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ABSTRACT 
The PSL-to-Verilog (P2V) compiler can translate a set of 

assertions about a block-structured software program into a 

hardware design to be executed concurrently with the execution 

of the software program. The assertions validate the correctness of 

the software program without altering its temporal behavior in 

any way, a result that has never been previously achieved by any 

online model-checking system. The technique and the 

implementation apply to any general purpose program and the 

absence of execution overheads makes the system ideal for the 

verification and debugging of real-time systems. 

The assertions are expressed in the simple subset of the Property 

Specification Language PSL, an IEEE standard originally 

intended for the behavioral specification of hardware designs.  

The target execution system is the eMIPS processor, a 

dynamically self-extensible processor realized with an FPGA. The 

system can concurrently execute and check multiple programs at a 

time. Assertions are compiled into eMIPS Extensions, which are 

loaded by the operating system software into a portion of the 

FPGA at program loading time, and discarded once the program 

terminates. If an assertion is violated the program receives an 

exception, otherwise it executes fully unaware of its verifier. The 

software program does not need to be modified in any way, it can 

be compiled separately with full optimizations and executes with 

or without the corresponding hardware checker.  

The P2V compiler is implemented in Python. It generates code for 

the implementation of the eMIPS processor running on the Xilinx 

ML401 development board. It is currently used to verify software 

properties in such areas as testing and debugging, intrusion 

detection, and the behavioral verification of concurrent and real-

time programs. 

1. INTRODUCTION 
Software program monitoring is an effective approach for the 

runtime validation of system requirement, usually described in a 

temporal logic formalism such as LTL formula. In this report, we 

concern ourselves with transparent monitors, the class of monitors 

whose execution does not interfere with target programs. 

Transparent monitoring involves passive observation and online 

verification. Passive observation refers to the non-intrusive 

collection of relevant information from an executing program, and 

online verification refers to the detection of requirement 

violations in a timely fashion, using the collected information. 

Most existing observation techniques are based on code 

instrumentation. Such software based techniques cause the 

unavoidable probe effect which changes the timing behavior of 

the target program. Hardware based observation have been 

attempted in the past with various degrees of success, but to the 

best of our knowledge, none of them is deployed together with 

online verification. In this report, we introduce project P2V, a 

PSL-to-Verilog compilation system, which aims at the runtime 

verification of real-time as well as general purpose software by 

automatic generation of the hardware design of a transparent 

monitor from its sPSL [8] specification.  

 

Figure 1: Block diagram of eMIPS architecture 

In project P2V, the execution platform for the target software 

program and its monitor is eMIPS, a dynamically extensible 

processor [17] implemented on FPGAs. eMIPS allows multiple 

extensions of a MIPS processor to load dynamically and to plug 

into the stages of a pipelined CPU data path. Figure 1 illustrates 

the architecture of the eMIPS platform with two extensions. The 

transparent monitor unit, abbreviated as MU from this point on, is 

deployed as one of the extensions. MU has two major 

components, an observing unit OU and a verification unit VU, as 

shown in Figure 2. OU is closely integrated with the eMIPS core 

datapath, and can passively access all relevant signals and 

registers, including the program counter, the stack pointer, the 

current instruction register, memory write addresses and values, 

and the general purpose registers. In Figure 2, this interaction is 

depicted by the input signals PC, INSTR and MEMVAL among 

others. VU verifies sPSL assertions using the observations 

collected by OU.  It takes a list of atomic propositions a1, a2, …, 



   

an as inputs (generated by OU), and outputs two signals 

VIOLATED and SATISFIED. A concrete example will be given 

shortly in Section 3 to describe the MU in more details. 

Besides being completely transparent, the other distinctive feature 

of P2V is its flexibility. As an extension to eMIPS core, the logic 

of MU can be synthesized on a per-program basis. Furthermore, 

MU is loaded and executed at runtime together with the target 

program. More than one program can be executing on the same 

microprocessor under system software control. This flexibility is 

achieved via the dynamic partial reconfiguration capabilities of 

modern FPGAs, something that is simply not possible for ASIC 

platforms. 

 

Figure 2: MU architecture 

Software correctness specifications are expressed in sPSL [8], a 

language based on PSL and adapted for C requirement 

specifications. P2V translates sPSL assertions into Verilog code. 

The compiled Verilog code is loaded and executed in parallel with 

the software C program. P2V uses debugging information 

generated by the C compiler to keep track of the mapping between 

C and assembly code, and as a result, the binary of the compiled 

target C program does not need to be instrumented or modified in 

any way. The dataflow of P2V is shown in Figure 3. The top side 

of the diagram depicts the normal compilation flow for C, using 

the standard compiler and tools and resulting in an executable 

image file. The bottom part of the diagram shows the symmetric 

flow for the sPSL specifications, compiled by the P2V compiler 

and resulting into the Verilog source for an eMIPS extension. The 

manufacturer’s FPGA tools then take this file and create the 

binary file used for partial configuration of the FPGA. 

 

Figure 3: P2V data flow 

The remainder of this document is structured as follows. In 

Section 2 we review the related literature. In Section 3, we use an 

example to illustrate the design of P2V. A few practical P2V 

usage cases are presented in Section 4.  Section 5 discusses the 

limitations of our approach, and Section 6 concludes this report. 

2. RELATED WORK 
Program monitoring has been studied extensively in the past and 

numerous monitoring systems have been developed and deployed. 

Existing monitoring approaches can be roughly divided into two 

groups: software based and hardware based. In this section, we 

review related work in these two categories. 

2.1 Software-Based Monitoring 
LTL properties can be translated into code that is added to the 

target program to monitor it during execution, as with the 

Temporal Rover and DBRover tools [10][11]. Temporal Rover is 

a code generator which accepts source code from Java, C, C++, 

Verilog or VHDL. The LTL assertions are expressed as comments 

embedded in the source code. With the aid of a parser, the 

assertions are inserted in the program’s source code that is then 

compiled and executed. 

Java-MaC [16] is a more limited system, restricted only to Java 

programs. It contains a static phase and a run-time phase. At 

program analysis time, it uses the Primitive Event Definition 

Language (PEDL) to define events and their desired relationships. 

At run-time, it continuously monitors and checks the executing 

program with respect to the defined formal specifications. An 

even simpler approach to detect software faults at runtime is to 

use a pre-processor and assertions, as with ASAP [9]. ASAP is a 

pre-processor for C programs, it extends the usage of assertions in 

C programs by using partial functions and first order logic. 

Inevitability, these assertions are embedded in the program source 

code. 

Roşu [20] suggests re-writing techniques to evaluate LTL 

formulas. The execution of an instrumented program creates 

traces of interesting events and the rewriter operates on such 

traces. Some algorithms assume the entire trace is available for 

(backward) analysis, others can process each event as it arrives. 

Rosu’s algorithms make it possible to generate very efficient 

monitors that can be used by practical tools such as the Java 

PathExplorer (JPaX) [13]. P2V leverages from the work of Roşu 

and Havelund, it uses their rewriting techniques at compile time 

to create the monitors, which are then implemented in hardware. 

The Java Modeling Language (JML) [15] is a behavioral interface 

specification language for Java modules. The JML Compiler 

(jmlc) compiles JML code into runtime checks of the class 

contracts. In [7], the jmlc compiler is used in conjunction with an 

Extended Static Checker for Java version2 (ESC/Java2). In [6] 

this approach is used to perform verification of a full compiler. 

ESC/Java2 makes additional use of static analysis, a technique 

that does not require actually executing the program for fault 

detection. The Spec# programming language[5] is a superset of 

C# which provides method contracts in the form of pre-conditions 

and post-conditions, as well as object invariants. The Spec# 

compiler provides run-time checking for method contracts and 

object invariants. A Spec# static program verifier generates the 

logical verification for Spec# program and an automated theorem 

prover analyzes the verification directives to prove the program’s 

correctness. SLIC [3] is a language for specifying the low level 
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temporal safety properties of Application Program Interfaces 

(APIs) defined in the C programming language. It can be used 

along with the companion tool SLAM [4] to perform validation.  

All of the above systems insert instrumentation code into the 

executing program to monitor events and check properties and 

therefore introduce execution overhead that modifies the 

program’s temporal behavior. This is not acceptable for Real-

Time programs and even a limited execution overhead is poorly 

received by developers. 

2.2 Hardware-Based Monitoring 
MAMon [12] is a hardware monitoring system that gives non-

intrusive observability into the execution of hardware accelerated 

RealTime Operating Systems. In MAMon, traditional RTOS 

functions, such as process scheduling, management, and 

communication are implemented as a hardware unit RTU, whose 

execution is passively observed by an Integrated Probing Unit 

IPU, also implemented as hardware. The collected system level 

events, including task switches, service calls, interrupts, software 

probes are sent by IPU through a parallel port to a separate host 

for further processing. MAMon is designed for monitoring the 

execution of a specific RTOS kernel, while P2V monitors general 

purpose software at a fine level of granularity. 

Noninterference monitoring architecture [21] targets monitoring 

distributed real-time systems without interfering with their 

execution by using additional hardware to collect observations of 

the target system. The data to be captured is predetermined, such 

as process creation, termination, synchronization, function call 

and return. Data analysis is performed offline afterwards. 

Compared with this approach, the type of data to be collected in 

P2V is much finer grained and dynamically reconfigurable, and 

data analysis is performed online in a synchronous manner. 

ODYSSEY [14] is a system-level synthesis methodology for 

embedded systems. Recently, an assertion-based verification 

methodology has been integrated into ODYSSEY. Similar to our 

approach, specifications of software properties are in PSL and 

specifications are synthesized into hardware monitors. However, 

in ODYSSEY, the temporal layer of PSL is only used to specify 

the validity of a sequence of method calls, while in our system 

PSL is used to describe the temporal behavior of the entire 

program, including statements about global and local variables 

and their values and interactions with other programs and I/O 

peripherals. Furthermore, only a limited fraction of PSL is 

supported in ODYSSEY (no until, eventually, and etc), and as a 

result, the temporal properties that can be specified in ODYSSEY 

are a very limited subset of those that can be specified in P2V. 

int ACK = 0; 

 int control(void) 

 {       .... 

 REQ: 

          device->CONTROL = 1; 

          while(1) 

          { 

  ACK = device->STATUS; 

  .... 

           } 

 } 

Figure 4: device.c 

3. P2V DESIGN 
In this section we will use a simple example to illustrate the basic 

architecture of P2V. 

Figure 4 shows a fragment of a simple real-time C program 

device.c. The program acts on the CONTROL of a peripheral 

device and then loops checking on the STATUS, expecting an 

acknowledge.  

1. atom req := REQ 

2. atom ack := ::ACK == 1 

3. property P: always(req eventually(ack)) 

 

Figure 5: device.c specification 

Figure 5 is a fragment of a PSL specification. Line 1 and 2 in 

Figure 5 define two atomic proposition req and ack. The two 

expressions REQ and ::ACK==1 (used to define req and ack) are 

called atomic proposition expressions. The leading :: before ACK 

indicates ACK is a global variable. Line 3 defines a temporal 

property P, which asserts that a request must always lead to an 

acknowledgement. In this example, we explicitly introduced 

propositions req and ack to specify property P. This is only for 

ease of later discussion. Otherwise, P can be written more 

compactly as always(REQ  eventually(::ACK == 1)). A 

complete description of the sPSL syntax and semantics can be 

found in [8]. 

=40

=1

MEMADDR

MEMVAL
ack

PC =0x40000004 req
 

Figure 6: Observation Unit Circuit 

3.1 Observation Unit 
In the example of Figure 5, the atomic proposition req refers to 

the label REQ in device.c, and analysis of the compiled 

program’s binary and debugging information reveals that its 

address is 0x40000004.  The atomic proposition ack refers to the 

variable ACK, which for simplicity we assume is a global variable 

at address 40 in memory. It might be on the stack, in which case 

40 would be the offset from the stack pointer register. 

Figure 6 depicts a simplified version of the OU for this example, 

generated by the P2V compiler. Signals MEMADDR, MEMVAL, 

and PC come from the eMIPS core datapath. MEMADDR and 

MEMVAL are compared against 40 and 1 respectively to produce 

the atomic proposition ack, while the program counter PC is 

compared with 0x40000004 to produce req. req and ack are later 

fed to VU for further processing. OU also generates an entry and 

an exit signals when the entry and exit of function foo are 

detected. These two signals are omitted in Figure 6 for simplicity. 

Based on this simple example, we can now discuss OU in more 

detail. The main task of OU is execution trace generation. An 

execution trace here is defined as a sequence of observations, 

where an observation is a realization of one atomic proposition. In 

what follows, we will discuss the two key aspects of execution 



   

trace generation: scope detection and atomic proposition 

evaluation. Note that the design of OU is inherently platform 

dependent: OU collects the relevant information about a running 

program that was originally written in high level programming 

language by watching the stream of machine code flowing 

through the CPU. In particular, to generate OU, P2V must have 

sufficient knowledge of the target platform including the compiler 

and the hardware architecture. Therefore, the following discussion 

about OU is based on certain assumptions and conventions of the 

MIPS platform and its compilers. 

In sPSL, the start and the end of a local trace is defined as the 

entry and the exit of a function invocation. Therefore, function 

scope detection is one of the main tasks of OU. Assertions can 

also be scoped globally or limited to a block within a function, but 

those cases can easily be reduced the local trace case. Let foo be 

the function of a single threaded C program which OU is 

observing. Normally, C compilers allocate foo's code at a fixed 

location in the text segment, and use a stack to organize function 

invocations. When foo is called, an activation record is created on 

the top of the stack, which will be discarded when foo returns. By 

convention, register SP in the MIPS processor is used exclusively 

to keep track of where the top of stack is. To detect the scope 

entry of foo, OU simply checks the register PC against foo's 

virtual address in the text segment. Notice that if foo is recursive 

it might have multiple activation records on the stack. In this case, 

the value of register SP at the time when foo is entered is used to 

distinguish multiple invocations. Furthermore, SP is also used to 

detect scope exit. For example, suppose the activation record of a 

particular foo instance is located at memory address 100, then the 

moment when SP falls below 100 is the moment that that instance 

goes out of scope. The above simple rule for scope detection can 

be easily extended to multithreaded programs. In such programs, 

each thread is associated with a different stack, and as a result, 

OU only needs to keep track of multiple stacks for correct scope 

detection. 

The primary step for atomic proposition evaluation is to collect 

the addresses of C program variables, which can be done by 

analyzing the program binary and debugging information. 

Typically, C compilers allocate static and global variables at fixed 

locations in the data segment.  Local variables are dynamically 

allocated on the stack. Function arguments could be allocated 

either on the stack or in registers. In this report, the process of 

deciding the location of a variable at the time when it is created 

(by analyzing debugging information generated by the C 

compiler) is called variable analysis. Variable analysis allows OU 

to keep track of variables transparently by intercepting and 

caching all the value written to the variable's location. 

3.2 Verification Unit 
The verification unit for the property P: always(req  
eventually(ack))  from Figure 5 implements the Moore finite 

state machine (FSM) shown in Figure 7. For this reason, the terms 

VU and verification FSM are used interchangeably in this 

subsection. VU has four states INIT, REQ SEEN, SATISFIED, 

VIOLATED, and is driven by signal req, ack, and exit outputted 

by OU (the signal entry is omitted for simplicity of illustration). 

The label of each transition in the verification FSM indicates the 

values of the observations that trigger this transition. For example, 

label 100 of transition INIT  REQ SEEN is a non-exit 

transition triggered by the observation req=1, ack=0, and exit=0. 

Label **1 of transition INIT  SATISFIED corresponds to an 

exit observation where the value of req and ack could be either 1 

or 0. 

**1

******

*10 | 000

**1

req, ack, exit

100

*10

*00

INIT

SATISFIED VIOLATED

REQ SEEN

 

Figure 7: Verification FSM 

Driven by the observations generated from the OU, VU verifies 

the property P defined in example.psl. The moment when it 

moves to the states SATISFIED/VIOLATED is the moment P is 

violated/satisfied. For example, suppose VU is at state INIT, and 

the following trace is observed (by OU): 

 O1 = 100 O2 = 010 O3 = 100 O4 = 001 

Driven by this trace, the action taken by VU is: 

INITREQ SEENINITREQ SEENVIOLATED 

and VU correctly stops at state VIOLATED because the last 

request was not followed by an acknowledge. It is easy to verify 

that according to the PSL semantic rules P indeed is violated by 

this trace. The fact that property violation detection is performed 

by an FSM is crucial for online verification because the execution 

of the FSM is completely synchronized with the target program, 

and the target program needs not be stalled. 

The verification FSM in Figure 7 is generated by a property 

rewriting algorithm proposed by Roşu and Haveland in [20]. The 

basic idea of this algorithm is that to verify if P holds for a trace 

starting with an observation O, one just needs to verify if P{O} 

holds for the rest of the trace, where P{O} is the property 

rewritten from P given O. 

For example, consider the operator always. Notice that saying 

that the property P = always Q holds for a trace starting with O it 

is equivalent to saying that (1) Q holds for the same trace and, (2) 

P holds for the rest of the trace. 

Therefore, the recursive rewriting rule for an always property P 

is: 

P{O} =  Q{O}  P. 



   

However, if O is an exit observation, then according to the 

semantics of always, P = always Q is satisfied, that is, P{exit} = 
true. In summary, the rewriting rule for always properties is: 

P{O} = P  Q{O}, if O is not exit 

P{O} = false, if O is exit 

Given their timeless nature, the rewriting rules for the Boolean 

operators and, or, imply and not are much simpler compared 

with the temporal operators. Take and as an example, P = Q and 
R holds for a trace starting with O is simply equivalent to saying 

Q holds and R holds for the same trace, therefore, the rewriting 

rule for an and property P = Q and R  is: 

P{O} = Q{O}  R{O} 

The rewriting rules for or, imply and not are similar. The 

rewriting rules for atomic propositions are straightforward: the 

property rewritten from proposition A given observation O is 

simply the value of A in O, which is either true or false. Readers 

can refer to [21] for a complete list of the rewriting rules. 

Now, consider property P: always(req  eventually ack) from 

our previous example. In what follows, we show how to generate 

P's verification FSM by property rewriting. P's sub formulae are 

summarized as follows: 

P: always(P1) P1: P2  P3 

P2: req  P3: eventually P4 

P4: ack 

Suppose we want to check if P holds for trace 100,010,100,001, 

which can be written more clearly as O1 = req, O2 = ack, O3 = 
req, O4 = exit given that there is only one true atomic proposition 

in each observation. P can be verified by the following property 

rewriting process: 

P{O1} = P{req} 

= P  P1{req} 

= P  (P2{req}  P3{req}) 

= P  (true  P3{req}) 

= P  P3{req} 

= P  (P3  P4{req}) 

= P  (P3  false) 

= P  P3 

P{O1}{O2} = (P  P3){O2} 

= P{ack}  P3{ack} 

= P  P1{ack}  (P3  P4{ack}) 

= P  (P2{ack}  P3{ack})  (P3  true) 

= P  (false  P3{ack})  true 

= P 

P{O1}{O2}{O3} = P{O3} 

= P  P3 

P{O1}{O2}{O3}{O4} = (P  P3){O4} 

= P{exit}  P3{exit} 

= true  false 

= false 

The above procedure keeps rewriting properties using new 

observations. The resulting property P{O1}{O2}{O3}{O4} 
produced at the end of the trace is false, indicating that the 

property is violated at that moment. Notice that the above 

property rewriting chain: 

P{O1}PP3{O2}P{O3}P P3{O4}false 

directly corresponds to the state-transition sequence in the FSM in 

Figure 7: 

INITREQ SEENINITREQ SEENVIOLATED 

where property P corresponds to state INIT, PP3 corresponds to 

REQ SEEN, and false corresponds to VIOLATED. 

The set of properties that could be generated by rewriting a 

property is called the closure of that property. It may seem that, 

since there are an infinite number of possible traces and each trace 

may lead to a new property by property rewriting, there could be 

infinite number of properties in the closure. It is shown in [20] 

that the closure of any property is actually finite and its size only 

depends on the length of the property. The consequence is that the 

size of the verification FSM is also finite. The algorithm to 

generate the verification FSM for a property can be summarized 

as follows: 

1. Enumerate all possible observations  

2. Compute the closure of the property against all possible 

sequence of observations.  

3. Synthesize the verification FSM such that (a) each state 

corresponds to a property in the closure, and (b) each 

transition corresponds to one step in the rewriting rules, 

according to one observation. 

 

4. APPLICATIONS 
In the previous section, we have seen how P2V can monitor one 

simple liveness property always(req eventually ack). In this 

section, we use a few more examples to show how PSL can be 

used to validate other practical applications. 

4.1 Debugging and testing 
Consider the C function swap in Figure 8, which takes two 

pointer arguments x and y, and exchanges the values they point 

to. 

 void swap(int *x, int *y) 

 { 

          int temp = *x; 

 L1: 

          *x = *y; 

          // some other computation 

          *y = temp; 

 L2: 

          return; 

 } 

Figure 8: swap.c 

The requirements that x and y should both be valid and point to 

two different integers at the entrance of swap can be expressed in 

sPSL as follows: 

(x != NULL)  (y!=NULL)  (x!=y) 



   

P2V also allows users to check pointer validity between two 

specific points in a program. For example, the validity of pointer 

x between L1 and L2 can be expressed as: 

always (L1  (x!=NULL) until L2) 

P2V can also be used in software testing. As an example, consider 

a C program with two functions foo and bar. The requirement that 

function bar must be called immediately after foo at least once in 

a test suite can be specified as: 

eventually (foo  next bar) 

4.2 Real-time behavior verification 
The PSL operators next_e and next_a are well suited for 

specifying real-time properties. Specifically, property next_e 
[i:j]F holds if F holds for every time instance between i and j from 

now. Property next_a[i:j] holds if F holds at least once between 

time i and j from now. 

For instance, assume that it is critical in a real-time system that 

interrupts should never be turned off for more than a short period 

of time, say 10 microseconds. Assuming that intoff() and inton() 

are the two functions to turn off and on the interrupts, we can 

specify this requirement as follows: 

always( intoff  next_e[0:10μs] inton) 

next_e, when used together with the operator next_a, is also 

useful to indicate periodic tasks-- operations that should happen at 

a given frequency. For example, the requirement that the function 

foo should be called approximately every 20 milliseconds can be 

specified as: 
 

always( foo  next_a[0:20ms] !foo) 

always( foo next_e[0:21ms]  foo) 

4.3 Intrusion Detection 
Stack based buffer overflow is a commonly used method to break 

into computer systems. It usually exploits unbounded string 

operations to replace the return address of a function on the stack 

by the address of malicious code. In sPSL, we can detect this kind 

of attack as follows: 

never($writing == $return) 

Here, $writing and $return are two special variables maintained 

by MU. $writing holds the address of the memory cell that the 

CPU is currently writing and $return holds the function return 

address.  The proposition $writing == $return evaluates true only 

when the processor is trying to rewrite the function return address, 

and the property asserts that this should never happen. In this 

example, $return is basically a constant. In general, the special 

variable $writing can also be used to detect attempts to modify 

program variables that should remain constant. For example, the 

requirement that variable c is a constant can be specified as 

follows: 

never($writing == &c) 

 

5. P2V IMPLEMENTATION 
The P2V compiler is written in Python. It consists of three major 

components: a PSL parser, an image parser, and a Verilog code 

generator. This section describes the implementation of each 

component, using device.c, swap.c in Figure 4 and Figure 8, and 

the following demo.psl as example.  

vunit vunit1(device.c::control) 
{ 
    atom req := REQ; 
    atom ack := ::ACK == 1; 
    property P := always(req imply eventually(ack)); 
} 
vunit vunit2(swap.c::swap) 
{ 
    atom a := x != 0; 
    atom b := x != 0; 
    atom c := x != y; 
    property P := a and b and c; 
} 

Figure 9: demo.psl 

5.1 PSL parser 

The PSL parser is implemented in the source files psl.py and 

property.py located in the folder psllib. The function psl.parse is 

the entry point of psllib. It takes as input a PSL specification and 

generates a data structure which is an internal representation of 

the specification. For example, the result of parsing demo.psl (in 

Figure 9) is shown in Figure 10.  

[ 
  { 
  'name': 'vunit1', 
  'file_name': 'device.c', 
  'func_name': 'control', 
  'atoms': { 
   'req': 'REQ', 
   'ack': ('::ACK', '==', '1'), 
  }, 
  'properties': [ 
   ('P', ['always',  
     ['imply', 
      'req',  
      ['eventually', 'ack', 0]],  
     1]),] 
  }, 
 { 
  'name': 'vunit2', 
  'file_name': 'swap.c', 
  'func_name': 'swap', 
  'atoms': { 
   'a': ('x', '!=', '0'),  
   'b': ('x', '!=', '0'),  
   'c': ('x', '!=', 'y') 
  }, 
  'properties': [ 
   ('P', ['and', ['and','a', 'b'], 'c']), 
  ], 
 } 
] 

Figure 10: Output of psllib.parse 



   

The function psl.parse calls psl.vunit_parse, 

psl.property_parse, and psl.atom_parse to generate the above 

output. As shown in Figure 10, psllib.parse extracts the name, 

file_name, func_name, properties, and atoms for each vunit. 

Each property in properties is an annotated abstract syntax tree 

generated by property.parse. In this abstract syntax tree, each 

temporal sub-property of the property is assigned a numerical id. 

As an example, consider property P of vunit1, the id of its always 

sub-property is 1, and the id of its until sub-property is 0. The id 

of a temporal sub-property is used to define the notion of literal. 

More specifically, a literal is either an atomic proposition or a 

temporal sub-property id. The notion of literal is crucial to 

compute the closure of a property. The other useful function in 

property.py is atoms_of, which computes the sorted list of names 

of atomic propositions referred to a property. 

5.2 Image parser 

The image parser is implemented in stab.py located in folder 

stablib, which is currently still under construction. Stablib uses 

the output of objdump to obtain the symbol information for all the 

objects defined in multiple C files, including functions, global 

variables, local variables, arguments, labels, and so on. The 

symbol information is stored in a data structure to be consumed 

by the Verilog generator. For example, stablib.parse generates 

the following structure for device.c, and swap.c shown in Figure 

11.  

{ 
    "device.c":{ 
        # function scope 
        "control":{  
            "info": (0x80000378, 32, 12), 
            "labels": { 
                'REQ':0x80000388, 
            } 
        }, 
        # global scope 
        "":{  
            'ACK': (0x800005f4,32,'signed'), 
        }, 
    }, 
    "swap.c":{ 
        "swap":{  
            "info": (0x80000328, 16, 20), 
            "locals": { 
                'temp':(-24,32,'signed'), 
            }, 
            "args": { 
                'x':(0x10,32,'unsigned'), 
                'y':(0x14,32,'unsigned') 
            }, 
            "labels": { 
                'L1':0x80000338, 
                'L2':0x80000344, 
            } 
        }, 
    }, 
} 

Figure 11: Output of stablib.parse 

 
 

More specifically, the extracted information for a function 

includes function name, address, frame_size, and 

prologue_size, a locals section, an args (argument) section, an 

arglocs section, and a labels section. For example, function 

control in device.c has address 0x80000378, its frame size is 32, 

and its prologue size is 12.  Notice that global variables such as 

ACK in this example are treated as local variables of a special 

function with an empty name. This allows us to associate global 

variables to individual source files. A global variable has name, 

address, bit width, and sign. 

Each local or argument variable has a name, an offset (to the stack 

pointer), a bit width, and a sign. A label has a name and an 

address.  

5.3 Verilog Code Generator 

The Verilog code generator is implemented in the source files 

P2V.py, MU.py, OU.py, VU.py, and in common_module.py. The 

entry point of the Verilog code generator is P2V.generate. This 

function takes as input the output of psllib.parse and 

stablib.parse, and compiles them into Verilog code. 

P2V.generate calls to MU.generate, VU.generate, and 

OU.generate to generate the VU, OU, and MU for each PSL 

property defined in all PSL vunits. MU.generate is the simplest 

of the three: it instantiates the OU and VU of a property. Below, 

we give more details of OU.generate and VU.generate. 

5.3.1 OU.py 
The function OU.generate calls OU.generate_wires, 

OU.generate_assigns, and OU.generate_modules to generate 

the OU for a property given the vunit and stab information. For 

example, the following Verilog code is generated for the property 

P of the vunit1 defined in demo.psl, Figure 9. 

module OU_vunit1_P( 
    CLK,PCLK,RESET,GR,PC,      
    REGWRITE1_RG,REGWRITE2_RG, 
    WRREG1_RG,WRREG2_RG, 
    WRDATA1_RG,WRDATA2_RG,    
    ADDR_MEM,DATA_MEM,WE_MEM, 
    SCOPE,OBSERVATION); 
 
    input CLK, PCLK, RESET, GR; 
    input REGWRITE1_RG, REGWRITE2_RG; 
    input [4:0] WRREG1_RG, WRREG2_RG; 
    input [31:0] WRDATA1_RG, WRDATA2_RG; 
    input [31:0] PC; 
    input [31:0] DATA_MEM,ADDR_MEM; 
    input WE_MEM; 
 
    output SCOPE; 
    output [2:0] OBSERVATION; 
 
    wire [31:0] SP,sp; 
    wire RANGE, PROLOGUE; 
 
    //wires  
    wire atom_ack,atom_req; 
    wire label_REQ; 
    wire signed [31:0] global_ACK; 
 
    //assigns 



   

    assign OBSERVATION = {atom_ack,atom_req}; 
    assign atom_ack = (global_ACK == 1); 
    assign atom_req = label_REQ; 
 
    //modules    

register_observer #(29) so(PCLK,GR, 
    WRREG1_RG, WRDATA1_RG,  
    WRREG2_RG,WRDATA2_RG,SP); 
scope_detector #('h80000378,32,12) sd(PC,SP, 
    RANGE,PROLOGUE,SCOPE,sp); 
label_observer #('h80000388) lbo_REQ(CLK, 
    PC,SCOPE,label_REQ); 
global_observer  #('h800005f4,32) go_ACK( 
    DATA_MEM,ADDR_MEM,WE_MEM,global_ACK); 

 
endmodule 

Figure 12: Output of OU.generate 

The value of the global variable ACK is captured by the Verilog 

modules global_observer go_ACK. The value of register SP is 

captured by module register_observer so. Scope detection for 

function control is done by the module scope_detector sd. 

label_observer lbo_REQ keeps track of register PC (the 

program counter) and matches it with the address of label REQ. 

Notice that, the Verilog modules global_observer, 
register_observer, label_observer and scope_detector are 

parameterized. In other words, they are designed to be generic 

modules for any labels, variables, and functions. The definition of 

these Verilog modules, as well as other common modules and AU 

are located in common_module.py. AU stands for activation unit. 

It asks permissions from the eMIPS pipleline arbiter to perform 

snooping of various TISA signals, such as the PC and SP registers 

above. 

5.3.2 VU.py 
VU.generate first calls VU.FSM (which calls VU.closure_of, 
and VU.rewrite) and VU.FSM_terminal(which calls 

VU.closure_of and VU.rewrite_terminal) to compute the main 

and terminal section of the verification FSM of a property, and 

then uses the result of these two functions to generate the 

corresponding Verilog code. For example, the Verilog code 

generated for property P of vunit1 defined in is as follows: 

 

module VU_vunit1_P(CLK,SCOPE,OBSERVATION, 
    SATISFIED,VIOLATED); 
    input CLK; 
    input SCOPE; 
    // OBSERVATION = ack,req 
    input [1:0] OBSERVATION; 
 
    output SATISFIED,VIOLATED; 
    reg SATISFIED,VIOLATED; 
    reg [20:0] STATE; 
 
    always @(posedge SCOPE) 
    begin 
        STATE = 0; 
        SATISFIED = 0; 
        VIOLATED = 0; 
    end 
 
    always @(negedge SCOPE) 
        case (STATE) 

            0: STATE=1; 
            1: STATE=1; 
            2: STATE=2; 
            3: STATE=2; 
        endcase 
 
    always @(posedge CLK) 
        if (SCOPE) 
            case({STATE,OBSERVATION}) 
                {21'd0,2'b11}: STATE=0; 
                {21'd0,2'b01}: STATE=3; 
                {21'd0,2'b10}: STATE=0; 
                {21'd0,2'b00}: STATE=0; 
                {21'd3,2'b11}: STATE=0; 
                {21'd3,2'b01}: STATE=3; 
                {21'd3,2'b10}: STATE=0; 
                {21'd3,2'b00}: STATE=3; 
            endcase 
 
    always @(posedge CLK) 
        if (STATE == 1) SATISFIED = 1; 
 
    always @(posedge CLK) 
        if (STATE == 2) VIOLATED = 1; 
             
endmodule 
 

Figure 13: Output of VU.generate  

As shown in Figure 13, state 0, 1, and 2 correspond to INIT, 

SATISFIED and VIOLATED respectively.  

5.4 TO-DO list 

A proper implementation of an image parser is currently missing.  

The implementation of the PSL parser has certain limitations. In 

the first place, C expressions are not allowed in a property 

definition. For example, let p be a C integer pointer, then always 
(p!=NULL) is not a valid property definition. Instead, it should be 

split into atoms and written as: 

atom a :=  p != NULL 

property P: always a 

In the second place, at most one C operator is allowed in an 

atomic proposition definition, and it must be a comparison 

operator. For example, the following atomic proposition 

definition is invalid: 

atom a := ( i == j + k)  

The Verilog code generated by P2V has only been tested in a 

Verilog simulator. It has been successfully run in ModelSim + 

Giano, but not yet on the FPGA board.  

6. LIMITATIONS 
In this section, we discuss a few limitations with regard to 

transparent monitoring and the expressiveness of sPSL. 

6.1 Transparency 
Transparent monitoring cannot be achieved without placing 

restrictions on the atomic proposition expressions. Consider the 

relatively extreme case where a program generates a sequence of 

numbers, and its monitor must verify that each generated number 



   

is prime. It is well known that primarity testing is computational 

expensive, thus the target program may be generating numbers 

much faster than its online monitor can consume. As a result, the 

program needs to wait for its monitor, which results in a change of 

the timing behavior.  Note that this limitation is an inherent one 

which applies not only to P2V, but also to all transparent 

monitoring system. 

Atomic proposition expressions involving pointer dereferencing 

may also affect the monitor transparency. Consider an atomic 

proposition expression **p, where p is a two level C pointer. The 

value of this expression changes when the value of each level of 

indirection changes. In general, to keep track of the value of an N-

level pointer dereferencing expression we can set a watch address 

for each level of indirection. At level 0 it is the final object 

pointed to, at level 1 a pointer, at level 2 a pointer-to-pointer and 

so on.  All transactions to level 0 memory can be transparently 

intercepted by MU.  If level 1 is changed we re-fetch the level 0 

value and re-evaluate. And so on for the other levels, at level N 

we need to dereference N pointers, the object, and re-evaluate. 

However, the above process must stop the pipeline during these 

fetches and that changes the program’s timing. 

For the above reasons, we only allow relative simple 

computations in atomic proposition expressions, such as equality 

testing, addition/subtraction. Supported data types in atomic 

proposition expressions are limited to machine native data types 

such as byte, word etc. 

6.2 sPSL Expressiveness 
sPSL is designed for procedural languages. Various issues need to 

be considered if we want to extend it to object oriented languages. 

For instance, consider the following C++ code: 

 class foo { 

        public: 

  void change_something(void); 

         private: 

  int A, B; 

 } 

Figure 14: C++ Example 

and the corresponding sPSL property 

always(A < B). 

This property is what we might call a class level property. Unlike 

function level properties, it asserts that A must be less than B for 

every instance of class foo at all times. In this case, variables are 

associated with an object instance instead of a function and the 

definition of sPSL semantics has to be adjusted accordingly. 

7. CONCLUSIONS 
We have introduced project P2V, a PSL-to-Verilog compilation 

system aimed at realizing an online, zero-overhead verification 

system both for general purpose and for real-time software. We 

use Assertion-Based Verification to check the properties of a 

software program that are expressed in a C binding for PSL, an 

IEEE standard property specification language. The temporal 

logic behind PSL is Linear Temporal Logic, which is amenable to 

online verification. In general, the basic principle of our approach 

is applicable not only to software written in C, but also other 

block structured languages. 
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