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Abstract 

 

This document describes the I/O subsystem of the 

eMIPS dynamically self-extensible processor. This 

processor, during execution, can load additional logic 

blocks that can perform a variety of functions from adding 

new instructions to the base instruction set to controlling 

I/O pins. A dynamically loaded logic block that acts as an 

I/O peripheral to software is what we term an Extensible 

I/O Peripheral. 

On eMIPS, the type, number and memory space 

allocation of on-chip peripherals is known only at runtime, 

when it can change dynamically with the loading and 

unloading of processor Extensions. We have added to the 

eMIPS design additional mechanisms for a newly loaded 

Extensible On-Chip Peripheral to connect to the memory 

controller, to disconnect from it, to interact with system 

software in the discovery process, and to obtain the I/O 

space and interrupt resources that it needs to operate 

correctly. 

A general purpose operating system running on eMIPS 

is able to verify the security level of any processor 

Extension before it is enabled. Because it only executes in 

the address space of the application that uses it, other 

applications are insulated against potentially malicious 

Extensions. We have extended the security model to 

Extensible On-Chip Peripheral and their software drivers. 

Privileged peripherals can request access to additional 

interface signals that are not normally available to non-

privileged Extensions. These signals allow access to 

physical memory, interrupt lines and I/O pins. 

Extensible On-Chip Peripherals can interact with 

system software via memory-mapped I/O. But they can also 

add new I/O instructions to the processor. For instance, 

atomic multi-register data transfers can simplify the 

interaction between software and interrupt routines, 

especially on multi-core systems. 

 

1 Introduction 
 

eMIPS is a dynamically extensible processor that 

includes a standard MIPS trusted ISA and extensible 

hardware slots. The programmable logic can plug into the 

main pipeline stages during the execution of a program. In 

addition to providing hardware acceleration of certain basic 

blocks of code for improved performance, the extension 

slots can be used for a variety of other purposes. In this 

document, we introduce the idea of using them to 

implement Extensible On-Chip I/O Peripherals – on-chip  

I/O peripherals and I/O interfaces that can be dynamically 

loaded and unloaded during program execution. 

In order to provide the self-extensible feature, the 

eMIPS processor is implemented on a field programmable 

gate array. The amount of hardware real-estate available on 

any given FPGA chips is limited, thus limiting the number 

of on-chip peripherals that can be supported on the eMIPS 

platform. Here, we propose to load and unload the 

peripherals as needed during program runtime, thus 

supporting a larger number of on-chip peripherals, albeit 

not all at the same time. Furthermore, this approach 

provides on-chip support for any new peripheral that might 

become available in the future, without the need for 

redesigning or even recompiling the existing hardware. 

Extensible on-chip peripherals enable hardware reuse 

by allowing the extension slots to be shared between 

extension instructions and peripherals, without tying up the 

hardware resources. In other words, using eMIPS, one can 

provide support for many peripherals without allocating 

area resources to them until they are actually used. This 

feature makes available more hardware resources for use in 

extension instructions, thus achieving higher performance 

speed-ups. In addition, the extensible peripherals can 

implement specialized instructions capable of performing 

multiple atomic I/O operations without the need for 

disabling the interrupts, locking the memory bus or 

switching to a different processing core. 

Figure 1 shows the block diagram of an eMIPS 

processor with one of the extension slots used for an 

extensible peripheral. As shown in the figure, the eMIPS 

processor is divided into two main parts: the hard fabric 

and the soft fabric, both implemented on the same FPGA 

chip. The hard fabric, as the name suggests, represents the 

fixed logic that does not change during program execution. 

It consists of the minimal hardware required for the 

processor to securely run standard MIPS instructions 

(MIPS ISA, memory controller, interrupt controller, etc.) 

along with the modules that are required to support the 



 

 - 4 -  

dynamic loading of extension slots. The hard fabric is 

sometimes referred to as the Trusted Instruction Set 

Architecture (TISA), for the role it plays in the security 

architecture of the eMIPS processor.  

 The soft fabric part of eMIPS consists of the extension 

slots used to implement specialized instructions that are not 

part of the MIPS instruction set. These instructions replace 

a block of code (e.g. a for loop) with a single instruction 

running on specialized hardware, thereby improving the 

program performance. Figure 1 shows one such extension 

slot used for implementing an on-chip peripheral instead of 

extension instructions. It is in this area that we realize the 

Extensible On-Chip Peripherals. 

Dynamic loading and unloading of Extensible On-Chip 

Peripherals is performed by software. System software 

initiates the loading of an Extensible On-Chip Peripheral by 

sending a signal to the Xilinx System Ace FPGA control 

chip, which in turn loads the configuration bit file for the 

extension into one of the slots in the soft fabric of the 

reconfigurable hardware. 

To appear on the memory bus, the peripheral must be 

configured into the system memory map and assigned any 

additional resources it may require (such as interrupts). 

This is done using the configuration signals of the 

extension interface (Figure 1). These signals are sent to the 

extension controller, the module that administers the 

peripheral configuration process. Once configured, the 

peripheral appears on the memory bus and communicates 

to the memory controller using its own communication 

signals. System software can unload a peripheral, for 

instance when it is finished using it. This relinquishes both 

the portion of address space used by the peripheral and the 

reconfigurable extension slot which can then be reused by 

another extension. 

During different phases of the peripherals’ life cycle 

(configuration, normal operation etc.), its access to the 

memory bus is controlled by system software using the 

coprocessor 0 register. Only a limited set of signals are 

accessible to an Extension until system software enables 

the rest using this register. This register resides inside the 

TISA, making the extensible peripherals scheme secure 

from malicious attacks. 

The remainder of this document is structured as 

follows. Section 2 summarizes the related work. Section 3 

is a high-level discussion of the issues and trade-offs in I/O 

system design. In section 4, we discuss the atomicity issues 

and show how eMIPS can be used to solve them. Section 5 

presents the structure and details of the Extensible On-Chip 

Peripheral configuration process. In section 6 we describe 

the hardware security model of the eMIPS processor with 

respect to extensible peripherals. Section 7 discusses our 

implementation and validation of the Extensible On-Chip 

Peripheral concept. Section 8 concludes the paper, with 

discussion on future work and further applications of 

extensible peripherals. 

 

Figure 1: The eMIPS processor with an extensible peripheral loaded in Extension slot #1. 
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2 Related Work 
 

Dynamic insertion and removal of peripheral boards 

from off-chip I/O busses is a well known and standardized 

feature for reliable computer systems [11] [18]. Our work 

addresses the case of on-chip peripherals, which (by 

definition) cannot be implemented as physically removable 

boards. Nonetheless, many ideas and techniques apply to 

both cases. 

Partial Reconfiguration [25] is a relatively recent 

technique developed for FPGAs that allows dynamic 

loading and unloading of logic modules into certain areas 

of the FPGA chip, while other areas continue to function 

unperturbed. The eMIPS microcomputer [19] relies on this 

technique for realizing and managing all Extensions, 

including the case of Extensible On-Chip Peripherals.  

Other extensible processors [22] have been realized with a 

fixed I/O subsystem e.g. in the ASIC side along with the 

main data path, but the ideas and techniques described 

herein can be adapted to those designs as well. 

Most of the research on extensible processors has 

focused on using reconfigurable logic to improve 

application performance [7] [21] [16] [23] [26] [14] [20] 

[10] [5] [15] [9] [6] [3] and very little has been reported on 

realizing more flexible I/O subsystems [23] [3]. OneChip-

96 [23] did implement a USART, but in this rather limited 

prototype the processor and the extensions were compiled 

together and therefore the system could not explore any of 

the problems addressed in this work. The Egret platform [3] 

uses the OneWire protocol to communicate with external 

I/O devices. Once a device is identified the system loads 

some more specialized logic to handle all communications 

with the external component and the OneWire logic module 

is overwritten. In Egret, the OPB bus is the processor 

interface to the peripherals and it is pre-compiled into the 

fixed part of the design. Therefore Extensions cannot be 

used to realize any other functionality, for instance 

specialized I/O instructions. In eMIPS, the interface is 

compiled in the peripheral itself and the system is therefore 

more flexible. Our approach does not require the OneWire 

module. Egret does not appear to explicitly handle the case 

of peripheral removals. 

The concept of a dynamically self-extensible processor 

is relatively new and to date not enough progress has been 

made towards an actual implementation of this and related 

concepts in a complete, usable and safe multi-user system. 

The analysis of the security models is therefore non-

existent and so are the implications for system software and 

any practical usability studies. 

Synchronizing an interrupt service routine (ISR) with 

the rest of a device driver is a well known system 

programming problem. Less understood is the case where 

the ISR runs in one process and the rest of the device driver 

in another. Forin et al. [8] encountered this case for user-

mode device drivers in the Mach Operating System. They 

used a special system service to solve the ensuing 

synchronization issues. 

Specialized I/O instructions have usually appeared in 

architectures in the form of data movement to and from the 

processor registers and some specific I/O component or 

address [17] [12]. The IBM System/360 [2] evolved from 

an earlier form that used specialized I/O instructions 

executed by the processor and mutated them into “Channel 

Instructions”, executed directly by the I/O peripheral. A 

single “START I/O” instruction is used either to start the 

sequence of I/O instructions in a separate I/O channel, or 

directly by the CPU in the older/simpler computer models. 

The 8086 processor [12] used “IN” and “OUT” instructions 

to access its I/O ports, logical I/O locations in a space 

distinct from the memory map. A bit on the bus separates 

I/O transactions from regular memory transactions. The 

80286 [13] processor introduced a bit in the task descriptor 

to permit or deny execution of the specialized I/O 

instructions, regardless of the privilege level of the 

processor. In later versions of the x86 architecture the port 

model of I/O has been largely abandoned in favor of 

memory mapping of the I/O locations. 

3 Models of I/O 
 

In the design space for I/O architectures, there are two 

clear extremes: the memory-mapped I/O approach (M) on 

one end, and the specialized instruction approach (S) on the 

other. Somewhere in the middle falls the case of queues of 

messages (Q) used to send data and commands to and from 

peripheral devices. The Q model has recently gained 

popularity especially with 3-D graphical accelerators and 

the Infiniband cluster interconnect. Note that the Q model 

can be implemented on top of either the M or S models. 

     There are a number of dimensions along which we 

can compare I/O models. One dimension is how the model 

scales with the number of processor cores. The M model 

has a few deficiencies in this respect. The routing of I/O 

interface traffic over the same bus as memory traffic can 

cause congestion, especially if the transactions are 

synchronous and/or non-interruptible. Interrupts might be 

dispatched to a different core, creating serialization 

concerns. Synchronization between the ISR and non-

interrupt level software is more problematic when multiple 

cores are involved. Both the S and Q models can more 

flexibly address these issue in hardware. 

The issue with ISRs is but one of those discussed later 

on in section 4 under the “atomicity” umbrella. The result 

of this discussion is that the S model is clearly a winner in 

this respect. Provided it can be implemented atomically, the 

Q model shares the same advantages as the S model. 
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Processor virtualization – e.g. virtual machines, 

requires hardware support for best performance and I/O is 

one of the areas where performance suffers the most from 

the virtualization process. In this respect, the amount of 

information contained in a load/store instruction is much 

less than what is carried in a specialized instruction, 

especially if such an instruction can be tied to a specific 

peripheral. Indeed, a common approach to solve the I/O 

problem is to modify the guest OS with special device 

drivers that make use of specialized instructions. The Q 

model of I/O might provide even better performance, 

provided it could be used to deposit the payloads directly 

into the guest OS’ address space. The price to pay for direct 

user mode access by a peripheral is a duplicated MMU on 

the device and the costs of keeping the MMUs  

synchronized. 

User-mode access to peripherals [8] is one way to 

virtualization, with the potential for minimizing the data 

movement costs. All three I/O models are equally 

applicable here, but the M model does not provide any 

obvious way to synchronize with I/O completions. Both of 

the S and Q models can easily provide for a wait operation.  

I/O devices very often must be multiplexed among 

many software components, which is the essential function 

of a device driver. The Q model is clearly superior here, a 

queue being but the simplest form of a multiplexor. The S 

model can be made to work equally well, and the M model 

has serious synchronization and atomicity issues. 

Clusters are groups of processors that do not share 

memory but are nonetheless meant to operate as a single 

machine. For these systems the Q model is clearly superior 

and the M model is not applicable. The S model is best 

used to implement the Q model.  

An I/O model requires a certain amount of logic 

resources to implement the hardware interface of the 

model. This is a recurring per-peripheral cost - the interface 

must be replicated in each peripheral. A model that requires 

less resources is therefore desirable from a cost perspective. 

The M model is easier to implement and therefore requires 

less resources, at least as long as the memory bus protocols 

are kept at a reasonable level of complexity. 

     This limited discussion suffices to show that there is 

no I/O model that is clearly superior to the others, each has 

its advantages and disadvantages depending on other 

system and software factors that are outside the control of 

the I/O designer. With eMIPS, we have the unique 

opportunity of not having to choose one particular model, 

all can be supported by the same basic hardware 

architecture. Extensible On-Chip Peripherals can be made 

visible on the memory bus to implement the M model. 

They can also recognize individual processor instructions to 

implement the S model. Those instructions can be of the 

send-receive form to implement the Q model of I/O. Note 

also that the architecture does not favor one model over any 

other. 

4 Atomicity 
 

In this section we define “atomicity” with respect to 

I/O peripherals, using a simple example and analyzing the 

practical problems it raises. We use an example to contrast 

the load-store I/O model with the additional possibilities 

offered by the eMIPS I/O architecture. 

As a working example, we use the case of a 

hypothetical FM radio peripheral. Actual radios do exist 

that have similar interfaces, but the details are not 

important to the discussion. Table 1 shows the commands 

that can be sent to our radio; they include tuning the radio 

to a specific radio station, asking it to scan up/down to the 

next station, and to retrieve the basic properties of a radio 

station. 

Table 1. FM radio command set 

Command Arguments Results 

SetFrequency Frequency ErrorCode 

GetFrequency  Frequency 

StartScan Direction  

StopScan  ErrorCode 

SetScanLimits 
LowFrequency, 

HighFrequency 
ErrorCode 

GetMode  
Mono/Stereo, 

Caption, etc. 

 

Consider the pseudo code in Figure 2, which defines 

two software functions that need access to the radio. The 

first is a loop that constantly monitors the current frequency 

and displays it on the graphical readout. The second is the 

interrupt handling routine, which we presume is invoked 

when a StartScan command reaches a valid station, or if it 

times out. The software application could be run either on a 

single or a multi core system. 

To illustrate the atomicity issues created by the 

load/store model for I/O, Figure 3 shows the MIPS 

assembly code for performing one of the radio commands 

present in Table 1, the others being quite similar. The first 

instruction loads into register t0 a constant defining the 

command for the radio, which is sent to the peripheral by 

the store instruction that immediately follows. The next 

load instruction retrieves the result from the peripheral’s 

ARGUMENT register, and the function then returns. 

If we identify with “S0” or “L0” the store/load from 

the DisplayThread and with “S1” or “L1” the store/load 

from the InterruptHandler, during execution we can 

conceivably observe the following six permutations: 
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S0L0S1L1, S1L1S0L0, S0S1L1L0, S0S1L0L1, S1S0L1L0, 

and S1S0L0L1. If we assume that the DisplayThread can 

be context-switched away by the operating system we 

could also observe sequences containing repetitions of 

S0L0 (or S1L1), but this case can clearly be reduced to one 

of the above six ones. Of these six, only the first two 

produce the expected results; in all the other cases one 

function will erroneously return the result of the other. The 

last three sequences can only be realized on a multi core 

system, and only if the interrupt is dispatched to a different 

core than the one where the DisplayThread runs. 

The errors occur because the functions are not atomic 

with respect to interrupts and/or to each other. The only 

solution is to force them atomic, preventing the last four 

erroneous sequences from occurring. This can be done on a 

uniprocessor by disabling interrupts inside e.g. the 

GetFrequency function. On a multiprocessor it is necessary 

to disable interrupts on the processor where the 

InterruptHandler is dispatched, not necessarily the current 

one. If disabling of interrupts is done on a per-peripheral 

basis, it is also possible to context-switch away the 

DisplayThread while interrupts are disabled and to leave 

the interrupts disabled potentially for a long time. Disabling 

interrupts is generally undesirable for real-time scheduling. 

It is inefficient on architectures where the action must be 

performed on the interrupt target processor and therefore 

the action requires rescheduling the software thread from 

one processor to another. 

 

 
 

 

On eMIPS, the functions in Figure 2 can be realized as 

Extended Instructions, instructions that are recognized by 

the peripheral itself which runs in close proximity to the 

base processor pipeline. The peripheral can execute the 

instruction by transferring multiple registers at once and in 

this case by performing both the store and the load 

operations atomically.  Interrupts are dispatched either 

before or after any processor instruction completes, never 

inside it, and this provides the desired atomicity on a 

uniprocessor. On a multiprocessor the peripheral can lock 

the I/O bus during the two transactions, serializing properly 

any concurrent access by multiple processors. Extended 

instructions can selectively be enabled in any processor 

context, regardless of mode. A user-mode device driver 

could use a separate software thread to wait for I/O 

completions, without the need for any additional OS 

services. 

5 Peripheral Configuration 
 

In this section we describe the Extensible On-Chip 

Peripheral configuration process first from the hardware, 

then from the software point of view. All signals and 

control bits involved in the process are defined here. The 

general idea is that software does not trust a peripheral 

during the configuration process. It must verify the degree 

of privilege requested in hardware against the privilege 

indicated in the peripheral configuration bitfile, and the 

signature and security digest therein. 

 

Size (bytes) Starting Address Address Valid 

Size 1 Address 1 1 

Size 2 Address 2 0 

Size n Address n 0 

Figure 4: Peripheral BAT table 

5.1 Hardware Configuration Interface 

The Extension Controller 

A newly loaded peripheral must be configured by 

system software before it can operate. The peripheral must 

indicate to software its tag and all the address ranges it 

needs, including its standard control region. For example, 

the SRAM controller of Figure 9 indicates two ranges; a 32 

byte range for its control region and a SRAM_SizeInBytes 

range for the SRAM. The sizes of the resources required by 

the peripheral are stored inside the peripheral in the Base 

Address Translation (BAT) table (Figure 4), which must be 

accessible to system software. This is also the table that is 

used by the peripheral to determine if a memory request 

belongs to it. Until it is deemed safe by software and the 

configuration process is complete, however, the peripheral 

#define Radio %a0 

#define COMMAND 0 

#define ARGUMENT 4 

 

GetFrequency: 

     li t0, CMD_GET_FREQUENCY 

     sw t0, COMMAND(Radio) 

     lw v0, ARGUMENT(Radio) 

     jr ra 

 

Figure 2: FM radio application fragment 

Figure 3: Load/Store model for FM radio 

DisplayThread() { 

        while (1) { 

                Radio.Station = GetFrequency(Radio.Address); 

 ShowRadio(Radio); 

        } 

} 

InterruptHandler() { 

        Radio.Mode = GetMode(Radio.Address); 

} 
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is ignored by the memory controller and cannot respond to 

the requests on the memory bus. A separate module, the 

extension controller, acts as a secure bridge for the 

communication between the peripheral and the memory 

controller during the configuration process. It is the 

extension controller that interacts with system software 

while mapping the peripheral and allocating all the required 

resources. 

The control signals that interface the peripheral to the 

memory controller and the extension controller are depicted 

in Figure 5. Note that a single extension controller is used 

to configure all the extensible peripherals. Here we show 

the interface signals of only one of the peripherals. Multiple 

sets of such signals are connected to the extension 

controller, one for each extension slot. The extension slot 

currently being configured is selectable by system software. 

The extension controller contains a 32 bit control 

register, the lower 16 bits of which are used to indicate the 

size of the extension controller itself. The size field is read 

only for software. The upper 16 bits of the control register 

are used for handshaking between the peripheral currently 

being configured and system software. The fields of the 

control register are shown in Figure 6. 

Upon loading, the peripheral notifies the extension 

controller by raising the Present signal. If the slot number 

of this peripheral is the one currently selected by software 

(bits S_No[1] and S_No[0] of the control register), the 

extension controller sets the LOAD and IRQ bits. If the 

interrupt is enabled (IRQ_EN = 1), it also raises an 

interrupt to the processor. After raising the interrupt 

request, the extension controller waits for system software 

to respond. 

 When software tries to read the tag or the BAT table 

entries from the peripheral, the extension controller 

indicates this to the peripheral by raising the BAT_Enable 

signal. BAT_Enable is used during the configuration 

process to allow the peripheral to temporarily “see” the 

request on the memory bus and respond to it. Upon 

receiving the BAT_Enable, the peripheral reads the address 

from the bus, places the tag/size on the data bus and raises 

the Done signal. After the Done signal is raised, the 

extension controller removes the BAT_Enable signal. A 

timeout is used to override the Done signal if the peripheral 

does not respond within a certain time. This is done to 

prevent the memory bus from locking-out when there is no 

peripheral present, or when a malicious/misbehaving 

peripheral tries to obtain and retain the control of the bus.  
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Figure 6: Control register for the extension controller 

A similar procedure is followed when system software 

tries to assign the address ranges to the peripheral by 

writing to the BAT table. The extension controller 

recognizes the BAT address and raises the BAT_Enable 

signal to the peripheral. Therefore during the entire 

configuration, it is the extension controller that decides 

whether the peripheral has access to the memory bus or not, 

not the peripheral itself. Each extension slot is controlled 

by a set of bits in the coprocessor0 register set, which is a 

privileged resource inside the TISA. One of these bits 

(PERIPHERAL) is logically OR-ed with the BAT_Enable 

bit and it is set by system software once it decides that it 

trusts the extension and it wants to fully enable it. Note that 

peripherals are given direct access to the memory bus only 

after they have been verified and fully configured by 

system software. This makes the dynamic loading of 

peripherals as secure and verifiable as other eMIPS 

Extensions. 

The Want_Interrupt signal is used by the peripheral to 

indicate whether it needs interrupt resources or not. If this 

signal is high, the extension controller sets the INTR bit of 

its control register. System software sees this signal and 

enables the corresponding interrupt line in the interrupt 

controller. We currently use a fixed set of interrupt lines, 

one per extension slot. 

An Extensible peripheral can also request privileged 

access to the memory bus. Normally an extension can only 

see virtual addresses, to be translated by the MMU inside 

the TISA. Certain peripherals will need to use physical 

addresses on the bus. Such a peripheral should raise the 

Privilege signal to the extension controller, which in turn 

Figure 5: Peripheral interfaces to the memory 

controller and to the extension controller 
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sets the PRIV bit of the control register. System software 

decides whether to grant access or not. 

The peripheral keeps the Present bit high while it is 

loaded. The Present bit should be lowered only during the 

unload process. On the falling edge of the Present signal, 

the extension controller sets the UNLOAD bit in its control 

register and issues an interrupt to the processor in much the 

same way as during the load event. This indicates to system 

software that the extension slot is now free for other uses. 

 

Figure 7: Peripheral configuration state machine 

 

The Configuration State Machine 

Extensible peripherals can be in one of the four states 

shown in the state machine of Figure 7. The state of the 

peripheral is set by system software and indicates to the 

peripheral the amount of control it has over the main 

memory bus. These states are: 

Absent: The peripheral is not present. This can be 

either because the peripheral was never loaded or it was 

loaded but then removed. In the latter case, the peripheral 

might still be present in the extension slot with its state set 

to absent and its BAT entries invalidated by software. A 

peripheral in the absent state does not appear in the system 

memory map and cannot respond to memory requests. The 

extension controller returns this value when a peripheral 

does not respond (Done signal) before the timeout expires. 

In this state the PERIPHERAL bit is off. 

Config: The peripheral is in the process of being 

configured. During this state, the peripheral can access the 

memory bus only through the extension controller, using 

the BAT_Enable signal. In this state the PERIPHERAL bit 

is off. 

Running: This is the normal operating state of the 

peripheral, once it has been verified and configured. In this 

state, the peripheral is directly present on the main memory 

bus and can respond to it without the need of a 

BAT_Enable signal. The peripheral sees every request on 

the memory bus and responds to those belonging to it. In 

this state the PERIPHERAL bit is on. 

Suspended: Software can temporarily put a peripheral 

in the suspended mode in order to save power or for some 

other reason. During this state, the peripheral suspends its 

normal operation and waits to be brought back to the 

running state. In this state, however, the BAT entries of the 

peripheral are not invalidated and the peripheral still 

appears in the peripheral mapping table. In this state the 

PERIPHERAL bit is on. 

When a peripheral is first loaded it is in the Config 

state. The extension controller and system software must 

configure it before it can operate. After the configuration 

process is completed, system software updates the state of 

the peripheral to Running. In the Running state, software 

may decide to put the peripheral in low-power mode. This 

is done by writing the state Suspended into the peripheral. 

Software can also take the peripheral back to the Config 

state, for instance in order to change its resource 

assignments. To remove the peripheral, software changes 

its state to Absent. Once in the Absent state, all the BAT 

entries of the peripheral are invalidated and the peripheral 

can be brought back to the running state only via the 

Config state. 

3                      1 1                 0 

1                   6 5  

PhysicalAddressHigh Tag 

Figure 8: Entries in the peripheral mapping table 

 

3                   0 

1    

PhysicalAddressHigh Tag = 2 

Control SizeInBytes = 32 

SRAM_SizeInBytes 

Unused 

Figure 9: Descriptor for the SRAM controller 

 

5.2 Software Configuration Interface 
 

The Peripheral Mapping Table 

System software can explore the on-chip peripheral 

space using a table located in the uppermost portion of the 

physical memory space. The Peripheral Mapping Table 

(PMT) is implemented as an on-chip dual-ported RAM. 

The format of the entries in the PMT is depicted in Figure 

8. Each entry contains a tag that identifies one of a number 

of peripheral types. The upper portion of the entry is the top 

16 bits of (the physical address of) a 64 KB portion of 

memory, reserved for (a number of) peripherals of the 

Absent Config 

Running Suspended 
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indicated type. Figure 9 depicts what we would typically 

find by following one such entry, in this case for a SRAM 

controller.  Each peripheral auto-describes itself using the 

Tag and the SizeInBytes fields. The size indication is used 

to allocate more peripherals of the same type in the same 64 

KB region. The SRAM controller also contains a 

PhysicalAddressHigh field, used to allocate the SRAM 

memory itself within the physical address space.  Simpler 

peripherals do not need further resource allocations and 

will dispense with this field. The size of the SRAM bank is 

indicated by the SRAM_SizeInBytes field.  The Unused 

field is only used to round-up the controller memory range 

to a 2^N multiple. 

Software Processes 

System software uses the PMT to configure peripherals 

into its memory map. The PMT starts at the top of the 

address space and grows downwards. The first entry tags 

the table itself and for verification purposes contains a self-

pointer. The last entry of the table is also tagged specially 

and plays a minor role in the dynamic peripheral 

configuration process. 

When the interrupt from the extension controller is 

generated, software reads the control register of the 

extension controller to determine if it is a load or an unload 

event. It also writes a 1 to the IRQ bit of the control register 

to indicate to the extension controller that its interrupt 

request has been handled. Upon receiving this indication, 

the extension controller removes the IRQ and clears the 

LOAD (or UNLOAD) bit. 

In the case of a LOAD event, software reads the tag of 

the peripheral requesting to be enabled and the number of 

bytes requested for mapping in the physical address space. 

This is done through the extension controller, using the 

BAT_Enable, as explained in section 0. System software 

decides where to allocate the peripheral given the current 

state of the memory map. It looks in the PMT for segments 

with the same tag until it finds one with enough space left. 

If there are already peripherals of the same type (tag) 

mapped, software will try to allocate the new one in an 

existing segment. If there is no room, or if this is a new tag, 

then a new segment must be allocated and mapped into the 

PMT. This is done by overriding the last entry in the table 

and adding a new last-entry. Upon making room for the 

peripheral, software writes the starting address of that 

segment into the peripheral BAT table with the valid bit 

(least significant bit of this address) set to 1. Software then 

reads the next BAT entry for any additional memory 

resources needed by the peripheral. This process is repeated 

until the maximum number of BAT entries (currently 5) has 

been reached or the peripheral returns zeros for requested 

size. 

After assigning all the memory resources, software 

reads the control register of the extension controller to 

determine if the peripheral requires interrupts and 

privileged access. If any of these bits are set, software 

checks to see if the peripheral qualifies for them. If the 

peripheral qualifies to get interrupts, software unmasks the 

corresponding bit in the interrupt controller, thereby 

enabling interrupts from the peripheral’s extension slot. 

Similarly, if the peripheral qualifies for privileged memory 

access, software sets the corresponding bits in the 

coprocessor 0 register (explained in detail in section 6). 

Finally, software changes the state of the peripheral from 

Config to Running. At this point, the peripheral is fully 

configured and appears on the main memory bus. Software 

can now communicate with the peripheral directly, without 

the need of a BAT_Enable signal. Reading of the peripheral 

tag via the newly allocated memory range can be used to 

verify that the memory controller has in fact enabled it, that 

the peripheral is fully configured and that it recognizes its 

own addresses. 

During an UNLOAD procedure, system software reads 

the tag of the peripheral. It unconditionally masks the 

peripheral interrupt in the interrupt controller. Then it clears 

the BAT entries of the peripheral and removes the 

peripheral from the PMT, thereby releasing all the memory 

resources used by the peripheral. It then changes the 

peripheral’s state to ABSENT and updates the coprocessor 

0 register. The peripheral lowers its Present bit and this 

generates an UNLOAD interrupt. This completes the 

unload process and the peripheral no longer appears on the 

memory bus. 

6 Security Model 
 

Access to the I/O pins is a potential security threat for 

a multi-user operating system and standard techniques 

should be used to restrict such access to trusted system 

modules.  The implementer of an Extensible On-Chip 

Peripheral can use standard I/O memory mapping and 

protection techniques to implement these restrictions.  

Mapping of the peripheral is restricted to privileged-mode 

processes, e.g. the kernel process, and the peripheral is 

therefore invisible to other processes. If the peripheral 

provides Extended Instructions, those techniques are 

insufficient; a user-mode and/or non-trusted module must 

be prevented from executing the new instructions as well as 

being prevented from accessing the physical memory 

ranges allocated to the peripheral. In this section we 

describe the general mechanisms used on eMIPS to control 

the operation of Extensions.  

The chip area is subdivided at processor design time 

into a fixed area for the TISA and a number of slots for 

Extensions. Each slot is controlled by four individual 

control bits in a special register of the eMIPS system 

coprocessor 0. These bits are LOADED, ENABLED, 

PRIVILEGED and PERIPHERAL.  
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The LOADED bit gates all wires to/from the 

corresponding Extension slot. When de-asserted, this bit 

effectively isolates the Extension and stops any clock 

signals into it. If the FPGA chip architecture allows it, this 

bit also disables power to the Extension’s area.  

The ENABLED bit determines what happens if the 

Extension recognizes one of the Extended Instructions. If 

the bit is set, the Extension is allowed to interact with the 

TISA and to access registers, memory and/or I/O pins. If 

the bit is clear the instruction is ignored and the processor 

proceeds to the next instruction. 

The PRIVILEGED bit is used to indicate whether the 

extension has the privilege to access physical addresses and 

interrupts. This bit is set by system software upon receiving 

a Privilege indication from the extension. As stated earlier, 

peripheral extensions request privileged access by raising 

the privilege signal to the extension controller, which sets 

the corresponding bit in its control register. 

Note that PRIVILEGED access can be granted to any 

Extension, not just to I/O peripherals. An example where 

an extension might require privileged access is a memory 

snooping extension. Such an extension can run in parallel 

with the main pipeline to perform on-line monitoring of the 

memory transactions. If the bit is set, all accesses to the 

memory bus are profiled, from all processes, using the 

physical addresses post-MMU translation. If the bit is clear, 

only the corresponding process is profiled, using virtual 

addresses pre-MMU translation. 

The PERIPHERAL bit is used to indicate whether the 

current extension is a peripheral. It is set by system 

software once the peripheral configuration process is 

completed. During normal operations (peripheral in running 

state), a peripheral is allowed to place data on the memory 

bus only if this bit is set. In that respect, the PERIPHERAL 

bit can be thought of as a permanent BAT_Enable signal 

that stays high for as long as the peripheral is loaded and 

running. At any time, however, system software can reset 

this bit to zero, cutting the peripheral off from the memory 

bus. This might be necessary, for instance, to stop a 

misbehaving peripheral that had already been granted 

control of the memory bus. 

Thus, every extension slot is controlled using the 

secure coprocessor 0 register, making the extensions fully 

secure and controllable by system software. Further, these 

bits can operate independently of the User/Kernel mode 

bits; therefore it is possible to grant access to the Extended 

Instructions to user mode modules [8]. 

7 Implementation and Validation 
 

To realize and test the dynamic loading and unloading 

of I/O peripherals in the extension slots, we have modified 

the eMIPS base design in two ways. We have changed the 

Extension interface as discussed in Section 5.1 and Section 

6 and implemented the extension controller as a new 

module on the TISA side. We have then implemented two 

extensible peripherals, a timer and a debugger interface. 

The extensible timer acts as a second timer peripheral, 

the first (default) being the on-chip peripheral already 

present on the hard fabric. It contains a 64 bit free-running 

counter and a 64 bit down counter. A software test program 

loads this timer, configures it, dumps the control registers 

of both timers on the screen and then unloads the second 

(extensible) timer. The loading and unloading is verified by 

dumping the contents of the peripheral mapping table. The 

output from running this program on the ML401 board is 

similar to the output from a previous simulation [1]. 

The extensible debugger peripheral contains two parts. 

One is a USART interface that uses two pins of the FPGA 

to connect to a Maxim serial line interface. The other is the 

control logic to interface to a software debugger. Only the 

USART portion is relevant to this discussion.  

We have implemented these extensible peripherals on 

the Xilinx Virtex-4 XC4LX25 FPGA, using the synthesis 

tools from the Xilinx ISE v8.2i.. The area resources 

required for the extension controller and for the extensible 

peripherals are shown in Table 2. As shown in the table, the 

extension controller requires less than 1% of the chip area. 

It currently has support logic for two extensible peripheral 

slots. We anticipate that adding the capability to support 

more peripherals will not increase the area overhead 

significantly. The additional interface logic required on the 

peripherals themselves in order to support dynamic loading 

and unloading is also minimal. Thus, the addition of the 

extensible peripheral feature to eMIPS does not claim a 

significant portion of the hardware resources that are 

available to the eMIPS extensions and hence it does not 

limit the potential for application speedup. 

Table 2. Area Requirements on Virtex-4 FPGA 

Module # of Slices % of Total 

Extension Controller 55 < 1 

Extensible Timer Peripheral 716 6 

Extensible USART Peripheral 33 < 1 

 

8 Conclusions 
 

In this paper, we introduced the concept of Extensible On-

Chip Peripherals to enable dynamic loading and unloading 

of I/O peripherals in the extension slots of the eMIPS 

processor. Extensible peripherals do not occupy any 

hardware resource until actually loaded, thus providing 

support for virtually infinite number of peripherals. They 

can also be used to implement a variety of instructions that 
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can perform atomic multi-register operations, provide 

debugger support and possibly enable virtualization of 

peripherals. To the best of our knowledge, this is the first 

system that provides the capability of securely loading 

either on-chip peripherals or extension instructions at run-

time, from within a multi-user environment. Furthermore, 

our implementation of Extensible On-Chip Peripherals 

shows that they can consume minimal FPGA real-estate, 

thus maintaining the same speedups originally achievable 

by the eMIPS processor. 
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