

Extensible On-Chip Peripherals

Bharat Sukhwani, Alessandro Forin, Richard Neil Pittman

Microsoft Research

September 2007

Technical Report

MSR-TR-2007-120

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

 - 3 -

Extensible On-Chip Peripherals

Bharat Sukhwani, Alessandro Forin, Richard Neil Pittman

Microsoft Research

Abstract

This document describes the I/O subsystem of the

eMIPS dynamically self-extensible processor. This

processor, during execution, can load additional logic

blocks that can perform a variety of functions from adding

new instructions to the base instruction set to controlling

I/O pins. A dynamically loaded logic block that acts as an

I/O peripheral to software is what we term an Extensible

I/O Peripheral.

On eMIPS, the type, number and memory space

allocation of on-chip peripherals is known only at runtime,

when it can change dynamically with the loading and

unloading of processor Extensions. We have added to the

eMIPS design additional mechanisms for a newly loaded

Extensible On-Chip Peripheral to connect to the memory

controller, to disconnect from it, to interact with system

software in the discovery process, and to obtain the I/O

space and interrupt resources that it needs to operate

correctly.

A general purpose operating system running on eMIPS

is able to verify the security level of any processor

Extension before it is enabled. Because it only executes in

the address space of the application that uses it, other

applications are insulated against potentially malicious

Extensions. We have extended the security model to

Extensible On-Chip Peripheral and their software drivers.

Privileged peripherals can request access to additional

interface signals that are not normally available to non-

privileged Extensions. These signals allow access to

physical memory, interrupt lines and I/O pins.

Extensible On-Chip Peripherals can interact with

system software via memory-mapped I/O. But they can also

add new I/O instructions to the processor. For instance,

atomic multi-register data transfers can simplify the

interaction between software and interrupt routines,

especially on multi-core systems.

1 Introduction

eMIPS is a dynamically extensible processor that

includes a standard MIPS trusted ISA and extensible

hardware slots. The programmable logic can plug into the

main pipeline stages during the execution of a program. In

addition to providing hardware acceleration of certain basic

blocks of code for improved performance, the extension

slots can be used for a variety of other purposes. In this

document, we introduce the idea of using them to

implement Extensible On-Chip I/O Peripherals – on-chip

I/O peripherals and I/O interfaces that can be dynamically

loaded and unloaded during program execution.

In order to provide the self-extensible feature, the

eMIPS processor is implemented on a field programmable

gate array. The amount of hardware real-estate available on

any given FPGA chips is limited, thus limiting the number

of on-chip peripherals that can be supported on the eMIPS

platform. Here, we propose to load and unload the

peripherals as needed during program runtime, thus

supporting a larger number of on-chip peripherals, albeit

not all at the same time. Furthermore, this approach

provides on-chip support for any new peripheral that might

become available in the future, without the need for

redesigning or even recompiling the existing hardware.

Extensible on-chip peripherals enable hardware reuse

by allowing the extension slots to be shared between

extension instructions and peripherals, without tying up the

hardware resources. In other words, using eMIPS, one can

provide support for many peripherals without allocating

area resources to them until they are actually used. This

feature makes available more hardware resources for use in

extension instructions, thus achieving higher performance

speed-ups. In addition, the extensible peripherals can

implement specialized instructions capable of performing

multiple atomic I/O operations without the need for

disabling the interrupts, locking the memory bus or

switching to a different processing core.

Figure 1 shows the block diagram of an eMIPS

processor with one of the extension slots used for an

extensible peripheral. As shown in the figure, the eMIPS

processor is divided into two main parts: the hard fabric

and the soft fabric, both implemented on the same FPGA

chip. The hard fabric, as the name suggests, represents the

fixed logic that does not change during program execution.

It consists of the minimal hardware required for the

processor to securely run standard MIPS instructions

(MIPS ISA, memory controller, interrupt controller, etc.)

along with the modules that are required to support the

 - 4 -

dynamic loading of extension slots. The hard fabric is

sometimes referred to as the Trusted Instruction Set

Architecture (TISA), for the role it plays in the security

architecture of the eMIPS processor.

 The soft fabric part of eMIPS consists of the extension

slots used to implement specialized instructions that are not

part of the MIPS instruction set. These instructions replace

a block of code (e.g. a for loop) with a single instruction

running on specialized hardware, thereby improving the

program performance. Figure 1 shows one such extension

slot used for implementing an on-chip peripheral instead of

extension instructions. It is in this area that we realize the

Extensible On-Chip Peripherals.

Dynamic loading and unloading of Extensible On-Chip

Peripherals is performed by software. System software

initiates the loading of an Extensible On-Chip Peripheral by

sending a signal to the Xilinx System Ace FPGA control

chip, which in turn loads the configuration bit file for the

extension into one of the slots in the soft fabric of the

reconfigurable hardware.

To appear on the memory bus, the peripheral must be

configured into the system memory map and assigned any

additional resources it may require (such as interrupts).

This is done using the configuration signals of the

extension interface (Figure 1). These signals are sent to the

extension controller, the module that administers the

peripheral configuration process. Once configured, the

peripheral appears on the memory bus and communicates

to the memory controller using its own communication

signals. System software can unload a peripheral, for

instance when it is finished using it. This relinquishes both

the portion of address space used by the peripheral and the

reconfigurable extension slot which can then be reused by

another extension.

During different phases of the peripherals’ life cycle

(configuration, normal operation etc.), its access to the

memory bus is controlled by system software using the

coprocessor 0 register. Only a limited set of signals are

accessible to an Extension until system software enables

the rest using this register. This register resides inside the

TISA, making the extensible peripherals scheme secure

from malicious attacks.

The remainder of this document is structured as

follows. Section 2 summarizes the related work. Section 3

is a high-level discussion of the issues and trade-offs in I/O

system design. In section 4, we discuss the atomicity issues

and show how eMIPS can be used to solve them. Section 5

presents the structure and details of the Extensible On-Chip

Peripheral configuration process. In section 6 we describe

the hardware security model of the eMIPS processor with

respect to extensible peripherals. Section 7 discusses our

implementation and validation of the Extensible On-Chip

Peripheral concept. Section 8 concludes the paper, with

discussion on future work and further applications of

extensible peripherals.

Figure 1: The eMIPS processor with an extensible peripheral loaded in Extension slot #1.

 - 5 -

2 Related Work

Dynamic insertion and removal of peripheral boards

from off-chip I/O busses is a well known and standardized

feature for reliable computer systems [11] [18]. Our work

addresses the case of on-chip peripherals, which (by

definition) cannot be implemented as physically removable

boards. Nonetheless, many ideas and techniques apply to

both cases.

Partial Reconfiguration [25] is a relatively recent

technique developed for FPGAs that allows dynamic

loading and unloading of logic modules into certain areas

of the FPGA chip, while other areas continue to function

unperturbed. The eMIPS microcomputer [19] relies on this

technique for realizing and managing all Extensions,

including the case of Extensible On-Chip Peripherals.

Other extensible processors [22] have been realized with a

fixed I/O subsystem e.g. in the ASIC side along with the

main data path, but the ideas and techniques described

herein can be adapted to those designs as well.

Most of the research on extensible processors has

focused on using reconfigurable logic to improve

application performance [7] [21] [16] [23] [26] [14] [20]

[10] [5] [15] [9] [6] [3] and very little has been reported on

realizing more flexible I/O subsystems [23] [3]. OneChip-

96 [23] did implement a USART, but in this rather limited

prototype the processor and the extensions were compiled

together and therefore the system could not explore any of

the problems addressed in this work. The Egret platform [3]

uses the OneWire protocol to communicate with external

I/O devices. Once a device is identified the system loads

some more specialized logic to handle all communications

with the external component and the OneWire logic module

is overwritten. In Egret, the OPB bus is the processor

interface to the peripherals and it is pre-compiled into the

fixed part of the design. Therefore Extensions cannot be

used to realize any other functionality, for instance

specialized I/O instructions. In eMIPS, the interface is

compiled in the peripheral itself and the system is therefore

more flexible. Our approach does not require the OneWire

module. Egret does not appear to explicitly handle the case

of peripheral removals.

The concept of a dynamically self-extensible processor

is relatively new and to date not enough progress has been

made towards an actual implementation of this and related

concepts in a complete, usable and safe multi-user system.

The analysis of the security models is therefore non-

existent and so are the implications for system software and

any practical usability studies.

Synchronizing an interrupt service routine (ISR) with

the rest of a device driver is a well known system

programming problem. Less understood is the case where

the ISR runs in one process and the rest of the device driver

in another. Forin et al. [8] encountered this case for user-

mode device drivers in the Mach Operating System. They

used a special system service to solve the ensuing

synchronization issues.

Specialized I/O instructions have usually appeared in

architectures in the form of data movement to and from the

processor registers and some specific I/O component or

address [17] [12]. The IBM System/360 [2] evolved from

an earlier form that used specialized I/O instructions

executed by the processor and mutated them into “Channel

Instructions”, executed directly by the I/O peripheral. A

single “START I/O” instruction is used either to start the

sequence of I/O instructions in a separate I/O channel, or

directly by the CPU in the older/simpler computer models.

The 8086 processor [12] used “IN” and “OUT” instructions

to access its I/O ports, logical I/O locations in a space

distinct from the memory map. A bit on the bus separates

I/O transactions from regular memory transactions. The

80286 [13] processor introduced a bit in the task descriptor

to permit or deny execution of the specialized I/O

instructions, regardless of the privilege level of the

processor. In later versions of the x86 architecture the port

model of I/O has been largely abandoned in favor of

memory mapping of the I/O locations.

3 Models of I/O

In the design space for I/O architectures, there are two

clear extremes: the memory-mapped I/O approach (M) on

one end, and the specialized instruction approach (S) on the

other. Somewhere in the middle falls the case of queues of

messages (Q) used to send data and commands to and from

peripheral devices. The Q model has recently gained

popularity especially with 3-D graphical accelerators and

the Infiniband cluster interconnect. Note that the Q model

can be implemented on top of either the M or S models.

 There are a number of dimensions along which we

can compare I/O models. One dimension is how the model

scales with the number of processor cores. The M model

has a few deficiencies in this respect. The routing of I/O

interface traffic over the same bus as memory traffic can

cause congestion, especially if the transactions are

synchronous and/or non-interruptible. Interrupts might be

dispatched to a different core, creating serialization

concerns. Synchronization between the ISR and non-

interrupt level software is more problematic when multiple

cores are involved. Both the S and Q models can more

flexibly address these issue in hardware.

The issue with ISRs is but one of those discussed later

on in section 4 under the “atomicity” umbrella. The result

of this discussion is that the S model is clearly a winner in

this respect. Provided it can be implemented atomically, the

Q model shares the same advantages as the S model.

 - 6 -

Processor virtualization – e.g. virtual machines,

requires hardware support for best performance and I/O is

one of the areas where performance suffers the most from

the virtualization process. In this respect, the amount of

information contained in a load/store instruction is much

less than what is carried in a specialized instruction,

especially if such an instruction can be tied to a specific

peripheral. Indeed, a common approach to solve the I/O

problem is to modify the guest OS with special device

drivers that make use of specialized instructions. The Q

model of I/O might provide even better performance,

provided it could be used to deposit the payloads directly

into the guest OS’ address space. The price to pay for direct

user mode access by a peripheral is a duplicated MMU on

the device and the costs of keeping the MMUs

synchronized.

User-mode access to peripherals [8] is one way to

virtualization, with the potential for minimizing the data

movement costs. All three I/O models are equally

applicable here, but the M model does not provide any

obvious way to synchronize with I/O completions. Both of

the S and Q models can easily provide for a wait operation.

I/O devices very often must be multiplexed among

many software components, which is the essential function

of a device driver. The Q model is clearly superior here, a

queue being but the simplest form of a multiplexor. The S

model can be made to work equally well, and the M model

has serious synchronization and atomicity issues.

Clusters are groups of processors that do not share

memory but are nonetheless meant to operate as a single

machine. For these systems the Q model is clearly superior

and the M model is not applicable. The S model is best

used to implement the Q model.

An I/O model requires a certain amount of logic

resources to implement the hardware interface of the

model. This is a recurring per-peripheral cost - the interface

must be replicated in each peripheral. A model that requires

less resources is therefore desirable from a cost perspective.

The M model is easier to implement and therefore requires

less resources, at least as long as the memory bus protocols

are kept at a reasonable level of complexity.

 This limited discussion suffices to show that there is

no I/O model that is clearly superior to the others, each has

its advantages and disadvantages depending on other

system and software factors that are outside the control of

the I/O designer. With eMIPS, we have the unique

opportunity of not having to choose one particular model,

all can be supported by the same basic hardware

architecture. Extensible On-Chip Peripherals can be made

visible on the memory bus to implement the M model.

They can also recognize individual processor instructions to

implement the S model. Those instructions can be of the

send-receive form to implement the Q model of I/O. Note

also that the architecture does not favor one model over any

other.

4 Atomicity

In this section we define “atomicity” with respect to

I/O peripherals, using a simple example and analyzing the

practical problems it raises. We use an example to contrast

the load-store I/O model with the additional possibilities

offered by the eMIPS I/O architecture.

As a working example, we use the case of a

hypothetical FM radio peripheral. Actual radios do exist

that have similar interfaces, but the details are not

important to the discussion. Table 1 shows the commands

that can be sent to our radio; they include tuning the radio

to a specific radio station, asking it to scan up/down to the

next station, and to retrieve the basic properties of a radio

station.

Table 1. FM radio command set

Command Arguments Results

SetFrequency Frequency ErrorCode

GetFrequency Frequency

StartScan Direction

StopScan ErrorCode

SetScanLimits
LowFrequency,

HighFrequency
ErrorCode

GetMode
Mono/Stereo,

Caption, etc.

Consider the pseudo code in Figure 2, which defines

two software functions that need access to the radio. The

first is a loop that constantly monitors the current frequency

and displays it on the graphical readout. The second is the

interrupt handling routine, which we presume is invoked

when a StartScan command reaches a valid station, or if it

times out. The software application could be run either on a

single or a multi core system.

To illustrate the atomicity issues created by the

load/store model for I/O, Figure 3 shows the MIPS

assembly code for performing one of the radio commands

present in Table 1, the others being quite similar. The first

instruction loads into register t0 a constant defining the

command for the radio, which is sent to the peripheral by

the store instruction that immediately follows. The next

load instruction retrieves the result from the peripheral’s

ARGUMENT register, and the function then returns.

If we identify with “S0” or “L0” the store/load from

the DisplayThread and with “S1” or “L1” the store/load

from the InterruptHandler, during execution we can

conceivably observe the following six permutations:

 - 7 -

S0L0S1L1, S1L1S0L0, S0S1L1L0, S0S1L0L1, S1S0L1L0,

and S1S0L0L1. If we assume that the DisplayThread can

be context-switched away by the operating system we

could also observe sequences containing repetitions of

S0L0 (or S1L1), but this case can clearly be reduced to one

of the above six ones. Of these six, only the first two

produce the expected results; in all the other cases one

function will erroneously return the result of the other. The

last three sequences can only be realized on a multi core

system, and only if the interrupt is dispatched to a different

core than the one where the DisplayThread runs.

The errors occur because the functions are not atomic

with respect to interrupts and/or to each other. The only

solution is to force them atomic, preventing the last four

erroneous sequences from occurring. This can be done on a

uniprocessor by disabling interrupts inside e.g. the

GetFrequency function. On a multiprocessor it is necessary

to disable interrupts on the processor where the

InterruptHandler is dispatched, not necessarily the current

one. If disabling of interrupts is done on a per-peripheral

basis, it is also possible to context-switch away the

DisplayThread while interrupts are disabled and to leave

the interrupts disabled potentially for a long time. Disabling

interrupts is generally undesirable for real-time scheduling.

It is inefficient on architectures where the action must be

performed on the interrupt target processor and therefore

the action requires rescheduling the software thread from

one processor to another.

On eMIPS, the functions in Figure 2 can be realized as

Extended Instructions, instructions that are recognized by

the peripheral itself which runs in close proximity to the

base processor pipeline. The peripheral can execute the

instruction by transferring multiple registers at once and in

this case by performing both the store and the load

operations atomically. Interrupts are dispatched either

before or after any processor instruction completes, never

inside it, and this provides the desired atomicity on a

uniprocessor. On a multiprocessor the peripheral can lock

the I/O bus during the two transactions, serializing properly

any concurrent access by multiple processors. Extended

instructions can selectively be enabled in any processor

context, regardless of mode. A user-mode device driver

could use a separate software thread to wait for I/O

completions, without the need for any additional OS

services.

5 Peripheral Configuration

In this section we describe the Extensible On-Chip

Peripheral configuration process first from the hardware,

then from the software point of view. All signals and

control bits involved in the process are defined here. The

general idea is that software does not trust a peripheral

during the configuration process. It must verify the degree

of privilege requested in hardware against the privilege

indicated in the peripheral configuration bitfile, and the

signature and security digest therein.

Size (bytes) Starting Address Address Valid

Size 1 Address 1 1

Size 2 Address 2 0

Size n Address n 0

Figure 4: Peripheral BAT table

5.1 Hardware Configuration Interface

The Extension Controller

A newly loaded peripheral must be configured by

system software before it can operate. The peripheral must

indicate to software its tag and all the address ranges it

needs, including its standard control region. For example,

the SRAM controller of Figure 9 indicates two ranges; a 32

byte range for its control region and a SRAM_SizeInBytes

range for the SRAM. The sizes of the resources required by

the peripheral are stored inside the peripheral in the Base

Address Translation (BAT) table (Figure 4), which must be

accessible to system software. This is also the table that is

used by the peripheral to determine if a memory request

belongs to it. Until it is deemed safe by software and the

configuration process is complete, however, the peripheral

#define Radio %a0

#define COMMAND 0

#define ARGUMENT 4

GetFrequency:

 li t0, CMD_GET_FREQUENCY

 sw t0, COMMAND(Radio)

 lw v0, ARGUMENT(Radio)

 jr ra

Figure 2: FM radio application fragment

Figure 3: Load/Store model for FM radio

DisplayThread() {

 while (1) {

 Radio.Station = GetFrequency(Radio.Address);

 ShowRadio(Radio);

 }

}

InterruptHandler() {

 Radio.Mode = GetMode(Radio.Address);

}

 - 8 -

is ignored by the memory controller and cannot respond to

the requests on the memory bus. A separate module, the

extension controller, acts as a secure bridge for the

communication between the peripheral and the memory

controller during the configuration process. It is the

extension controller that interacts with system software

while mapping the peripheral and allocating all the required

resources.

The control signals that interface the peripheral to the

memory controller and the extension controller are depicted

in Figure 5. Note that a single extension controller is used

to configure all the extensible peripherals. Here we show

the interface signals of only one of the peripherals. Multiple

sets of such signals are connected to the extension

controller, one for each extension slot. The extension slot

currently being configured is selectable by system software.

The extension controller contains a 32 bit control

register, the lower 16 bits of which are used to indicate the

size of the extension controller itself. The size field is read

only for software. The upper 16 bits of the control register

are used for handshaking between the peripheral currently

being configured and system software. The fields of the

control register are shown in Figure 6.

Upon loading, the peripheral notifies the extension

controller by raising the Present signal. If the slot number

of this peripheral is the one currently selected by software

(bits S_No[1] and S_No[0] of the control register), the

extension controller sets the LOAD and IRQ bits. If the

interrupt is enabled (IRQ_EN = 1), it also raises an

interrupt to the processor. After raising the interrupt

request, the extension controller waits for system software

to respond.

 When software tries to read the tag or the BAT table

entries from the peripheral, the extension controller

indicates this to the peripheral by raising the BAT_Enable

signal. BAT_Enable is used during the configuration

process to allow the peripheral to temporarily “see” the

request on the memory bus and respond to it. Upon

receiving the BAT_Enable, the peripheral reads the address

from the bus, places the tag/size on the data bus and raises

the Done signal. After the Done signal is raised, the

extension controller removes the BAT_Enable signal. A

timeout is used to override the Done signal if the peripheral

does not respond within a certain time. This is done to

prevent the memory bus from locking-out when there is no

peripheral present, or when a malicious/misbehaving

peripheral tries to obtain and retain the control of the bus.

25 24 23 22 21 20 19 18 17 16
15

-0

S
_
N

o
[1

]

S
_
N

o
[0

]

P
R

IV

IN
T

R

U
N

L
O

A
D

L
O

A
D

X

IR
Q

_
E

N

IR
Q

R
S

T

S
IZ

E

Figure 6: Control register for the extension controller

A similar procedure is followed when system software

tries to assign the address ranges to the peripheral by

writing to the BAT table. The extension controller

recognizes the BAT address and raises the BAT_Enable

signal to the peripheral. Therefore during the entire

configuration, it is the extension controller that decides

whether the peripheral has access to the memory bus or not,

not the peripheral itself. Each extension slot is controlled

by a set of bits in the coprocessor0 register set, which is a

privileged resource inside the TISA. One of these bits

(PERIPHERAL) is logically OR-ed with the BAT_Enable

bit and it is set by system software once it decides that it

trusts the extension and it wants to fully enable it. Note that

peripherals are given direct access to the memory bus only

after they have been verified and fully configured by

system software. This makes the dynamic loading of

peripherals as secure and verifiable as other eMIPS

Extensions.

The Want_Interrupt signal is used by the peripheral to

indicate whether it needs interrupt resources or not. If this

signal is high, the extension controller sets the INTR bit of

its control register. System software sees this signal and

enables the corresponding interrupt line in the interrupt

controller. We currently use a fixed set of interrupt lines,

one per extension slot.

An Extensible peripheral can also request privileged

access to the memory bus. Normally an extension can only

see virtual addresses, to be translated by the MMU inside

the TISA. Certain peripherals will need to use physical

addresses on the bus. Such a peripheral should raise the

Privilege signal to the extension controller, which in turn

Figure 5: Peripheral interfaces to the memory

controller and to the extension controller

 - 9 -

sets the PRIV bit of the control register. System software

decides whether to grant access or not.

The peripheral keeps the Present bit high while it is

loaded. The Present bit should be lowered only during the

unload process. On the falling edge of the Present signal,

the extension controller sets the UNLOAD bit in its control

register and issues an interrupt to the processor in much the

same way as during the load event. This indicates to system

software that the extension slot is now free for other uses.

Figure 7: Peripheral configuration state machine

The Configuration State Machine

Extensible peripherals can be in one of the four states

shown in the state machine of Figure 7. The state of the

peripheral is set by system software and indicates to the

peripheral the amount of control it has over the main

memory bus. These states are:

Absent: The peripheral is not present. This can be

either because the peripheral was never loaded or it was

loaded but then removed. In the latter case, the peripheral

might still be present in the extension slot with its state set

to absent and its BAT entries invalidated by software. A

peripheral in the absent state does not appear in the system

memory map and cannot respond to memory requests. The

extension controller returns this value when a peripheral

does not respond (Done signal) before the timeout expires.

In this state the PERIPHERAL bit is off.

Config: The peripheral is in the process of being

configured. During this state, the peripheral can access the

memory bus only through the extension controller, using

the BAT_Enable signal. In this state the PERIPHERAL bit

is off.

Running: This is the normal operating state of the

peripheral, once it has been verified and configured. In this

state, the peripheral is directly present on the main memory

bus and can respond to it without the need of a

BAT_Enable signal. The peripheral sees every request on

the memory bus and responds to those belonging to it. In

this state the PERIPHERAL bit is on.

Suspended: Software can temporarily put a peripheral

in the suspended mode in order to save power or for some

other reason. During this state, the peripheral suspends its

normal operation and waits to be brought back to the

running state. In this state, however, the BAT entries of the

peripheral are not invalidated and the peripheral still

appears in the peripheral mapping table. In this state the

PERIPHERAL bit is on.

When a peripheral is first loaded it is in the Config

state. The extension controller and system software must

configure it before it can operate. After the configuration

process is completed, system software updates the state of

the peripheral to Running. In the Running state, software

may decide to put the peripheral in low-power mode. This

is done by writing the state Suspended into the peripheral.

Software can also take the peripheral back to the Config

state, for instance in order to change its resource

assignments. To remove the peripheral, software changes

its state to Absent. Once in the Absent state, all the BAT

entries of the peripheral are invalidated and the peripheral

can be brought back to the running state only via the

Config state.

3 1 1 0

1 6 5

PhysicalAddressHigh Tag

Figure 8: Entries in the peripheral mapping table

3 0

1

PhysicalAddressHigh Tag = 2

Control SizeInBytes = 32

SRAM_SizeInBytes

Unused

Figure 9: Descriptor for the SRAM controller

5.2 Software Configuration Interface

The Peripheral Mapping Table

System software can explore the on-chip peripheral

space using a table located in the uppermost portion of the

physical memory space. The Peripheral Mapping Table

(PMT) is implemented as an on-chip dual-ported RAM.

The format of the entries in the PMT is depicted in Figure

8. Each entry contains a tag that identifies one of a number

of peripheral types. The upper portion of the entry is the top

16 bits of (the physical address of) a 64 KB portion of

memory, reserved for (a number of) peripherals of the

Absent Config

Running Suspended

 - 10 -

indicated type. Figure 9 depicts what we would typically

find by following one such entry, in this case for a SRAM

controller. Each peripheral auto-describes itself using the

Tag and the SizeInBytes fields. The size indication is used

to allocate more peripherals of the same type in the same 64

KB region. The SRAM controller also contains a

PhysicalAddressHigh field, used to allocate the SRAM

memory itself within the physical address space. Simpler

peripherals do not need further resource allocations and

will dispense with this field. The size of the SRAM bank is

indicated by the SRAM_SizeInBytes field. The Unused

field is only used to round-up the controller memory range

to a 2^N multiple.

Software Processes

System software uses the PMT to configure peripherals

into its memory map. The PMT starts at the top of the

address space and grows downwards. The first entry tags

the table itself and for verification purposes contains a self-

pointer. The last entry of the table is also tagged specially

and plays a minor role in the dynamic peripheral

configuration process.

When the interrupt from the extension controller is

generated, software reads the control register of the

extension controller to determine if it is a load or an unload

event. It also writes a 1 to the IRQ bit of the control register

to indicate to the extension controller that its interrupt

request has been handled. Upon receiving this indication,

the extension controller removes the IRQ and clears the

LOAD (or UNLOAD) bit.

In the case of a LOAD event, software reads the tag of

the peripheral requesting to be enabled and the number of

bytes requested for mapping in the physical address space.

This is done through the extension controller, using the

BAT_Enable, as explained in section 0. System software

decides where to allocate the peripheral given the current

state of the memory map. It looks in the PMT for segments

with the same tag until it finds one with enough space left.

If there are already peripherals of the same type (tag)

mapped, software will try to allocate the new one in an

existing segment. If there is no room, or if this is a new tag,

then a new segment must be allocated and mapped into the

PMT. This is done by overriding the last entry in the table

and adding a new last-entry. Upon making room for the

peripheral, software writes the starting address of that

segment into the peripheral BAT table with the valid bit

(least significant bit of this address) set to 1. Software then

reads the next BAT entry for any additional memory

resources needed by the peripheral. This process is repeated

until the maximum number of BAT entries (currently 5) has

been reached or the peripheral returns zeros for requested

size.

After assigning all the memory resources, software

reads the control register of the extension controller to

determine if the peripheral requires interrupts and

privileged access. If any of these bits are set, software

checks to see if the peripheral qualifies for them. If the

peripheral qualifies to get interrupts, software unmasks the

corresponding bit in the interrupt controller, thereby

enabling interrupts from the peripheral’s extension slot.

Similarly, if the peripheral qualifies for privileged memory

access, software sets the corresponding bits in the

coprocessor 0 register (explained in detail in section 6).

Finally, software changes the state of the peripheral from

Config to Running. At this point, the peripheral is fully

configured and appears on the main memory bus. Software

can now communicate with the peripheral directly, without

the need of a BAT_Enable signal. Reading of the peripheral

tag via the newly allocated memory range can be used to

verify that the memory controller has in fact enabled it, that

the peripheral is fully configured and that it recognizes its

own addresses.

During an UNLOAD procedure, system software reads

the tag of the peripheral. It unconditionally masks the

peripheral interrupt in the interrupt controller. Then it clears

the BAT entries of the peripheral and removes the

peripheral from the PMT, thereby releasing all the memory

resources used by the peripheral. It then changes the

peripheral’s state to ABSENT and updates the coprocessor

0 register. The peripheral lowers its Present bit and this

generates an UNLOAD interrupt. This completes the

unload process and the peripheral no longer appears on the

memory bus.

6 Security Model

Access to the I/O pins is a potential security threat for

a multi-user operating system and standard techniques

should be used to restrict such access to trusted system

modules. The implementer of an Extensible On-Chip

Peripheral can use standard I/O memory mapping and

protection techniques to implement these restrictions.

Mapping of the peripheral is restricted to privileged-mode

processes, e.g. the kernel process, and the peripheral is

therefore invisible to other processes. If the peripheral

provides Extended Instructions, those techniques are

insufficient; a user-mode and/or non-trusted module must

be prevented from executing the new instructions as well as

being prevented from accessing the physical memory

ranges allocated to the peripheral. In this section we

describe the general mechanisms used on eMIPS to control

the operation of Extensions.

The chip area is subdivided at processor design time

into a fixed area for the TISA and a number of slots for

Extensions. Each slot is controlled by four individual

control bits in a special register of the eMIPS system

coprocessor 0. These bits are LOADED, ENABLED,

PRIVILEGED and PERIPHERAL.

 - 11 -

The LOADED bit gates all wires to/from the

corresponding Extension slot. When de-asserted, this bit

effectively isolates the Extension and stops any clock

signals into it. If the FPGA chip architecture allows it, this

bit also disables power to the Extension’s area.

The ENABLED bit determines what happens if the

Extension recognizes one of the Extended Instructions. If

the bit is set, the Extension is allowed to interact with the

TISA and to access registers, memory and/or I/O pins. If

the bit is clear the instruction is ignored and the processor

proceeds to the next instruction.

The PRIVILEGED bit is used to indicate whether the

extension has the privilege to access physical addresses and

interrupts. This bit is set by system software upon receiving

a Privilege indication from the extension. As stated earlier,

peripheral extensions request privileged access by raising

the privilege signal to the extension controller, which sets

the corresponding bit in its control register.

Note that PRIVILEGED access can be granted to any

Extension, not just to I/O peripherals. An example where

an extension might require privileged access is a memory

snooping extension. Such an extension can run in parallel

with the main pipeline to perform on-line monitoring of the

memory transactions. If the bit is set, all accesses to the

memory bus are profiled, from all processes, using the

physical addresses post-MMU translation. If the bit is clear,

only the corresponding process is profiled, using virtual

addresses pre-MMU translation.

The PERIPHERAL bit is used to indicate whether the

current extension is a peripheral. It is set by system

software once the peripheral configuration process is

completed. During normal operations (peripheral in running

state), a peripheral is allowed to place data on the memory

bus only if this bit is set. In that respect, the PERIPHERAL

bit can be thought of as a permanent BAT_Enable signal

that stays high for as long as the peripheral is loaded and

running. At any time, however, system software can reset

this bit to zero, cutting the peripheral off from the memory

bus. This might be necessary, for instance, to stop a

misbehaving peripheral that had already been granted

control of the memory bus.

Thus, every extension slot is controlled using the

secure coprocessor 0 register, making the extensions fully

secure and controllable by system software. Further, these

bits can operate independently of the User/Kernel mode

bits; therefore it is possible to grant access to the Extended

Instructions to user mode modules [8].

7 Implementation and Validation

To realize and test the dynamic loading and unloading

of I/O peripherals in the extension slots, we have modified

the eMIPS base design in two ways. We have changed the

Extension interface as discussed in Section 5.1 and Section

6 and implemented the extension controller as a new

module on the TISA side. We have then implemented two

extensible peripherals, a timer and a debugger interface.

The extensible timer acts as a second timer peripheral,

the first (default) being the on-chip peripheral already

present on the hard fabric. It contains a 64 bit free-running

counter and a 64 bit down counter. A software test program

loads this timer, configures it, dumps the control registers

of both timers on the screen and then unloads the second

(extensible) timer. The loading and unloading is verified by

dumping the contents of the peripheral mapping table. The

output from running this program on the ML401 board is

similar to the output from a previous simulation [1].

The extensible debugger peripheral contains two parts.

One is a USART interface that uses two pins of the FPGA

to connect to a Maxim serial line interface. The other is the

control logic to interface to a software debugger. Only the

USART portion is relevant to this discussion.

We have implemented these extensible peripherals on

the Xilinx Virtex-4 XC4LX25 FPGA, using the synthesis

tools from the Xilinx ISE v8.2i.. The area resources

required for the extension controller and for the extensible

peripherals are shown in Table 2. As shown in the table, the

extension controller requires less than 1% of the chip area.

It currently has support logic for two extensible peripheral

slots. We anticipate that adding the capability to support

more peripherals will not increase the area overhead

significantly. The additional interface logic required on the

peripherals themselves in order to support dynamic loading

and unloading is also minimal. Thus, the addition of the

extensible peripheral feature to eMIPS does not claim a

significant portion of the hardware resources that are

available to the eMIPS extensions and hence it does not

limit the potential for application speedup.

Table 2. Area Requirements on Virtex-4 FPGA

Module # of Slices % of Total

Extension Controller 55 < 1

Extensible Timer Peripheral 716 6

Extensible USART Peripheral 33 < 1

8 Conclusions

In this paper, we introduced the concept of Extensible On-

Chip Peripherals to enable dynamic loading and unloading

of I/O peripherals in the extension slots of the eMIPS

processor. Extensible peripherals do not occupy any

hardware resource until actually loaded, thus providing

support for virtually infinite number of peripherals. They

can also be used to implement a variety of instructions that

 - 12 -

can perform atomic multi-register operations, provide

debugger support and possibly enable virtualization of

peripherals. To the best of our knowledge, this is the first

system that provides the capability of securely loading

either on-chip peripherals or extension instructions at run-

time, from within a multi-user environment. Furthermore,

our implementation of Extensible On-Chip Peripherals

shows that they can consume minimal FPGA real-estate,

thus maintaining the same speedups originally achievable

by the eMIPS processor.

References

[1] Almeida, O., Forin, A., Garcia, P., Helander , J., Khantal, N.,

Lu, H., Meier, K., Mohan, S., Nielson, H., Pittman, R. N.,

Serg, R., Sukhwani, B., Veanes, M., Zorn, B., Berry, S.,

Boyce, C., Chaszar, D., Culrich, B., Kisin, M., Knezek, G.,

Linam-Church, W., Liu, S., Stewart, M., Toney, D.

Embedded Systems Research at DemoFest’07. Microsoft

Research Technical Report MSR-TR-2007-94, July 2007.

[2] Amdahl, G., M., Blaauw, G., A., Brooks, F. P. Jr. 1964

Architecture of the IBM System/360. IBM Journal of

Research and Development, Vol. 8, No. 2, 1964

[3] Bergmann, N., Lu, Y., Williams, J., A. 2007. Automatic Self-

Reconfiguration of System-on-Chip Peripherals. Poster at

IEEE Symposium on Field-Programmable Custom

Computing Machines, April 2007, Napa CA.

[4] Borgatti, M., et al. 2003. A Reconfigurable System Featuring

Dynamically Extensible Embedded Microprocessor, FPGA,

and Customizable I/O. IEEE Journal of Solid-State Circuits,

March 2003, Vol. 38, pp 521-529.

[5] Carrillo, J. E., Chow, P. 2001. The Effect of Reconfigurable

Units in Superscalar Processors. Proceedings of International

Symposium on Field-Programmable Gate Arrays, pp. 141-

150, February 2001.

[6] Clark, N., Blome, J., Chu, M., Mahlke, S., Biles, S., Flautner,

K. 2005. An Architecture Framework for Transparent

Instruction Set Customization in Embedded Processors.

Proceedings of International Symposium on Computer

Architecture, pp. 272-283.

[7] Estrin, G. 1960. Organization of computer systems: The

fixed plus variable structure computer. Proceedings of

Western Joint Computer Conference, pp 33-40, New York

1960.

[8] Forin, A., D. Golub and B. Bershad. 1991. An I/O System for

Mach 3.0. Proceedings of the First USENIX Conference on

Mach, 1991.

[9] Hauck, S. et al. 2004. The Chimaera Reconfigurable

Functional Unit. IEEE Transactions on VLSI, 2004.

[10] Hauser, J. R., Wawrzynek, J. 1997. Garp: A MIPS Processor

with a Reconfigurable Coprocessor. Proceedings of IEEE

Symposium on Field-Programmable Custom Computing

Machines, pp 12-21, April 1997.

[11] Herrig, H., W. et al. 1989. Method and apparatus for

controlled removal and insertion of circuit modules. US

Patent No. 4835737, May 1989.

[12] Intel Corp. 1985. 8086 16-Bit HMOS Microprocessor Order

No. 231455-003 September 1985.

[13] Intel Corp. 1989/ Microprocessor and Peripheral Handbook,

Volume I – Microprocessor ISBN 1-55512-041-5, pp. 3.1-

56, 1989.

[14] Lau, D., Pritchard, O., Molson, P. 2006. Automated

Generation of Hardware Accelerators with Direct Memory

Access from ANSI/ISO Standard C Functions. Proceedings

of IEEE Symposium on Field-Programmable Custom

Computing Machines, pp. 45-54, April 2006.

[15] Lysecky, R., Vahid, F. 2004. A Configurable Logic

Architecture for Dynamic Hardware/Software Partitioning.

DATE, 2004.

[16] Mitrionics, Inc. 2001. http://www.mitrionics.com

[17] Nielsen, M., J., K., Titan System Manual Digital Equipment

Corporation WRL, August 1988.

[18] PCI Hot-Plug Specification Revision 1.1, June 20, 2001.

http://www.pcisig.com

[19] Pittman, R., N., Lynch, N., L, Forin, A. eMIPS, A

Dynamically Extensible Processor. Microsoft Research

Technical Report MSR-TR-2006-143, October 2006.

[20] Razdan, R., Smith, M. D. 1994. High-Performance

Microarchitectures with Hardware-Programmable Functional

Units. 27th ISM, pp. 172-180, November 1994.

[21] SRC Computers Inc. 1996. http://www.srccomp.com

[22] Stretch, Inc. 2006 http://www.stretchinc.com

[23] Tarari, Inc. 2002. http://www.tarari.com

[24] Wittig, R. D., Chow, P. 1996. OneChip: An FPGA Processor

with Reconfigurable Logic. Proceedings of IEEE

Symposium on Field-Programmable Custom Computing

Machines, pp. 126-135, 1996.

[25] Xilinx, Inc. Using Partial Reconfiguration to Time Share

Device Resources in Virtex II and Virtex II Pro. Xilinx Inc.,

May 2005

[26] Xilinx, Inc. Virtex 4 Family Overview. Xilinx Inc. June

2005. http://direct.xilinx.com/bvdocs/publications/ds112.pdf

http://www.mitrionics.com/
http://www.pcisig.com/
http://www.srccomp.com/
http://www.stretchinc.com/
http://www.tarari.com/
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

