,

279-287, 1999.

[17] Pittman, R., N., Lynch, N., L., and Forin, A. eMIPS, A

Dynamically Extensible Processor. Technical Report MSR-

TR-2006-143, Microsoft Research, Redmond, WA, 2006.

[18] Pnueli, A. The temporal logic of programs. In Proceedings of

the 18th IEEE Symposium on the Foundations of Computer

Science (FOCS-77) (Providence, RI, October 31-November

2, 1977). IEEE Press, New Brunswick, NJ, 1977, 46-57.

[19] Prior, A., N. Past, Present and Future. Oxford University

Press, Oxford, UK, 1967.

[20] Roşu, G., and Havelund, K. Rewriting-based Techniques for

Runtime Verification. In Proceedings of the 16th IEEE

Conference on Automated Software Engineering

(ASE’01)(Coronado Island, CA, November 26-29, 2005).

IEEE Press, New Brunswick, NJ, 2005, 135-143.

[21] Tsai, J., J., P., Fang, K.-Y, Chen, H.-Y., Bi, Y.-D. A

Noninterference Monitoring and Replay Mechanism for

Real-Time Software Testing and Debugging. IEEE

Transaction on Software Engineering, 16:8 (August 1990),

897-916.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28hessabi%20%20s.%3CIN%3Eau%29&valnm=Hessabi%2C+S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20gharehbaghi%20%20a.%20m.%3CIN%3Eau%29&valnm=+Gharehbaghi%2C+A.M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20yaran%20%20b.%20h.%3CIN%3Eau%29&valnm=+Yaran%2C+B.H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20goudarzi%20%20m.%3CIN%3Eau%29&valnm=+Goudarzi%2C+M.&reqloc%20=others&history=yes
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf

